
 

 

 

 

 

 

 

Productivity tool for microservices implementation 

 

Dipesh Singh Yadav 

 

 

 

 

 

 

 

 

 

 Master’s Thesis 

 Degree Programme in  

 Information Systems Management

 2018



     

     Abstract 
     10 Dec 2018 

     

 

 

Author(s) 

Dipesh Singh Yadav 

Degree programme 

Information Systems Management, Master’s Degree 

Thesis title 

Productivity tool for microservices implementation 

Number of pages + 
appendix pages 

48 + 13 

 

Microservices is a fast growing architecture for modern applications. Microservices sepa-
rates and decouples large monolithic application to small independent components. This 
benefits businesses to implement and deploy components independently and fast. Rapidly 
changing business functions or experiments can be implemented as separate micro-
service. This is gives power to test new features in real world as fast. Each individual com-
ponent can be easily improved and changed fast. This helps businesses to keep up with 
the pace of market and lays foundation to innovate. This gives businesses major competi-
tive advantage. 

While microservices provides elegant solution for fast implementation and deployment 
problems, this architecture suffers drawbacks in other areas. The architecture is very com-
plex as now single monolith application is transformed into distributed and interconnected 
tiny applications (microservices). Developing on this distributed architecture becomes com-
plicated. Instead of managing one development server, developer has to now additionally 
manage many development servers hosting respective microservices. This tools helps de-
velopers to overcome this development challenges by providing GUI tool. This tool will 
make developing features in microservices easy, fun and productive. 

Keywords 

Microservices, Productivity, Development, Integration, Debugging, Docker, Nodejs, Elec-
tron app 

 



 

 

Table of contents 
1	 Introduction ..................................................................................................................... 1	

1.1	 Objectives ............................................................................................................... 2	

1.2	 Research questions ................................................................................................ 3	

1.3	 Scope ..................................................................................................................... 3	

1.4	 Abbreviation and Terminology ................................................................................ 3	

1.5	 Concepts ................................................................................................................ 4	

2	 Related works ................................................................................................................. 7	
2.1	 Development using IDE .......................................................................................... 7	

2.2	 Containerization with Docker .................................................................................. 9	

2.3	 Docker compose ................................................................................................... 10	

2.4	 Kitematic ............................................................................................................... 12	

2.5	 Telepresence ........................................................................................................ 13	

3	 Overview of demo application ....................................................................................... 14	
4	 Monolith architecture .................................................................................................... 16	

4.1	 Development in a monolith ................................................................................... 17	

4.2	 Development team ............................................................................................... 18	

4.3	 Deploying a monolith ............................................................................................ 18	

4.4	 Scaling a monolith application .............................................................................. 18	

5	 Microservice architecture .............................................................................................. 21	
5.1	 Splitting demo monolith to microservices ............................................................. 21	

5.2	 Development in microservices .............................................................................. 22	

5.3	 Deploying and scaling microservice ..................................................................... 23	

6	 Comparison on feature development and deployment ................................................. 26	

7	 Development complexity in microservice ...................................................................... 28	
8	 Running demo microservices in naive way ................................................................... 30	

8.1	 Required application features ............................................................................... 30	



 

 

8.1.1	 Logging in .................................................................................................. 30	

8.1.2	 View available movie products .................................................................. 32	

8.1.3	 Purchase movie ......................................................................................... 33	

8.1.4	 View invoices ............................................................................................. 34	

8.2	 Development problems with naive implementation strategy ................................ 35	

8.2.1	 Difficulty in starting the whole application .................................................. 35	

8.2.2	 Difficult to navigate source code ............................................................... 35	

8.2.3	 Logging in multiple places ......................................................................... 35	

9	 Solution for increasing microservices productivity ........................................................ 37	
9.1	 Setup frontend application .................................................................................... 37	

9.2	 Setup microservices ............................................................................................. 39	

9.3	 Developing microservices using Nova ................................................................. 42	

10	Conclusion .................................................................................................................... 46	

References ........................................................................................................................ 47	
Appendix 1. Code for running child process ................................................................. 49	

Appendix 2. Core code for running npm and docker tasks ........................................... 50	

Appendix 3. Code for parsing data from processes ...................................................... 58	

Appendix 4. Main code for running GUI ........................................................................ 60	



 

1 

 

1 Introduction 

Progress in digital technologies has changed how business operates. New emerging busi-

nesses and innovations has shaped and evolved market trends in unpredictable way. New 

kind of demands and trends while rapidly decaying the existing ones has made busi-

nesses difficult to survive. Market is changing fast forcing business to be agile and innova-

tive.  

Most businesses services are powered by single or set of huge and complex monolithic 

applications. These application are small and simple in beginning. As times goes by, new 

business functions are added making application large and complex. Implementing and 

deploying even tiniest change in such application takes tremendous amount of time. In or-

der to be agile and innovative, business needs to keep developing and testing new con-

cepts. Given an architecture which takes such long time to deploy new concepts makes it 

challenging for businesses to keep up with the market pace. 

Luckily there is a widely used modern architecture which supports faster deployment strat-

egy. Microservices is particularly adopted to facilitate rapid implementation and deploy-

ment. Microservices breaks down application into smaller applications (microservices). 

These applications are now separate and independent which makes it possible to imple-

ment and deploy each microservice independently. Each microservice application works 

and communicates with other microservices to provide business services. In user point of 

view, it is a single application providing services but in reality it is many tiny applications 

are working together as single unit. 

One challenging and overlooked aspect is how team develops and implements these mi-

croservices. To function properly microservice needs communicates with other micro-

services or other resources such as databases. This add a bit of effort for developer to 

start up the other dependent resources. Also, those dependent microservice may need 

other microservices. For example, as shown in figure (Figure 1) a developer wants to im-

plement a feature in microservice A. Some data for this feature is coming from Micro-

service B and C. So for implementing this feature Microservice A requires Microservice B 

and Microservice C to be running. Developer can only then start implementing and testing 

the feature in target microservice A. This thesis provides a productivity tool named Nova 

designed to solve this microservices development challenges. The tool Nova will help de-

velopers to easily and smoothly implement features in microservices. This makes devel-

opment fun and productive.  

 



 

2 

 

 

Figure 1. Microservices implementation depencencies 

We start by looking at related solutions and strategies in market at the moment used for 

microservices development. Next chapter describes demo application that will be used as 

an example to understand monolith and microservices. Next chapter describe monolith ar-

chitecture and its concepts. After it follows in depth view of microservices architecture and 

its concepts. Next chapter describes comparison of monolith and microservices explaining 

the benefits and reasoning for adopting complex microservices architecture. Chapter after 

that take a deeper look in the development problems existing while developing in micro-

services. Next chapter demonstrates demo application built in microservices architecture 

reflecting the problems mentioned in previous chapter. Finally, we take a look at the solu-

tion tool this thesis provides to resolve the development challenges. 

