

Juho Koponen

Documentation of modular game
collection

Bachelor’s thesis
Information Technology

2019

Tekijä Tutkinto

Aika

Juho Koponen

Insinööri (AMK) Toukokuu 2019

Opinnäytetyön nimi

Modulaarisen pelikokoelman dokumentointi

35 sivua

Toimeksiantaja

Kaakkois-Suomen ammattikorkeakoulu Oy
Ohjaaja

Lehtori Marko Oras
Tiivistelmä

Tämän opinnäytetyön tarkoitus oli kehittää ja koota yhteenveto modulaarisen
pelikokoelman dokumentoinnista, jonka tilaajana on Kaakkois-Suomen
ammattikorkeakoulu. Opinnäytetyö käsittelee opetuskäyttöön kehitetyn pelikokoelman
dokumentoinnin suunnittelun ja toteutuksen käyttöä varten.

Modulaarinen pelikokoelma toteutettiin Unity-pelimoottorilla ja sen dokumentointia varten
käytettiin useita dokumentointityökaluja ja -tapoja. Pelikokoelman vaatimukset muuttuivat
kehitysvaiheessa ja muutokset vaikuttivat dokumentaatioon.

Dokumentoinnin vaatimusperusteet ja suunnittelu, sekä näihin kohdistuvat muutokset,
käsitellään opinnäytetyön ensimmäisissä osissa. Dokumentoinnin tavoitteena oli kehittää
dokumentaatiojärjestelmä, joka yhdessä ohjeiden kanssa mahdollistaisi peliprojektien
tuottamisen aloittelevalta pelinkehittäjältä. Opinnäytetyön pääosa keskittyy
dokumentaatiotapojen kehitykseen ja käyttöön yhdessä dokumentaatiotyökalujen kanssa.
Dokumentaatiojärjestelmä koostuu useammasta osajärjestelmästä muodostaen kattavan
kuvauksen modulaarisen pelikokoelman toiminnallisuudesta ja käytöstä.

Opinnäytetyön tuloksena saatiin modulaarisen pelikokoelman dokumentointi ja
dokumentoinnin ohjeistus kehitettyä. Toteutettu dokumentaatio toimii opetustyökalun
ohjeiden pohjana. Dokumentaation puutteellisuuden ja virheellisyyden kartoittamista ja
korjaamista varten vaaditaan jatkossa käyttötestausta.

Asiasanat

dokumentointi, modulaarisuus, pelikehitys

Author Degree

Time

Juho Koponen

Bachelor of
Engineering

May 2019

Thesis title

Documentation of modular game collection

35 pages

Commissioned by

South-Eastern Finland University of Applied Sciences Ltd.
Supervisor

Marko Oras
Abstract

The purpose of this thesis was to compile and develop the documentation of a modular
game collection, a learning tool commissioned by South-Eastern Finland University of
Applied Sciences. The design and implementation of the documentation for the game
collection is described in this thesis.

The modular game collection was developed with Unity game engine. Various
documentation tools and methods were used for the documentation of the game collection.
The requirements of the game collection changed during the development and affected the
documentation.

This thesis details the requirements and the design of the documentation, including
changes made in the process. The objective was to develop a documentation system
which, together with instructions, would enable a beginner game developer to construct
game projects. The development and utilization of the documentation methods are the
focus of this thesis, together with the documentation tools. The documentation system
consists of multiple subsystems, forming a comprehensive description of the functionality
and usage of the modular game collection.

The system and the related guidelines were developed as a result of this thesis. The
implemented system functions as a basis for the instructions of the learning tool. In order to
discover and correct the defects and deficiencies in documentation, usability testing of the
modular game collection is required.

Keywords

documentation, game development, modularity

CONTENTS

ABBREVATIONS ... 6

1 INTRODUCTION .. 7

1.1 Purpose of this thesis ... 7

1.2 Approach to the subject .. 8

1.3 Commissioner ... 9

2 REQUIREMENTS ... 9

2.1 Modular game collection ... 9

2.2 Learning tool ... 10

2.3 Modularity ... 10

2.4 Instructions for game projects ... 11

2.5 Documentation .. 11

2.6 Changes in the documentation ... 12

3 DESIGN AND PREPARATIONS .. 13

3.1 Documentation guidelines .. 14

3.1.1 Code commenting guidelines .. 14

3.1.2 Error documentation guidelines .. 15

3.1.3 Graph guidelines ... 16

3.1.4 Instruction guidelines .. 16

3.2 Documentation database .. 16

3.2.1 Selection of the documentation database tools .. 17

3.2.2 Doxygen .. 17

4 IMPLEMENTATION .. 18

4.1 Game design documents .. 18

4.2 Code documenting .. 19

4.2.1 Pseudocode .. 20

4.2.2 Clean code .. 20

4.3 Unity Editor tooltips ... 21

4.4 Unity Editor error messages ... 22

4.5 Doxygen ... 22

4.6 Documentation for instructions ... 27

4.7 Graphs .. 28

4.7.1 Class diagrams ... 28

4.7.2 Diagrams .. 29

4.7.3 Game object diagrams .. 30

5 FUTURE DEVELOPMENT ... 31

6 CONCLUSIONS ... 32

REFERENCES .. 34

LIST OF FIGURES

6

ABBREVATIONS

Ddoc Documentation generator for D programming language.

HTML Hypertext Markup Language, a standardized markup language for

creating web pages.

JSDoc Markup language for JavaScript documentation.

NDoc Documentation generator.

Pandoc Document converter.

RDoc Documentation generator for Ruby programming language.

7

1 INTRODUCTION

With the growth and progress of the modern software development, the

importance of documentation has become apparent. Project-oriented software

development requires communication, not only between the developers, but the

developer and the software. Communication enables the various tasks to be

distributed between multiple developers, and sufficient documentation allows to

monitor the advancement of the development. Introducing new developers or

maintaining the software will become easier when information is directly readable

without the need to interpret it from the code.

Documentation is an important aspect of programming projects of any extent.

The purpose of documentation is to communicate the functionality of the program

to other developers and users. Documentation is useful for design, development,

testing, maintenance and further development.

Documentation can be implemented on a variety of levels: internally within the

written code, integrated within the development environments or externally with

documents and databases. The intended users and the chosen documentation

methods together with other requirements result in a project-dependent

documentation.

1.1 Purpose of this thesis

This thesis was commissioned to develop the documentation of a modular game

collection. The thesis compiles the utilized documentation tools and methods.

The first part of this thesis describes the requirements of the documentation. The

first part is followed by an introduction to the design and preparation of the

documentation, describing the process of elaborating the documentation system

from subsystems as established by the requirements.

The focus of this thesis is the implementation of the documentation: the

development of the documentation methods and guidelines and the utilization of

8

documentation tools. The final, and conclusive part discusses the lessons

learned from the documentation of the game collection. The extent of the success

of the documentation will also be contemplated.

The development of the modular game collection and the changes made to it

during the development are not included in the scope of this thesis. The changes

caused the implemented game collection to diverge from its original vision. Briefly

summarized, the changes were a result of multiple factors from inadequate

design-phase and project management: underestimating the importance of

instructions as one of the requirements, misunderstandings in the requirements

due to inefficient communication and time-consuming solutions made during the

development. This thesis will not describe the changes of the game collection or

causes to these changes in further detail. The instructions created for the game

projects of the modular game collection will not be included, but the

documentation made for the instructions will be described in this thesis.

1.2 Approach to the subject

The development team for the modular game collection consisted of three

developers. For the development team, the modular game collection was one of

the first large-scale development projects. Previous experience included game

projects and game prototypes, none of which compared to a modular,

interconnected system. The approach to the modular game collection was to

involve the whole development team in constructing the modular base for the

game collection and developing the documentation and instructions.

The author of this thesis had minor prior experience of documentation, mainly in

code commenting and game design documents. Knowledge of documentation

methods and tools was not extensive. Exploration of how to construct a

documentation around a system functions as the basis for this thesis.

9

1.3 Commissioner

GameLab of South-Eastern Finland University of Applied Sciences provides

learning tools and environments for game programming students. South-Eastern

Finland University of Applied Sciences is a higher educational institution, with

campuses in multiple cities. The motto of the university is unlimited learning,

hence the GameLab is constantly exploring and experimenting new ways for

improving teaching and learning methods.

2 REQUIREMENTS

The thesis commissioned and related instructions were given in September 2018.

Discussions were held in order to define the objectives. No software requirement

specification or game design document were created as a result of the

discussions.

Initial objectives were changed during the development process both by the

development team and the commissioner. This thesis will not focus on the

changes in the project, and the reasons for the changes will only be briefly

mentioned in the conclusive chapter. The effects on the documentation will be

addressed at the end of this chapter.

2.1 Modular game collection

The commissioner gave an assignment to create and develop a modular game

collection for educational purposes. The purpose of the product was to serve as a

learning tool for game development. The users would construct standalone

games, but the modular structure would provide possibilities for customization

and experimentation.

The modular game collection would contain 10 different games, each varying in

genre. The games would be deconstructed to be used as material in game

development projects for educational purposes.

10

The modular game collection was developed using Unity game engine and

Microsoft Visual Studio as the program development environment. GitHub

hosting service was used for the project version control of the game collection.

2.2 Learning tool

The intended users would be the new students, and the modular game collection

would serve as a learning tool for them. Users would reconstruct several specific

games from deconstructed game projects. The modular game collection would

include elements from the design, development and various other aspects of

programming projects. Game reconstruction would directly introduce new

students to game design, project management, version control, usage of a game

engine, programming, programming terminology and troubleshooting.