1.1 Objectives 

This tool Nova helps developers to implement microservices with greater speed and fo-

cus. It reduces time and frustration for configuring and starting up development environ-

ment. It makes the work productive, easy and fun. Without such tool developer needs to 

get burdened with several trivial tasks required before beginning the actual implementa-

tion. With this tool developer free themselves with this burden and hassle. It enables de-

velopers to focus on actual feature to implement creative and bug free solutions. 

More detailed objectives of this project are as follows. 

• Easily start-up dependent resources locally such as services or required external 
resources such as databases. 



 

3 

 

• Developers can easily navigate to project workspace to start coding immediately. 
Instead of navigating and finding the project in directory, once set up developers 
can load the workspace with ease. 

• Centralize logging place to view the logs of dependent services. This help to de-
bug and trace application data flows easily. 

1.2 Research questions 

• How does this tool increase productivity? 

• How does this tool help implementation of features with greater focus? 

• How does this tool help to easily debug microservices? 

• Why is this tool easy to use? 

1.3 Scope 

This project is currently targeted for nodejs (Nodejs, 2018) microservice development. 

Nodejs is a javascript runtime where applications can be written in javascript. Even though 

nodejs is not as powerful as java or C# for enterprise application, most common micro-

services web application does not require much power. Nodejs does not need extra over-

head to get started with the application. It is lightweight and easy to use which makes 

nodejs excellent candidate for microservices.  

This tool is designed to work with popular source code editor Visual Studio Code (Visual 

Studio Code, 2018). Visual Studio Code is lightweight and is as powerful as full IDE. It has 

great support for javascript and web programming languages. Additional community 

driven extensions can be added to make this editor even more powerful. 

The targeted tool is a desktop application created using Electron framework (Electron, 

2018). With Electron framework we can use javascript, html and css to easily crate cross-

platform desktop GUI applications. For this project the application will only support OSX.  

For simulating and demonstrating the tool, a simple microservice driven web application is 

created which will be used to describe the features of this tool.  

1.4 Abbreviation and Terminology 

Repository 

Version controlled code sharing tool such as svn and git. 

IDE  



 

4 

 

Integrated development environment is a tool which includes source code editor along 

with other development tools which helps in debugging, building application, running de-

velopment server and even starting database servers. Example: Visual studio, Eclipse, In-

tellij IDEA. 

Source Code Editor 

Lightweight editor for source codes. Examples: notepad++, sublime test and visual studio 

code. 

OS 

Operating systems such as windows, linux and osx. 

GUI 

Graphical user interface. Applications provide graphical interface which can be interacted 

with mouse. They are very usable as most operations can be perform by single click. 

CLI 

Command line interface. Interface provided by application where user interacts with help 

of commands given by keyboard. Lacks usability as it does not have much visual aids. 

user has to learn and type long commands. Although lacking usability it is more powerful 

than GUI. It provides users with much wider range of operations and capability than GUI. 

1.5 Concepts 

Deployment 

Deployment involves packaging the target application and testing the full application thor-

oughly both manually and using automated systems. When the package passes all re-

quired and planned tests then it is released to production. Again after release the applica-

tion must be tested to check if new and existing features are working properly. Successful 

deployment requires proper planning and coordination. Doing this for each new feature 

even for tiny change is time consuming and expensive. So, team has to plans and groups 

features properly for deployment as shown in figure (Figure 2). Usually team plans to im-

plement and deploy bunch of features depending on their capability. They deployment cy-

cle is usually very long and missed feature need to wait another deployment schedule. 

This deployment strategy tiny change in one business functions requires to wait for fea-

tures of other business functions to be deployed in next schedule. This is not agile and 

very slow to test new concepts fast. 



 

5 

 

 

Figure 2 Traditional deployment strategy 

Containerization and Virtualization 

Containerization is similar to virtualization. As shown in figure (Figure 3) In virtualization, 

target application run on top of desired guest operating system. This guest OS is running 

on top of virtual hardware provided by virtual machine. Containerization does not require 

virtual hardware and it runs by sandboxing the host operating system. Each container has 

light weight guest OS where application can run. Since virtual machine needs to create 

virtual hardware stack, starting up virtual machine is slow and consumes lots of resource 

from host operating system and machine. Containers are very lightweight and does con-

sumes only what is needed from host OS. It can start up in few seconds making contain-

erization much more favourable. Containerization gives ability to pack our target applica-

tion together with its operating system and required runtime libraries. So, the container-

ized application always starts and runs in same consistent way in any machine. No more 

“it works in my machine” phrase. 



 

6 

 

 

Figure 3 Virtualization and containerization 

Container orchestration 

Microservices run in container is efficient and best practice. However, it gets difficult and 

challenging to manage and operate large number of containers manually. Microservice 

containers need to be deployed and scaled on demand. They need to be managed and 

correctly coordinated so they can communicate each other. There exist several tools to 

help automate such orchestration tasks. Most popular is the Kubernetes (Kubernetes, 

2018). It is an open-source container orchestrating tool designed by Google. Kubernetes 

helps to automate deployments, scaling and much more. Kubernetes connects several 

nodes as single cluster unit. Microservices containers is then automatically deployed and 

scaled in this cluster. 

 

 

 

  



 

7 

 

2 Related works 

2.1 Development using IDE 

IDE is productive approach for developing monolith applications. Developers navigate the 

project code, makes and tests the implementations by starting the application with the 

help of IDE. Multiple monolith application projects are implemented by adding the project 

to the IDE workspace. Microservices are basically multiple projects. So, in naive way de-

velopers just adds and configures all microservices projects in the IDE similar to multi 

monolith projects. 

If we take a look at microservices development process in popular IDE (Intellij Idea, 2018) 

as shown in figure (Figure 4) we have four independent microservices application. Devel-

oper has to choose on application to work with. Developers can open another application 

in separate window to start stop the selected application. In figure (Figure 5) we have 

web-ui application which requires products service application to start-up which is loaded 

in separate window. As one can imagine development like this is not productive. 

 

Figure 4 Microservices in IntelliJ IDEA 



 

8 

 

 

Figure 5 Web-ui and service-products microservice projects in IntelliJ IDEA 

Similarly figure (Figure 6) shows loading web-ui and service-projects in Visual Studio 

Code. Here we have manually entered the desired directory using integrated terminal and 

started the desired application. This is not an easy solution as developers have to navi-

gate to root of each project and start each dependent project and resources. Also since, 

all projects are running in same IDE it creates noise and makes it harder to navigate to 

correct file if there exists same filename in multiple projects. 



 

9 

 

 

Figure 6 Web-ui and service-products microservice projects in Visual Studio Code 

2.2 Containerization with Docker 

Docker (Docker, 2018) is the most popular tool for application containerization. As shown 

figure below (Figure 7) we can easily start-up Docker container by pulling its image from 

Docker repository (https://hub.docker.com/) and starting it with Docker run command. 

Lower terminal in figure (Figure 7) shows Debian linux is up and running in container. 

 

Figure 7 Containerized Debian OS running in docker 



 

10 

 

In another example (Figure 8) we started web-ui containerized application with Docker. 

Here inside Docker application starts at port 5000 but while running we told Docker to ex-

pose this application in port 3000. So, we can now view the application in http://lo-

calhost:3000. 

 

Figure 8 Containerized application running in docker 

2.3 Docker compose 

Docker compose is command line tool from Docker which enables us to start-up multiple 

containers with one command. Docker compose uses manually created compose file (Fig-

ure 9) to start up services using command line. As shown in figure (Figure 10), developer 

can start up all services with a single command. Also, all logs from running services can 

be seen in on location which makes debugging easier. 



 

11 

 

 

Figure 9 Docker compose file 

 

Figure 10 Starting services with docker compose 



 

12 

 

2.4 Kitematic 

Another helpful tool from Docker is Kitematic (Kitematic, 2018). It provides GUI to start 

and stop containers. Shown in figure (Figure 11) we can navigate all containerized ser-

vices on left sidebar. From here developers can see the logs. This tool also helps devel-

opers to customize the application to be run with different configuration as shown in figure 

(Figure 12). 

 

Figure 11 Running containers with Kitematic 



 

13 

 

 

Figure 12 Container configuration in Kitematic 

2.5 Telepresence 

The Telepresence (Telepresence, 2018) is a tool for running single service locally while 

being connected to other services is remote cluster. Developer can pick target service 

from remote cluster and use respective telepresence command to replace the remote 

communication with local ones. Figure (Figure 13a) shows a remote cluster running three 

microservices. When developer makes connection with telepresence it replaces the target 

microservice in this case Invoices with container which forwards the communication to the 

local machine. As show in figure (Figure 13b) developer call the communication line to 

cluster invoices is forwarded to local laptop.  

Telepresence is a very helpful tool and similar in approach to the target thesis tool. With 

Telepresence developer can develop and debug microservices using production like envi-

ronment. However, it runs only cluster managed by Kubernetes and requires a bit of setup 

to make it work. In most cases for security reasons it might not be possible to tunnel a 

connection to local machine in cloud clusters. Also it uses cli which developers require to 

learn and memorize. 



 

14 

 

 

Figure 13 Development with Telepresence 

 

 
3 Overview of demo application 

For the purpose of demonstrating the use case of this tool, a demo e-commerce web ap-

plication is created. In this application user can purchase digital movies. Each movie pur-

chase will generate invoice for the user which has to be paid within seven days. 

Here are the basic features of the application: 

1. Member user can login in using credentials. 

2. Member user can view available movies 

3. Member user can purchase movies. 

4. Member user can view purchased movies’ invoices 

 



 

15 

 

Operational requirements of this application are: 

1. Application should be able to deploy efficiently. The goal is to deploy completed 
features independently as fast as possible in a reliable way. This gives possibility 
for rapid testing new business concepts without having to wait months or years. 

2. Application should be highly available. Application should be constantly serving us-
ers 24/7 with zero maintenance downtime.  

 
 
  



 

16 

 

4 Monolith architecture 

 

Figure 14 Monolith architecture of demo application 

If the demo application were to be designed in monolith architecture, it would be as pre-

sented in figure above (Figure 14). This single application consists of a presentation com-

ponents and business logic components. 

As shown in figure (Figure 14) the upper component in application is presentation compo-

nents responsible for encapsulating UI components. This UI component is responsible for 

returning html, css, and javascript to client’s browser. The html page contains and pre-

sents data provided by the business logic components. For example, products listing UI 

component would present products data from products business component (Fowler, 

Lewis, 2014). 

The lower component represents business components in figure (Figure 14). It provides 

UI components with respective data with applied business rules. For the demo application 

these components have features for authenticating users, creating invoices, purchasing 

products etc. These business components persist required data in the database. In this 

application all features are implemented, built and deployed as one single application. 

Hence, the term monolith application.  

 



 

17 

 

4.1 Development in a monolith 

 

Figure 15 Developing monolith application 

Monolith application are quite easy to start. The application does not depend on any other 

external dependencies except for the database. All the dependent components are imple-

mented in same repository. When new requirements come, the developer can setup the 

environment and start coding right away. As show in figure above (Figure 15) developer 

opens the target project in favourite IDE. Then developer then starts the application in the 

local machine together and also start-up dependent database server. Once the application 

is running, developer can start editing the code, build the changed code and preview the 

changes. Once satisfied with code, developer can commit the code and push to the repos-

itory.  

Referring to time taken for processes in figure above (Figure 15) there is huge difference 

in time required by some process when the application is large compared to small. These 

numbers are coming from my own experience in monolith application development. Prob-

lematic times are highlighted with thick red border. Large application has huge code base 

so starting the IDE takes some time to load compared to small application. Also starting 

the large application requires huge time due to large amount of code needing to be initially 

built and loaded in development server. In my experience once a large monolith applica-

tion project took shockingly about 30mins to start-up. Editing is more or less the same in 

small and large application however, the large code size and folder makes it difficult to 



 

18 

 

navigate and find desired source code easily. After editing, the code requires rebuilding 

again which is about 1-2 mins again which get quite annoying if one has to do it 100 

times. So, while developing in monolith system setup time becomes very slow when appli-

cation size is large. Monolith application architecture half of the time is consumed waiting 

for application to be ready to be develop 

One important facility that monolith provides is the central logging. There is only one place 

to check for logs when eases in debugging and monitoring application while developing. 

4.2 Development team 

In Monolith all team members work on the singe application. Team can be composed of 

up to 10 – 20 developers. Some, project do divide them by business context. However, 

they require tremendous planning and to coordination to avoid conflicts. Sometime, merg-

ing and resolving code conflict can even take up to 1 day. It becomes quite hard to man-

age this amount of people for single project and often the project is confusing and chaotic. 

4.3 Deploying a monolith 

When the application is well tested and ready application is deployed to production serv-

ers. Simplest process of deploying is replacing existing code with new codes. Traditional 

approach of deploying is to use git repository. Where new targeted deployment com-

mit/tag is pulled in production server. Then the repository is built and started up. The pro-

cess of deployment can take up to 5 hours for large application. During the deployment 

time in most common scenario the application is unavailable for the end users. Have a 

service unavailable for long time is not profitable. Also when application fails due to some 

error, whole application needs to be rolled back to previous version which prolongs the 

process. So, deployment tends to be expensive process for the business which why de-

ployment is done seldom. 

On top of that in monolith even the tiniest update or bug fix results in deploying the whole 

application. And deployment can be done only after rigorously testing all critical parts of 

application. This makes mistakes very time consuming and costly. Deploying in monolith 

is hard and painful process and usually there is system administration which is specialised 

in deploying of new versions without hiccups. 