2.3 Modularity

Standalone games of the modular game collection were required to consist of

modular or shared elements. Modular elements, such as game objects, scripts

and data structures, would allow their usage in other games. Users would have

been able to customize their reconstructed projects by seamlessly integrating

modular elements or even mechanics into their creations. For example,

introducing an enemy object or game score system used by other games.

In software development, modularization also means subdividing the program

and its development into more easily manageable parts. The benefits of this type

of modularization are the maximisation of the individual programmer productivity

and the minimisation of the damage caused by the changes in the functional

requirements. Dividing the program to subunits and modules, promotes

maintainability and reusability; changes to the whole system are redirected into

smaller modules. (Robinson 2004, 276-277.)

For the modular game collection, modularity meant efficiency in both

development and documentation: modules reduce the amount of repetition and

promote the task distribution between the developers. Additionally, the

11

maintenance of the documentation would become facilitated as the changes

would affect only a part of the system and, therefore, only a part of the related

documentation.

2.4 Instructions for game projects

The modular system and its game projects required instructions for

reconstructing the individual games. The importance of the instructions was also

emphasised by the intended userbase: new students were assumed to have little

or no previous practice or experience in either game development or

programming projects. The objective for the instructions was to cover the basics

of game development and programming and to explain advanced or complex

concepts, such as object pooling. Overall, the aim was to provide instructions for

reconstructing the game projects with clearly defined steps and in a clearly

defined order, as well as instructions for the utilization of the modular elements.

An introduction to the basics of troubleshooting was also a requirement for the

modular game collection project. Instructions were required to contain a

controlled troubleshooting scenario as well as support for uncontrolled situations.

The intention for the controlled troubleshooting scenario was to introduce

problem solving as a part of the programming projects and familiarise the reader

with terminology used in the process.

In addition to the intended troubleshooting scenarios, the instructions had to

include support for uncontrolled errors. The intended users were not expected to

be able to solve the potential problems for example due to missing references.

Additionally, error messages created by Unity may contain terminology or

concepts unfamiliar to the users.

2.5 Documentation

The documentation is project-specific (Robinson 2004, 284), and the

aforementioned requirements for of the modular game collection relied on the

documentation. The range of the documentation can vary from structural

12

arrangement and commentary to module description documents, depending on

the scope and structure of the project (Robinson 2004, 284-285).

A modular system has to be documented sufficiently to allow the users –

teachers and students – to understand the game collection from their respective

perspectives. As a learning tool, the modular game collection was required to

introduce game programming and game programming concepts to beginner-level

users. At the beginning of the project development, instructions were planned to

be based on module documentation, referring to it whenever appropriate. These

reasons (Figure 1) resulted in the documentation of the game collection

becoming a mandatory aspect of the project.

Figure 1. Requirements for the documentation.

2.6 Changes in the documentation

The initial modular system changed during the process into standalone game

tutorials, and the documentation of the product was affected by these changes.

Changes made to instruction requirements had a substantial effect, as a

significant amount of documentation was specifically designed for the

instructions.

As a result, documentation methods had to be reconsidered and changed. Some

documentation methods were dismissed, and some were introduced to comply

with the new requirements. Some documentation methods were not directly

13

affected but their role in the documentation was potentially impacted. This thesis

will describe the method-specific changes in the chapters 3 and 4.

3 DESIGN AND PREPARATIONS

As documentation was a mandatory aspect of the thesis, the planning of it began

alongside with the design-phase of the modular game collection. Later, the

redefining changes made to the modular game collection extended the design-

phase of the documentation.

Initially, some major aspects for documentation were identified. The modules of

the modular game collection had to be documented, including the usage of the

modular elements. The code of the scripts had to be explained for the users

having no previous understanding of the used programs. Potential error-

scenarios required documentation that would provide support in resolving the

problems. Instructing the usage of the game engine was not a requirement for the

documentation.

Identifying the key areas of the documentation resulted in four major sections.

Firstly, a documentation database for the modular system was required.

Secondly, the code had to be documented in order to clarify the functionality of

the program. Thirdly, error documentation for initially planned controlled and

uncontrolled error-scenarios was required. Finally, visuals to support the

documentation in representing the various structures and concepts of the game

projects.

In conclusion, the documentation was designed to be not one separate system

but multiple integrated subsystems and documentation methods (Figure 2). This

design-choice followed the idea of modularization: breaking larger entities into

smaller components. Tools for documentation were considered and compared.

Designing the documentation also included the consideration of interactions and

compatibility between the documentation methods.

14

Figure 2. Sections of the documentation and documentation tools and methods.

3.1 Documentation guidelines

Documentation guidelines were designed and established, for controlling the

implementation of the modular game collection documentation. Guidelines

provided standards in the development with the purpose of promoting

consistency in the complex, large scale project. Guidelines were created for the

code commenting, error documentation, graphs and instructions.

The primary language used in documentation was chosen to be Finnish, as the

primary language of instruction in the degree programme of game programming

was Finnish. English terms were used whenever Finnish alternatives were not

suitable or available.