4.4 Scaling a monolith application 

Vertical scaling and horizontal scaling are two ways to scale an application. Common ap-

proach scaling monolith application is vertical scaling. Here the running production server 



 

19 

 

is made more powerful by upgrading its hardware. After that application gets more re-

source to accommodate large amount of users as shown in figure (Figure 16a) below. 

Horizontal scaling can also be done where more servers are added and application is rep-

licated to the newly added servers. Here, users are split and directed to different applica-

tions to balance the load as shown in figure (Figure 16b). 

Deploying monolith can be very expensive. In case of scaling vertically it is very expensive 

to upgrade hardware and costs more than buying a new server of same low capacity.  

Horizontal scaling is more appropriate as it is also fault tolerant. In case one of the server 

goes down another server is able to handle the traffic to make it available. 

 

 

Figure 16 Scaling monolith application 

Monolith is status quo architecture for developing and deploying application. Development 

and deploying is easier in beginning. However, as time goes on and new features are 

added application gets harder and harder to implement. Event tiny bit of change may end 

up taking days. As in a large codebase it is difficult to integrate new feature. Adding one 

line of code change may introduce bugs in our application which makes testing long time 

as whole application may need to be tested. Development ends of taking long time due to 

this issue and deployment becomes very seldom. Most large application is able to deploy 



 

20 

 

only 4 – 6 times a month as many features need to be bundles up together as single de-

ployment package. Due to this reason mistakes and experimentation in monolith is ex-

tremely expensive operation. 

 

  



 

21 

 

5 Microservice architecture 

Fowler and Lewis (2014), describes the microservice as an architecture of developing a 

single application as small services built around business capabilities. Microservices is 

breakdown of a monolithic application to small loosely coupled independent services. The 

primary design goal of microservice architecture is the freedom to develop and deploy 

portion of application independently. Besides deploying independently microservices ena-

bles to easily scale only requires services. Since they are distributed, failure of one micro-

service will not bring down the whole application which makes our application highly avail-

able. Other benefits include that each microservice team is usually small so there is more 

decision making power in the team. Since, microservices are completely isolated from one 

another they can be easily migrated to use cutting edge technologies.  

So, basically microservices is breaking of an application to separate tiny applications or 

services. Hence, the term microservices. These applications or services are wired up and 

works together in providing the required business service to end users. In simple setup 

microservices communicates with each other with the help of RESTful endpoints in json. 

5.1 Splitting demo monolith to microservices 

 

Figure 17 Microservices architecture of demo application 

 



 

22 

 

Splitting application to smaller services is completely business dependent. When develop-

ing monolith application, is it is advised to organize the code by similar business functions 

also called bounded business context. This creates all related components to one busi-

ness function in same place. Usually microservices are broken down by this business 

functions. In our sample application the monolith presentation layer is separated as 

Frontend UI microservice application (Figure 17). The remaining business layer functions 

such as user management, product management and invoices management are sepa-

rated as user service, products service and invoices service as show in figure (Figure 17). 

Each microservice provides services and features relating to single business function. 

Here the microservice is separate tiny application providing small set of related services. 

Microservices are not limited to breaking by business function. Microservice is about con-

tinuously identifying parts of our application that can be separated and deployed inde-

pendently. Sometimes it also makes sense to merge two microservices to single micro-

service. 

5.2 Development in microservices 

 

Figure 18 Feature purchasing product 

Since, microservice is only part of the bigger application it requires to communicate with 

other microservices for provide some solutions. For example, as shown in figure above 



 

23 

 

(Figure 18) in our demo application purchasing a movie product requires products micro-

service to check if the user is authenticated and authorized to do so. This information is 

provided by users microservice. Also, our business requirement is such that when user 

purchases a movie invoice is generated in invoice microservice. This is initiated by prod-

ucts microservice when purchase is successful. Invoices microservice also requires to val-

idate the authenticity and authorization of the user. If one were to implement such feature 

it is required by the developer to spin up users and invoices microservice so that products 

microservice can be tested while developing.  

Since, each service has its own database which may differ in technology it is required to 

start up respective databases as well. So, as shown in figure (Figure 18) to develop pur-

chasing movie feature in products microservice, developer needs to spin up 2 more micro-

services and 3 databases for each microservice.  

In contrast to just 1 additional resource in monolith which was the database. This makes 

setting up development of the target service quite challenging especially if it has more 

than 1 dependent services. Also, makes it hard to keep track on which service depends 

on which resources. However, once all dependencies are started running on local ma-

chine, the application does not take time to perform rebuilding and reloading while devel-

opment since the application size and codebase is small. So, this create smooth edit, 

build and preview cycle. 

5.3 Deploying and scaling microservice 

Microservices is a distributed architecture. Best practice of deploying microservices is in a 

cluster of servers namely referred as nodes. Microservice deployed to cluster can be 

started up in random nodes or nodes with less load. All services are distributed in the 

cluster to work as a single unit. In figure (Figure 19) we have a cluster running four nodes. 

This a horizontally scalable system where when need more nodes can be added or re-

moved. Services are distributed throughout the nodes to share the best possible load. 

One best reason to have such an architecture is to have high availability and fault tolerant. 

Computer hardware are unreliable and fails now and then. In figure below when one node 

crashes it can be easily replaced by another node. 



 

24 

 

 
Figure 19 Cluster of nodes 

 

Figure 20 Deployment and scaling microservices in cluster 

As show in figure (Figure 20) each microservice is running independently in the cluster. 
This gives freedom to develop and deploy any service independently.  



 

25 

 

Comparing to how application was scaled in monolith architecture, figure (Figure 20) 

shows clearly that not all application is required to be scaled. In microservice architecture 

service that requires more power can be replicated easy and deployed in cluster. In figure 

(Figure 20) it was identified that products microservice was unable to handle load. So, it 

was scaled 3 times to balance the load. When the load is small the scaled nodes can eas-

ily be removed. This a really good feature as now our application can easily scale up or 

down when required to support any amount of traffic. Also the application now consumes 

only needed resources unlike monolith where resources that did not need to be scaled 

were forced due to tight coupling. This save resource consumption keeping the opera-

tional cost low. 

 

  



 

26 

 

6 Comparison on feature development and deployment 

Demand is changing rapidly in current market. Competition is high and businesses are 

struggling to find competitive edge. Agility of business is on high requirement to keep up 

with the speed of market change. Businesses need to be capable of experimenting inno-

vative solutions and test market to get competitive edge. Here is a comparison of lead 

time shown as value process mapping (Figure 21) for a medium size feature between 

monolith and microservices. This comparison is from my own experience. 

 

Figure 21 Value stream mapping 

Setup 

In monolith setup is easy as the developer only needs to start up one service. In micro-

services setup requires a bit of effort as the developers need to spin of dependent re-

sources. So, microservices requires double the effort than monolith. 

 

Development 

In monolith usually code bases are huge and may have technical debt. It takes time to 

make implementation on large and complex code bases. Developer has to carefully plan 

and implement the solution to support future needs as well as so not breaking existing 



 

27 

 

features. However, in microservices development is relatively fast as codes are small, 

clean and well maintained. 

 

Testing 

In monolith testing is huge process as it has to go through testing of full application sev-

eral times to ensure that new feature did not break the application. In microservices only 

part of the system or microservice that was changed gets tested thoroughly. This saves lot 

of testing time. In figure (Figure 21) we can see that in monolith waiting time between test 

to deploy is huge as tested feature needs to wait for the next scheduled deployment. In 

microservices tested feature can be deployed immediately or within the same day. 

 

Deploy 

In monolith it is expensive to deploy single feature at a time. Usually 4 -5 features are bun-

dled together and deployed once every 2 months. So, any feature small or big ends up 

having lead time of 2 months from concept to launch.  This is the biggest advantage mi-

croservices has over monoliths. Only desired and changes services are deployed. Also 

the deployment is small so it takes very short time. Another big advantage here is if the 

last deployment was failure it is easy to roll back to previous working state without diffi-

culty. 

 

Summary 

2 months is very long time to test a concept. And if it the feature does perform and yields 

negative value instead than removing that feature is another expensive task. This makes 

the whole project quite expensive. Monolith architecture limits businesses from trying out 

any new concept as it is expensive and slow. By the time a valuable concept reaches the 

users, it might be already useless. Microservice architecture on the other hand works on 

principle of deploying any time. Microservices approach is more based on continuous de-

velopment of an idea while monolith approach is to make it work the first trail. As imagine 

continuously development is agile and attractive choice. Also as described in micro-

services on AWS (2018) agility, innovation, quality, scalability and availability are good 

reason for choosing microservices.  

  



 

28 

 

7 Development complexity in microservice 

 
Figure 22 Developing microservices application 

Microservices architecture is decoupled and distributed which makes the whole architec-

ture quite complex. Developer works on implementing one microservice at a time, how-

ever, most cases the target microservice requires to communicate with other micro-

services to fulfil its request. Such, implementation can get quite challenging. Also main-

taining shared code becomes challenging as they need to be implemented in separate 

project. (Sharma, 2017) describes some areas that can be shared such as utilities, data-

base apis, logging and common algorithms etc.  

As shown in figure above (Figure 22). The target project is opened in IDE quite fast as mi-

croservice code size is as large as small monolith application. This makes it easier for de-

veloper to navigate the project codes. However, the most cumbersome process is manag-

ing and spinning up other microservices that our target microservices communicates with. 

Although the start time of each microservice is quite small. It takes time to navigate to re-

quired project and start up the service manually. Depending on the amount of dependen-

cies it becomes quite annoying and frustrating to start up required microservices each 

time development needs to be done.  

Once all the target and dependent microservices with its respective databases are started 

the rest is quite easy as reloading and building after code change is fast. However, since 



 

29 

 

each microservices are running independently each microservices will end up having its 

logs in separate location. This makes debugging through logs quite challenging as now 

the developer has to cycle through many log windows to trace the data flow. This in not 

convenient and frustrating when comes to tracing logs while developing. 

There are many other strategies as described by Turner-Trauring (2017) which developer 

choose to use for developing microservices. First strategy is starting up all the services lo-

cally as described above using IDE. Others include running microservices in remote cloud 

and connecting to the remote services. This make things easier as developer don’t need 

to run everything in the local machine. Turner-Trauring (2017) also mentions a strategy 

where all services including the one being developed is running remotely. Developer 

makes changes to source code and pushes the code to remote machine for getting feed-

back. These approach are very good but most companies cannot give access to remote 

cloud for security reasons. And also using cloud service as development environment is 

expensive. So, most cases developer end up running majority or all services in local ma-

chine. 

The hardest part on getting the work done is the effort it requires to setup the environment 

to start the work. This is also true for other activities for example learning to play guitar. 

Each time if one had to take the guitar in and out of the box, it becomes tedious and brain 

starts to loose motivation and procrastinates. In contrast if the guitar learning environment 

was already setup and one just had to pick up the guitar and start learning. One and imag-

ine that this became much easier and fun activity.  

One important principle in software development is to be lazy and find ways to automate 

repetitive task. This thesis is such application with facilitate developers to eliminate some 

of the difficulties while developing in microservices architecture. The goal of this project is 

to eliminate annoying and frustrating procedures and make development fun and easy. 

This helps developers do more focused implementation saving time and energy. 

 

  



 

30 

 

8 Running demo microservices in naive way 

 

Figure 23 Demo application projects in IDE 

As shown in figure (Figure 23) demo application is divided into four separate git reposito-

ries. We have on web-ui service which provides our frontend ui application. The frontend 

web-ui communicates with other three microservices service-invoices, service-products, 

service-users. All four git project are put under nova-demo folder which is our root project 

workspace folder. In order to start each application, we need to navigate to microservice 

working directory and run the appropriate command.  

8.1 Required application features 

8.1.1 Logging in 

To start web-ui developer need to go the web-ui’s root working directory and run the start-

ing command as shown in figure below. 

 

Figure 24 Starting web-ui development server 



 

31 

 

Now if we navigate to the URL shown in figure (Figure 24) we will see login page. Since 

the user is not authenticated as shown in figure (Figure 25) and we can sign in with previ-

ously created user. This did not work indicated by “Service not available” error message 

because it could not communicate with users microservice which was not started up. 

 

Figure 25 Login page 

In order to start our users microservice along with its database. Users-db is started as 

postgres service in Docker container which is listening on port 5434 as shown in figure 

(Figure 26). In next figure (Figure 27) we can see that our users microservice is now run-

ning on port 5002. 

 

Figure 26 Docker users-db server 



 

32 

 

 

Figure 27 Starting users microservice 

Now when we try to login in again after starting users microservice we should be able to 

get in as show in figure below (Figure 28) 

 

Figure 28 Login successful 

8.1.2 View available movie products 

In order to get available products, we need to start up products microservice and its data-

base similar to users microservice. In figure (Figure 29), products-db database is started 

on port 5432 and products microservice started on port 5003. 

 

Figure 29 Starting products microservice with database 



 

33 

 

Now if we reload the page we can see the available products user one can purchase in 

figure (Figure 30). 

 

Figure 30 Available products 

8.1.3 Purchase movie 

In order to purchase movie, we need to enable our invoices microservice with its data-

base. As shown in figure below (Figure 31), invoices-db database is started on port 5431 

and invoices microservice started on port 5001. 

 

 

Figure 31 Starting invoices microservice with database. 

Now when we try to purchase a movie, selected movie should be shown as purchased 

and one invoices should be created for this purchase as shown in figure below (Figure 

32). 



 

34 

 

 

Figure 32 Purchase movie 

8.1.4 View invoices 

Now that we have our all microservices and database resources required by application to 

fully function running. After purchasing one more movie we can we that our purchases 

created respective invoices (Figure 33). 