3.1.1 Code commenting guidelines

Under normal circumstances, comments are supposed to explain why – not how

– a section of the code exists. The explanation of the functionality of the program

should not be repeated by comments as the code itself should be sufficiently

clear and readable. (Goodliffe 2006, 75–76.) However, in terms of purpose and

requirements, the modular game collection was not a typical programming

15

project; the intended users were expected to be unable to read the code and

understand how it works. The functionality of the code and the role of the various

elements such as classes, variables, methods and data structures, were decided

to be explained by pseudocode-like comments within the code.

The purpose of the code commenting guidelines was also to ensure that the

organisation of command lines in the code for both Visual Studio and the

documentation generation tool remained intact and cause no disturbances.

3.1.2 Error documentation guidelines

Error documentation was initially designed to answer questions what, why and

where. Custom-made error messages would contain information on what went

wrong and where, and the documentation system for error messages would

contain support for troubleshooting. The error messages were planned to contain

individual identification and script as well as the method and the line number of

how and where in the code the message originated. The documentation of the

error messages was planned to contain a list of all the custom error messages,

their causes and suggestions for solving the problems.

Custom error messages were planned to appear like the error messages in Unity

Editor (Figure 3). In order to be distinguishable from Unity Editor error messages,

the custom error messages would contain a prefix at the beginning of the

message. The prefix would distinctly set the custom error messages apart from

the Unity Editor error messages.

Figure 3. An example of custom error message in Unity Editor.

The custom error messages were also planned to appear in the same location as

the Unity Editor error messages: console. As a result, all the error messages

would be found in the same place. The causes for custom error messages were

16

assumed to commonly be the changes made within the Unity Editor or the

incompatibility between the code and the current state of the game project. When

double-clicked, the messages in Unity Editor console also offered a quick access

to the section of the code where the message was from.

Along with the changes in the modular game collection development, changes

were made to the error message documentation. The error documentation

system and majority of the custom error messages were discarded. Selected

messages were kept for their specific reasons. The further details of these

changes will be described in chapter 4.

3.1.3 Graph guidelines

The graphs were planned to follow Unified Markup Language, or UML, whenever

applicable. UML is considered a standard amongst the software developers as it

enables the representation of structures and their details in various programming

languages, including C# (Doran & Casanova 2017, 12). UML diagrams were

planned to be utilized in the representation of functional concepts, structures and

their relations. UML diagrams would introduce the userbase to the standardized

modelling language.

3.1.4 Instruction guidelines

Guidelines were required for the creation of consistent instructions. The

instructions for the reconstruction of the game projects had to be manually

created and required standards for structure and contents. Instructions were

designed to include written guidance and visuals to support and explain the

guidance. Navigation within the instructions was also an important aspect

because the instructions for a specific game project were planned to refer to the

common instructions.

3.2 Documentation database

A wiki-style database for the documentation was required to document the

modules of the modular game collection. A database would provide information

17

on various classes and their data members. The database would also explain the

usage of the member-functions of the classes and the relationships between the

classes.

3.2.1 Selection of the documentation database tools

Criteria for the documentation tool for the modules of the modular game

collection included budget, language support, licence, operating system support,

programming language support. Of various options, Doxygen was preferred over

such alternatives as Ddoc, JSDoc, NDoc, Pandoc and RDoc.

While Doxygen would automatically generate documentation for the modules of

the modular game collection, a solution for creating a wiki-site was also initially

required. The wiki-site would include instructions, error documentation and

documentation generated by Doxygen. Google Sites and GameLab’s wiki-base

were considered as options for hosting the wiki-site. GitHub repository’s wiki-

section was also taken into consideration after the utilization of Git version-

control. However, changes made to the modular game collection during its

development resulted in a requirement for a tutorial-oriented solution.

3.2.2 Doxygen

Doxygen is a documentation generation tool, supporting multiple programming

languages. Doxygen can be used to create a documentation browser from the

source code. (Doxygen 2019.) It can generate HTML-files from the source code,

offering both an overall view to the program as well as detailed views to its

modules.

Doxygen automatically recognizes data structures, classes and class members

and generates a database from these elements. Users can add comments to the

code for Doxygen to incorporate them in the documentation (Doxygen 2019). For

example, additional details may be added for specific classes or their data

members and the details will be displayed in the documentation. Doxygen does

this by reading special commands.

18

Special commands are lines in the code which start with a character recognized

by Doxygen. By utilizing special commands, additional information can be

included in the documentation, sections can be excluded from documentation

generated by Doxygen or descriptions can be added to code elements which are

left undocumented by default.

4 IMPLEMENTATION

Implementing the documentation was started along with the first game project

and creation of modular elements. The development of the game projects and the

instructions of the modular game collection continued even after the completion

of this thesis.

Designing the game collection, the individual games projects, documentation and

instructions was carried out by the whole development team. Implementation of

the common basis of the game collection, the documentation and the instructions

involved all of the developers, while the implementations of the individual game

projects were primarily developed as individual works.