 

Figure 33 View invoices of purchased movies 



 

35 

 

8.2 Development problems with naive implementation strategy 

8.2.1 Difficulty in starting the whole application 

As seen in steps performed to start up microservices (8.1) it took quite an effort to start up 

the whole application since each microservices needed to be started independently. 

8.2.2 Difficult to navigate source code 

As shown in figure below (Figure 34) when searching app, we are presented with app 

from all projects. This project workspace already as four applications. Adding more appli-

cations will create noisy and distracting application development environment.  

 

Figure 34 Code navigation 

8.2.3 Logging in multiple places 

Since, our microservices has to run separately each application had its own logging. So, 

as shown in figure below (Figure 35) each application has its own logging terminal. This 

makes tracing requests and errors difficult. 



 

36 

 

 

Figure 35 Scattered application logs 

 

  



 

37 

 

9 Solution for increasing microservices productivity 

Nova is a GUI tool designed and developed to increase microservices productivity. This is 

an MIT licensed open source project. The core source code of this tool is available as ap-

pendices. Full source code is available at public github repository (https://github.com/di-

peshfort/nova-tool). This tool was created with Electron framework which is powered by 

nodejs. 

9.1 Setup frontend application 

In order to start using nova for microservice applications we need to configure projects. 

We can start by setting up Web-UI frontend application. In figure below (Figure 36). We 

have added the project path by pressing the “Project Path” and selecting target directory. 

 

Figure 36 Selecting project 

After selecting project, the view will automatically load the npm script from project. Here in 

figure (Figure 37) we have selected “start” script command which starts the development 

server.  



 

38 

 

 

Figure 37 Setup Web-UI 

On save we can see that our microservice appears on the main dashboard. On clicking 

the vscode icon we can open the project in editor for editing as shown in right window of 

figure (Figure 39). Developer can start the application without navigating to the application 

project simply by clicking on the play button beside “start” npm script as show in figure 

(Figure 38). When the application is started application log can be visible in lower section 

of the Nova tool (Figure 39). Here, it shows that our application is running on port 5000. 

 

Figure 38 Configured Web-UI 



 

39 

 

 

Figure 39 Start application and edit code. 

9.2 Setup microservices 

Microservices application setup is two folds. One is similar to setting up frontend Web-UI. 

Second is to configure nova so database can be easily managed. For running database, 

we are going to use postgres Docker container. As shown in figure (Figure 40) we have 

entered desired properties for the users postgres database. 

 

Figure 40 Setup postgres docker 



 

40 

 

Now that our users microservice application and database is configured we can start both 

services. In the nova logs in figure (Figure 41) we can see that the users microservices 

started on port 5002. Also the stop icon on the service card indicates that the server is 

running. 

 

Figure 41 Start Users microservice 

Similarly, Products and Invoices microservices can be configured and started up. Figure 

42 and Figure 43 shows that Products and Invoices microservices are running along with 

its respective databases.  



 

41 

 

 

Figure 42 Start Products microservice 



 

42 

 

 

Figure 43 Start Invoices microservice 

9.3 Developing microservices using Nova 

Now that all our services are up and running as seen in Nova panel (Figure 44) indicated 

by red stop icon beside the tasks. We can visit url at port 5000 in our browser (Figure 45) 

to see that our application is up and running. Also note that all logs can be visible in Nova 

panel’s log window (Figure 46). 



 

43 

 

 

Figure 44 Nova panel 

 

Figure 45 Application started from nova 

 

Figure 46 Centralized logging 



 

44 

 

In web-ui in order to change “Available movies” to “Recommended movies” developer can 

open the web-ui application from Nova. Also while searching for app.js in editor it shows 

only one app.js file compared to figure (Figure 34). 

 

Figure 47 Open web-ui in editor 

Now we can search for “Available movies” to find the implementation code. Here figure 

(Figure 48) finds one file matching the search. Since, our code base is small and our edi-

tor has only one project running, finding source code becomes super easy. 

 

Figure 48 Search code location 

Now we can navigate to the file and update the code. The code change is reflected in fig-

ure (Figure 49). Similarly, any microservice can be opened for editing and make the 

changes immediately. 



 

45 

 

 

Figure 49 Edit code 

As one can see from this demonstration microservices implementation this was becomes 

very smooth and clean. Getting into the project and finding the correct code become a 

easy process no matter how many microservices the project has.  

 
  



 

46 

 

 
10 Conclusion 

Microservice is powerful architecture for developing modern applications. This helps on 

creating high quality complex applications. This architecture is constantly growing and im-

proving. New tools and technologies has removed and minimized many challenges which 

previously made microservices architecture difficult to adopt. Nova is one of the tool cre-

ated in this thesis to overcome development challenges in microservices architecture.  

Developer find development easy and fun when they do not need to put much effort on 

trivial day to day tasks. Microservices requires developers to start up multiple resources 

every time before starting implementation. With this tool developer can start and stop re-

sources with click of a button.  

When the system is running in desired state developer can choose any microservice and 

open it in editor for implementation. The editor loads only the targeted microservice mak-

ing the workspace clean and lightweight. Clean environment makes navigating and finding 

codes easier thus increasing focus and concentration.  

Microservices is separate application thus having debug logs in separate places. With this 

tool all microservices logs can be viewed from one location. Developer now don’t need to 

jump between different log windows. This makes it easier to trace the application flow. 

GUI provides best usability to facilitate developer with many trivial and automation tasks. 

Nova was created with usability goals to increase productivity while implementing micro-

services. Complex operations can be hidden inside GUI so that developer don’t need to 

type or memorize repetitive commands. Nova hides repetitive operation in form of easy to 

use UI which makes developers life easy, fun and productive. 

 

 

 

 



 

47 

 

References 

Amazon Web Services 2018, AWS Whitepaper - Microservices on AWS. [online] Ama-

zon.com, Inc. Available at: <https://docs.aws.amazon.com/aws-technical-content/lat-

est/microservices-on-aws/microservices-on-aws.pdf?icmpid=link_from_whitepa-

pers_page> [Accessed: 06 Dec 2018]. 

Amazon Web Services 2018. What are Microservice? [online] Amazon.com, Inc. Available 

at: <https://aws.amazon.com/microservices> [Accessed: 06 Dec 2018]. 

Docker 18.09.0, 2018. What is a container. [online] Docker. Available at: < 

https://www.docker.com/resources/what-container> [Accessed: 28 Sep 2018]. 

Electron 2.0.6, 2018. Build cross platform desktop app with Javascript, HTML, and CSS. 

[online] Electron. Available at: <https://electronjs.org/> [Accessed: 06 Dec 2018]. 

Fowler, M., Lewis, J., 2014. Microservices. [online] Martin Fowler. Available at: < 

https://martinfowler.com/articles/microservices.html> [Accessed 12 Dec 2018]. 

IntelliJ Idea, 2018. Java integrated development environment <https://www.jet-

brains.com/idea> [Accessed 14 Dec 2018]. 

Kitematic, 2018. Run container through graphical user interface. [online] Docker. Available 

at: <https://kitematic.com/> [Accessed: 29 Sep 2018]. 

Kubernetes 1.13, 2018. Production-Grade Container Orchestration. [online] Kubernetes. 

Available at: https://kubernetes.io/ [Accessed: 28 Sep 2018]. 

Nodejs 8.x, 2018. Javascript runtime. [online] Joyent, Inc. Available at: < 

https://nodejs.org/en/> [Accessed: 06 Dec 2018]. 

Sharma, A. 2017. Development of Microservices – Problems and Solutions. [online] Hack-

ernoon. Available at: <https://hackernoon.com/development-of-microservices-problems-

and-solutions-b3ce8f1f7ff1> [Accessed: 01 Oct 2018]. 

Spring Tool Suite 3. IDE for developing Spring Cloud microservices. [online] Pivotal. Avail-

able at: <https://spring.io/tools3> [Accessed: 29 Sep 2018]. 

Telepresence, 2018. Introduction to Telepresence. [online] Datawire, Inc. Available at: 

<https://www.telepresence.io/discussion/overview> [Accessed: 28 Sep 2018]. 



 

48 

 

Turner-Trauring, I. 2017. Development Environments for Kubernetes. [online] Datawire, 

Inc. Available at: <https://www.datawire.io/guide/development/development-environments-

microservices> [Accessed: 01 Oct 2018]. 

 

Visual Studio Code 1.29, 2018. Popular lightweight and powerful source code editor. 

[online] Microsoft. Available at: <https://code.visualstudio.com> [Accessed: 29 Sep 2018]. 

 

 



 

49 

 

Appendices 

Appendix 1. Code for running child process 

const childProcess = require('child_process'); 
 
export default function runCommand(command, args, options) { 
    const child = childProcess.spawn(command, args, options || {}); 
    console.log( 
        `runCommand: pid: ${child.pid}, cmd: ${command} ${args.join(' ')}` 
    ); 
    child.stdout.on('data', data => { 
        const response = data.toString().trim(); 
        if (response) { 
            console.log(`STDOUT:${response}`); 
        } 
    }); 
    child.stderr.on('data', data => { 
        const response = data.toString().trim(); 
        if (response) { 
            console.log(`STDERR:${response}`); 
        } 
    }); 
    // stdio is closed 
    child.on('close', () => console.log(child.pid, 'process closed')); 
    // Parent closes 
    child.on('disconnect', () => console.log(child.pid, 'process discon-
nect')); 
    child.on('exit', (code, signal) => 
        console.log( 
            'runCommand: Process exiting', 
            JSON.stringify({ 
                pid: child.pid, 
                code, 
                signal 
            }) 
        ) 
    ); 
    child.on('error', err => { 
        console.log('runCommand: Error opening process', err); 
    }); 
    return child; 
} 
 



 

50 

 

Appendix 2. Core code for running npm and docker tasks 

import { ChildProcess } from 'child_process'; 
import { resolve as pathResolve } from 'path'; 
import { createWriteStream } from 'fs'; 
import runCommand from './commands'; 
import { 
    EDITOR_OPEN, 
    NPMSCRIPT_START, 
    NPMSCRIPT_STOP, 
    NPMSCRIPT_VIEWLOG, 
    DOCKER_START, 
    DOCKER_STOP, 
    DOCKER_VIEWLOG 
} from '../constants/tasks-constants'; 
import { 
    TaskType, 
    NpmTaskType, 
    EditorTaskType, 
    DockerTaskType 
} from '../types/task'; 
import { ServiceType } from '../types/service'; 
import { deleteDir, cleanAndCreateDir, parseEnvvarList } from './utils'; 
 
let LOGS_PATH: string; 
let sendEvent; 
 
const debug = (...args) => { 
    sendEvent('message', ...args); 
}; 
const NPMSCRIPT_BIN = 'yarn'; 
const CODE_BIN = 'code'; 
const DOCKER_BIN = 'docker'; 
 
export default function createTaskRunner(cwd, _sendEvent) { 
    LOGS_PATH = pathResolve(cwd, 'logs'); 
    sendEvent = _sendEvent; 
    cleanAndCreateDir(LOGS_PATH); 
 
    return { 
        taskRunner, 
        stopAllTasks 
    }; 
    function taskRunner(serviceContext: ServiceType, taskName, task: Task-
Type) { 



 

51 

 

        debug( 
            `Running Task: ${taskName} (${serviceContext.name}: ${ 
                serviceContext.id 
            })`, 
            JSON.stringify({ task, NPMSCRIPT_BIN, CODE_BIN }) 
        ); 
        switch (taskName) { 
            case EDITOR_OPEN: 
                openEditor(serviceContext, task); 
                break; 
            case NPMSCRIPT_START: 
                taskStart( 
                    serviceContext, 
                    task, 
                    parseNpmCommand(serviceContext, task) 
                ); 
                break; 
            case NPMSCRIPT_STOP: 
                taskStop(serviceContext, task); 
                break; 
            case NPMSCRIPT_VIEWLOG: 
                break; 
            case DOCKER_START: 
                taskStart( 
                    serviceContext, 
                    task, 
                    parseDockerCommand(serviceContext, task) 
                ); 
                break; 
            case DOCKER_STOP: 
                taskStop(serviceContext, task); 
                break; 
            case DOCKER_VIEWLOG: 
                break; 
            default: 
                debug('Unknown task', { taskName, task }); 
        } 
    } 
 
    function stopAllTasks(cb) { 
        console.log('Stopping all tasks'); 
        Object.keys(global.runningTasks).forEach(taskId => { 
            const { taskProcess } = global.runningTasks[taskId]; 
            if (taskProcess) { 
                console.log(`KILL SIGTERM process group ${-process.pid}`); 



 

52 

 

                process.kill(-taskProcess.pid, 'SIGTERM'); 
            } 
        }); 
        if (cb) cb(); 
    } 
} 
 
function openEditor(serviceContext: ServiceType, task: EditorTaskType) { 
    const taskProcess = runCommand(CODE_BIN, [task.projectDir], { 
        cwd: serviceContext.projectDir, 
        env: { 
            ...process.env, 
            CWD: serviceContext.projectDir 
        } 
    }); 
    taskProcess.on('close', () => 
        debug(`openEditor closed: ${serviceContext.name}`) 
    ); 
    taskProcess.on('exit', () => 
        debug(`openEditor exit: ${serviceContext.name}`) 
    ); 
} 
 
function parseNpmCommand(serviceContext: ServiceType, task: NpmTaskType) { 
    return parse( 
        task.cmd.replace(/(np(m|x)\s+(run)?|yarn)/g, ''), 
        NPMSCRIPT_BIN 
    ); 
 
    function parse(cmdString, cmd) { 
        const chained = cmdString.split('&&').map(x => parsePipes(x, cmd)); 
        return ['AND', ...chained]; 
    } 
 
    function parsePipes(cmdString, cmd) { 
        const piped = cmdString.split('|').map(x => { 
            const args = x 
                .trim() 
                .replace(/\s+/g, '::') 
                .split('::'); 
 
            const [maybeCmd, ...restArgs] = args; 
            if (maybeCmd === 'docker') { 
                return { 
                    cmd: maybeCmd, 