Not all the documentation tools and methods were chosen at the start, but during

the study, depending on the needs and development stages. Also, not all the

planned documentation methods carried over from design-phase to

implementation. Utilization of the documentation tools and methods is described

in this section of the thesis, including the potential changes made to the specific

tools or methods during the development.

4.1 Game design documents

Brief game design documents for the individual game projects of the modular

game collection were created. The purpose of these game design documents

was to introduce the game project before the intended users would begin its

reconstruction. The game design documents described the requirements of the

project and detailed the key concepts of the functionality of the game.

19

Compared to complete large-scale game design documents, the documents of

the modular game collection were simplified in order to focus on the essential

aspects of the game project. Large-scale game design documents may include

the theme, characters, assets, level design, user interface and everything else

that is required to be developed for the game. The simplified game design

documents included a brief description of the game, its controls and core game

mechanics.

4.2 Code documenting

The implemented code for the modular game collection was required to be of

high quality and well documented. The documentation of the code began from

the code itself: the code had to be understandable, scripted in an organized

manner and described for the intended users.

Algorithms and functions were identified as important aspects of the code which

required functional descriptions. Classes – many of which were designed to be

reconstructed by the intended users – were planned to be described in the

instructions when they were reconstructed. Variables and data structures were

designed to be named with simple and clear identifiers, requiring minimal

depictions. Code description focused on the methods of the scripts of the

modular game collection.

The intent and functionality of the methods were described in code comments.

Get- and Set-methods were generally left uncommented unless their functionality

was more advanced than to simply control the changes made to the variable. If

methods had parameters or returnees, these elements were also given

descriptions. With the utilization of Doxygen documentation tool, the method

descriptions were carried over to the automated documentation generation.

Visual Studio tooltips were utilized for method descriptions. Summaries were

intended to be used to describe the type member of a class (Microsoft

Documentation 2015), and public member methods, which were called by other

20

scripts, were summarized. Summaries become visible in the Visual Studio

environment when the mouse cursor hovers over the method (Figure 4).

Figure 4. Tooltip in Visual Studio.

4.2.1 Pseudocode

Pseudocode is a description of the basic function of the code or an algorithm.

The purpose of the pseudocode is to outline the functionality of the program,

detached from the programming languages. Pseudocode can be used to design

the code before implementing it and may be used in the documentation as it

typically describes the purpose of the code.

In the modular game collection, the comments written in the code functioned

similarly to the pseudocode, describing the functionality of the code on a basic

level. The functionality descriptions were inserted in the code, instead of being

introduced before the function. The purpose of this was to present the description

of the code functionality in the location of this said functionality. This complied

with the notion of close proximity: the comment would be understood in its

context and would easily be updated if changes were made to the code (Goodliffe

2006, 74).

4.2.2 Clean code

In the context of this thesis, the term ”clean code” is used to describe code which

has been polished to be readable and understandable. Clean structure and clean

code are some of the most important documentation methods as the purpose of

documentation revolves around understanding the program and its functionality.

Obscure code defeats the purpose of documentation.

21

Clean code has several benefits. Readable and understandable code is less

prone to errors and misuse. Clean code is also easier to maintain by the author of

the code or by other programmers. (Doran & Casanova 2017, 323-324.) Easily

readable code is essential for effective teamwork between multiple developers.

From the viewpoint of the modular game collection in this thesis study, clean

code was necessary since the intended users were expected to program with the

help of instructions. Therefore, classes, variables and methods were precisely

named. The structures of the algorithms were planned utilizing pseudocode and

reviewed before implementation. The developed code was reviewed several

times, and, if necessary, components were renamed and reorganized.

The scripts of the modular game collection were organized according to their use:

common scripts were located in a script-folder, and the project-specific scripts

had their own folders within the script-folder. In addition, the names of the project-

specific scripts included a short prefix of the project.

4.3 Unity Editor tooltips

Variables, that were considered non-self-explanatory were given tooltips, visible

in Unity Editor. The tooltip-attribute had to be assigned to the variable within the

code (Figure 5). Tooltips are visible in Unity Editor when the mouse cursor hovers

over the variable (Figure 6) (Unity Documentation 2019b). The purpose of these

tooltips is to explain and clarify the role and the use of the specific variable.

Figure 5. Implementation of Tooltip-message in code.

22

Figure 6. Tooltip in Unity Editor.

4.4 Unity Editor error messages

Due to considerable changes during the development, the initial plans for error

message documentation were not implemented; the users were required to write

parts of the code by themselves, which no longer guaranteed the reliability of

custom error messages.

The discarded error messages were left to be processed by Unity Engine. Many

of the custom error messages concerned missing references and were originally

planned to function as null checks. Before a reference to an object is being used,

a variable in the code is inspected to see whether it contains the reference or is

missing the reference (Unity Documentation 2019a). Otherwise, Unity Engine

creates a Null Reference Exception. Instructions for solving Null Reference

Exceptions were planned to be created in the refined error documentation.

Some error messages were chosen to be kept. These error messages concerned

game loops and game states. The remaining error messages were located in a

state machine, within an Update-function. If the state machine fails to define its

state for an unexplained reason, an error message will be created. Without these

messages, Unity Engine will not recognize the error, and the user will not be

informed. In some of the games, these error messages were located in the

premade segments of the code.

4.5 Doxygen

Doxygen generates documentation from defined source files. Doxygen first had

to be configured in order to include source files, and a configuration file was set

23

up to generate a documentation database. The configuration file included several

options regarding the documentation, such as language, included and excluded

files, input and output options, generation and sorting options (Doxygen 2019).

Every class in the game scripts was described for the documentation. Doxygen

special commands @brief and @details were used in the code (Figure 7), and

the Doxygen documentation generation function conversed the descriptions

(Figure 8 & 9). Class inheritance was also represented by a diagram in the

generated documentation.

Figure 7. Class description using Doxygen special commands @brief and @details in code.

Figure 8. Class description generated by Doxygen.

Figure 9. Detailed class description generated by Doxygen.

Variables were described with Doxygen special command @details in the code

(Figure 10). When conversed to the Doxygen documentation (Figure 11), the

variable information included the type, access modifier and custom description of

the variable.

24

Figure 10. Variable description using Doxygen special command @details in code.

Figure 11. Variable descriptions generated by Doxygen.

Several functions – excluding Get- and Set-functions – were given a description,

and also the parameters of these functions were described. In the code, Doxygen

special command @details was used for the function descriptions, and @param

was used for the parameter descriptions (Figure 12) and conversed into the

generated documentation (Figure 13).

Figure 12. Doxygen special command @param in code.

25

Figure 13. Function description with parameters generated by Doxygen.

Whenever possible, special command @return (Figure 14) was used to include

additional information about the functions’ return values in the documentation

(Figure 15). If a function returned a Boolean value, additional descriptions were

given for all the returnee values.

Figure 14. Doxygen special command @return in code.

26

Figure 15. Function description with returnee generated by Doxygen.

Special commands @cond and @endcond (Figure 16) were used to exclude

comments not intended to be included for Doxygen documentation from being

incorporated by the documentation generation. These special commands

prevented the comments used for Visual Studio tooltips from being included in

the descriptive section of the documentation (Figure 17).

Figure 16. Doxygen special commands @cond and @endcond in code.

Figure 17. Function description generated by Doxygen.

Every data type such as enumerators in the game scripts were described. Data

types were given descriptions using Doxygen special command @details in the

code (Figure 18). The possible type values were included in the generated

documentation in the description of the data type (Figure 19).

27

Figure 18. Data type description using Doxygen special commands in code.

Figure 19. Data type description generated by Doxygen.

4.6 Documentation for instructions

The instructions were developed with HTML. The guidelines for the instructions

consisted of standard layouts, grammatical guidelines, instructions for text

formatting, common terminology and usage and contents of visual aids.

An HTML-base was developed for the instruction pages. The standard structure

of the HTML-base consisted of the table of contents, sections and subsections.

The table of contents included links to the sections and subsections. These links

provided a quick access to any section within the instruction page and enabled

the users to return to the previously worked section. The header of an instruction

page included a button to return to the top of the page. Sections and subsections

consisted of the instructions and visuals.

A common terminology and grammatical style were agreed for the instructions.

The used terms related to programming and game development had to be

commonly known or clearly explained before they were used. Finnish terms and

translations were preferred but if unsatisfactory, English equivalents were used.

The common instructions included explanations for various terms and, in

addition, introduced the English terms.

28

Formatting guidelines were created to standardize the use of text highlighting in

the instructions. Formatting was used to distinguish and highlight the processed

game elements, and game objects and scripts were written in bold typeface, and

the names of 3D-models, materials and textures were given in italics.

The content of the images of code stages were agreed to be precise but brief.

The images of the code stages focused on the code insertions or adaptations

including a sufficient amount of surrounding code and the code lines to

communicate their location.

4.7 Graphs

Various graphical figures were created for representation. Graphs were created

manually in order to be customizable based on the requirements. Graphical aids

can provide significant benefits in information processing because they are able

to deliver meaningful and accurate concepts or interpretations while remaining

simple and unambiguous (Puri 2006, 325-330). Graphical aids were created to

assist the intended user-base in learning concepts and structures. Graphical

representations of the structure of the modular game collection, namely class

diagrams, were aimed for the developers in order to support maintenance and

the potential of further development of the product.

4.7.1 Class diagrams

Class diagrams were created of each of the game projects of the modular game

collection. However, it was assumed that the intended users of the modular game

collection would be unable to understand the structural representations of the

class diagrams.

UML class diagrams represented the data of the classes and the relationships

between the classes. A representation of a single class consisted of the name,

variables and the functions of the class in three boxes respectively. The variables

and the functions had their protection level displayed by plus (+) and minus

symbols (-) in front of the class members. The variable types and function return

29

types were displayed after the colon symbols (:). (Doran & Casanova 2017, 13.)

The relationships between the classes were briefly described (Figure 20).

Figure 20. Class diagram created for modular game collection.

4.7.2 Diagrams

Diagrams were created in order to represent complex concepts or functions. The

diagrams were targeted for the intended users to provide visual aid in learning a

particular concept or function. At first, flow diagrams were created but they were

later discarded due to their complexity and advanced terminology. The original

flow diagrams required the understanding of concepts such as index notation and

lists but failed to provide a visual representation of the index or list usage.

Custom diagrams were created in order to simplify a concept or function. The

custom diagrams were designed to represent and visualize the main steps of the

function. Colors were used to distinguish between the different elements in the

function, and notes were included to describe the steps.

30

4.7.3 Game object diagrams

Diagrams were created in order to visually represent the structure and

components of game objects. Game object diagrams represented the game

objects and their child objects and components created in Unity Editor. In the

diagrams, game objects, components and custom scripts were distinctly color

coded. Components and scripts were listed below the game object, and the

parent game object and its child objects were connected with arrows (Figure 21).

If the game object had multiple similar child objects, an additional multiplier in the

diagram represented the number of the child objects (Figure 22).

Figure 21. Example of game object diagram. Note that the parent object is the furthest to left.

31

Figure 22. Game object diagram with multiple child objects.

5 FUTURE DEVELOPMENT

As of completing this thesis, the implemented documentation has not been

utilized completely in the instructions of the modular game collection. While the

remaining game projects and instructions are being developed, some graphs and

diagrams remain unutilized. Game design documents have not yet been included

in the game project instructions, which would be important, as they detail the

project-dependent requirements before the reconstruction process by the

intended user.

Documentation that would be unutilized by the modular game collection would be

revisited. The possibilities to use this documentation in the instructions,

maintenance or further development of the modular game collection would be

evaluated. If the unnecessary documentation is estimated to be useful in the

future, it may be preserved. Otherwise, the section of documentation may be

discarded.

Reviews of the documentation are required upon the completion of the remaining

game projects and their instructions. These reviews will be carried out to inspect

the consistency of the documentation, and convert the documentation of the

game projects up to date with the newest documentation guidelines. The

32

contents and structures of the graphs and diagrams, terminology in the code

comments, and overall compliance of the guidelines would be included in the

documentation reviews. Potential shortages in the documentation would be

implemented and included, making sure, no documentation material would be

missing.

Finally, as the last scripts have been reviewed, the final version of the Doxygen

documentation will be generated and included in the project package. Guidelines

for the documentation would be written in more formal manner and compiled in

one file for potential improvements or insertions for the documentation.

6 CONCLUSIONS

In general, documentation requires resources. Depending on the project, the

resources used for documentation may include workforce, budget, time or other

resources. Documenting the modular game collection mainly required time.

Repeating and explaining the code in the comments was necessary and led to

additional work required in the development. Changes in the code resulted in a

necessity to edit the descriptive comments, and the maintenance of the

documentation required a considerable amount of time.

In large scale projects, automated documentation may prove to be helpful as it

reduces the time it takes to document the project and helps to keep the

documentation more consistent. For the modular game collection, Doxygen

documentation tool proved to be a significant aid in generating the

documentation. The documentation generated by Doxygen was systematic and

consistent. Navigation in the Doxygen documentation was convenient, and it was

possible to search the classes of the game scripts. For the author, this thesis has

provided a remarkable opportunity in learning and understanding the importance

of documentation and its implementation.

The main purpose of the documentation process was to provide a system that

could enable a beginner to use the modular game system. The main purpose

remained the same throughout the development process, and only the need for

33

different aspects of documentation changed, resulting in changes made in the

documentation methods. As a result of this thesis, the documentation of the

modular game collection was developed and now it provides a vast range of

comprehensive descriptions of the functionality and usage of the used code. The

documentation can be considered successful within a specific range: the

implemented documentation functions as the basis for the instructions of the

modular game collection.

The clarity and understandability of the developed code was not tested, only

implemented, reviewed and modified by the developers. Usability testing would

be a substantial measure to uncover the potential errors in the documentation

and instructions of the modular game collection. Developing the documentation

may cause blindness to defects and deficiencies among the developers as they

become familiar with the systems and may lack the ability to examine the system

from an outsider’s perspective. The usability test could help detect flaws in the

documentation which have passed unnoticed by the developers, but testing is not

an absolute measure for identifying defects. Testing the program does not

guarantee the absence of defects in the code (Kasurinen 2013, 19-20) and this

also applies to the documentation. After the usability testing, the documentation

of the modular game collection must not be classified as flawless.

The adequacy of the documentation cannot be affirmed without testing. It is

difficult to estimate the sufficiency of the documentation, this is even more difficult

with the modular game collection since the intended users were assumed to have

very limited understanding of game programming and the concepts related to it.

In conclusion, usability testing is required to determine the needs for improving

the documentation.

34

REFERENCES

Doran, J. P. & Casanova, M. 2017. Game development patterns and best
practices. Ebook. Packt Publishing Ltd. Available at:
https://ebookcentral.proquest.com/lib/xamk-ebooks/home.action [Accessed 3
April 2019].

Doxygen. 2019. Doxygen Manual. WWW document. Updated 24 April 2019.
Available at: http://www.doxygen.nl/manual/index.html [Accessed 1 May 2019].

Goodliffe, P. 2006. Code craft: The practice of writing excellent code. Ebook. No
Starch Press, Incorporated. Available at:
https://ebookcentral.proquest.com/lib/xamk-ebooks/home.action [Accessed 25
January 2019].

Kasurinen, J. 2013. Ohjelmistotestauksen käsikirja. Jyväskylä: Docendo.

Microsoft Documentation. 2015. C# programming guide. WWW document.
Updated 20 July 2015. Available at: https://docs.microsoft.com/en-
us/dotnet/csharp/programming-guide/ [Accessed 5 May 2019].

Puri, U. 2006. Teaching techniques. Ebook. Pragun Publications. Available at:
https://ebookcentral.proquest.com/lib/xamk-ebooks/home.action [Accessed 23
April 2019].

Robinson, J. A. 2004. Software design for engineers and scientists.
Ebook. Elsevier Science & Technology. Available at:
https://ebookcentral.proquest.com/lib/xamk-ebooks/home.action [Accessed 20
April 2019].

Unity Documentation. 2019a. Unity user manual. WWW document. Updated 15
April 2019. Available at: https://docs.unity3d.com/Manual/index.html [Accessed 1
May 2019].

Unity Documentation. 2019b. Unity scripting API. WWW document. Updated 15
April 2019. Available at: https://docs.unity3d.com/ScriptReference/index.html
[Accessed 1 May 2019].

https://ebookcentral.proquest.com/lib/xamk-ebooks/home.action
http://www.doxygen.nl/manual/index.html
https://ebookcentral.proquest.com/lib/xamk-ebooks/home.action
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/
https://ebookcentral.proquest.com/lib/xamk-ebooks/home.action
https://ebookcentral.proquest.com/lib/xamk-ebooks/home.action
https://docs.unity3d.com/Manual/index.html
https://docs.unity3d.com/ScriptReference/index.html

35

LIST OF FIGURES

Figure 1. Requirements for the documentation.

Figure 2. Sections of the documentation and documentation tools and methods.

Figure 3. An example of custom error message in Unity Editor.

Figure 4. Tooltip in Visual Studio.

Figure 5. Implementation of Tooltip-message in code.

Figure 6. Tooltip in Unity Editor.

Figure 7. Class description using Doxygen special commands @brief and

@details in code.

Figure 8. Class description generated by Doxygen.

Figure 9. Detailed class description generated by Doxygen.

Figure 10. Variable description using Doxygen special command @details in

code.

Figure 11. Variable descriptions generated by Doxygen.

Figure 12. Doxygen special command @param in code.

Figure 13. Function description with parameters generated by Doxygen.

Figure 14. Doxygen special command @return in code.

Figure 15. Function description with returnee generated by Doxygen.

Figure 16. Doxygen special commands @cond and @endcond in code.

Figure 17. Function description generated by Doxygen.

Figure 18. Data type description using Doxygen special commands in code.

Figure 19. Data type description generated by Doxygen.

Figure 20. Class diagram created for modular game collection.

Figure 21. Example of game object diagram.

Figure 22. Game object diagram with multiple child objects.

	ABBREVATIONS
	1 INTRODUCTION
	1.1 Purpose of this thesis
	1.2 Approach to the subject
	1.3 Commissioner

	2 Requirements
	2.1 Modular game collection
	2.2 Learning tool
	2.3 Modularity
	2.4 Instructions for game projects
	2.5 Documentation
	2.6 Changes in the documentation

	3 Design and preparations
	3.1 Documentation guidelines
	3.1.1 Code commenting guidelines
	3.1.2 Error documentation guidelines
	3.1.3 Graph guidelines
	3.1.4 Instruction guidelines

	3.2 Documentation database
	3.2.1 Selection of the documentation database tools
	3.2.2 Doxygen

	4 Implementation
	4.1 Game design documents
	4.2 Code documenting
	4.2.1 Pseudocode
	4.2.2 Clean code

	4.3 Unity Editor tooltips
	4.4 Unity Editor error messages
	4.5 Doxygen
	4.6 Documentation for instructions
	4.7 Graphs
	4.7.1 Class diagrams
	4.7.2 Diagrams
	4.7.3 Game object diagrams

	5 Future development
	6 Conclusions
	REFERENCES