 

53 

 

                    args: restArgs 
                }; 
            } 
            return { 
                cmd, 
                args 
            }; 
        }); 
        return piped.length > 1 ? ['PIPE', ...piped] : piped[0]; 
    } 
} 
 
function parseDockerCommand(serviceContext: ServiceType, task: DockerTask-
Type) { 
    const cmd = DOCKER_BIN; 
    const args = []; 
 
    args.push('run'); 
    args.push('--rm'); 
    args.push('--name'); 
    args.push(`${task.container_name}-${serviceContext.id}`); 
    task.ports.forEach(port => { 
        args.push('-p'); 
        args.push(port); 
    }); 
 
    task.env.forEach(singleEnv => { 
        args.push('-e'); 
        args.push(singleEnv); 
    }); 
 
    task.volumes.forEach(volume => { 
        args.push('-v'); 
        args.push(volume); 
    }); 
 
    args.push(task.image); 
 
    return [ 
        'AND', 
        { 
            cmd, 
            args 
        } 
    ]; 



 

54 

 

} 
 
/** 
 * Mutates taskData 
 * 
 * @param {*} serviceContext 
 * @param {*} task 
 * @param {*} cmdDescription 
 */ 
function taskStart( 
    serviceContext: ServiceType, 
    task: TaskType, 
    cmdDescription 
) { 
    const taskData = (global.runningTasks[task.id] = 
        global.runningTasks[task.id] || {}); 
 
    if (taskData.taskProcess) { 
        sendEvent('taskstates', 'start', task); 
        return; 
    } 
 
    debug(`Task running ${JSON.stringify(cmdDescription)}`); 
 
    runChain(serviceContext, cmdDescription); 
    sendEvent('taskstates', 'start', task); 
 
    taskData.consoleAppNS = serviceContext.name; 
    // Enable console for app by default 
    taskData.consoleAppEnabled = true; 
 
    /* eslint-disable */ 
    async function runChain(context: ServiceType, cmds) { 
        const [operator, ..._cmds] = cmds; 
        for (let i = 0; i < _cmds.length; i += 1) { 
            const cmd = _cmds[i]; 
            try { 
                await runAndWait(context, cmd); 
            } catch (err) { 
                console.log('Failed to run command', { 
                    cmd, 
                    err 
                }); 
            } 
        } 



 

55 

 

 
        sendEvent('taskstates', 'stop', task); 
    } 
    /* eslint-enable */ 
    async function runAndWait(context: ServiceType, cmd) { 
        // PIPED commands 
        if (Array.isArray(cmd)) { 
            const [operator, ...cmds] = cmd; 
            if (operator !== 'PIPE') { 
                throw new Error(`Unknown operator ${operator}`); 
            } 
            const childs = []; 
            cmds.forEach((_cmd, idx) => { 
                const curPS: ChildProcess = runTaskProcess(context, _cmd); 
                const prevPS: ChildProcess | null = 
                    idx >= 1 ? childs[idx - 1] : null; 
                if (prevPS) { 
                    prevPS.stdout.pipe(curPS.stdin); 
                    prevPS.stderr.pipe(curPS.stdin); 
                } 
                childs.push(curPS); 
            }); 
            const [main, ...pipeProcesses] = childs; 
            taskData.taskProcess = main; 
            attachConsoleLogView( 
                pipeProcesses[pipeProcesses.length - 1], 
                task.id 
            ); 
            await waitTillclosed(main); 
            // End all pipe processes 
            pipeProcesses.forEach((_ps: ChildProcess) => { 
                process.kill(_ps.pid, 'SIGTERM'); 
            }); 
        } else { 
            taskData.taskProcess = runTaskProcess(context, cmd); 
            attachConsoleLogView(taskData.taskProcess, task.id); 
            await waitTillclosed(taskData.taskProcess); 
        } 
 
        debug( 
            'Task terminating', 
            JSON.stringify({ 
                pid: taskData.taskProcess.pid 
            }) 
        ); 



 

56 

 

        taskData.taskProcess = null; 
        handleTaskExit(task); 
    } 
} 
 
function waitTillclosed(taskProcess) { 
    return new Promise((resolve, reject) => { 
        taskProcess.on('close', () => { 
            resolve('close'); 
        }); 
        taskProcess.on('error', () => { 
            reject(new Error('error')); 
        }); 
    }); 
} 
function runTaskProcess(serviceContext: ServiceType, cmdDesc) { 
    const { cmd, args } = cmdDesc; 
    let env = {}; 
    if (serviceContext.envvars) { 
        env = { 
            ...env, 
            ...parseEnvvarList(serviceContext.envvars) 
        }; 
    } 
    // Add path manually so executables in /bin are available 
    env.PATH = process.env.PATH; 
 
    const taskProcess = runCommand(cmd, args, { 
        cwd: serviceContext.projectDir, 
        detached: true, 
        env 
    }); 
    taskProcess.unref(); 
    return taskProcess; 
} 
 
function taskStop(serviceContext: ServiceType, task: TaskType) { 
    const { taskProcess } = global.runningTasks[task.id]; 
    if (taskProcess) { 
        console.log(`Sending SIGTERM to process group ${-taskProcess.pid}`); 
        process.kill(-taskProcess.pid, 'SIGTERM'); 
    } 
} 
 
function handleTaskExit(task) { 



 

57 

 

    const taskData = (global.runningTasks[task.id] = 
        global.runningTasks[task.id] || {}); 
    if (taskData.logstream) { 
        taskData.logstream.end(); 
        taskData.logstream = null; 
        deleteDir(taskData.logFile); 
    } 
 
    sendEvent( 
        'consolewindow:log', 
        task.id, 
        taskData.consoleAppNS, 
        'Closing...' 
    ); 
} 
 
function attachConsoleLogView(taskProcess, taskId: string) { 
    const taskData = (global.runningTasks[taskId] = 
        global.runningTasks[taskId] || {}); 
 
    taskData.logFile = pathResolve( 
        LOGS_PATH, 
        `${taskId.replace(':', '-')}-${taskProcess.pid}` 
    ); 
    taskData.logstream = createWriteStream(taskData.logFile); 
    taskData.logstream.on('close', () => { 
        debug(`Closing log stream: ${taskData.logFile}`); 
    }); 
 
    const outputWriter = createOutputWriter(taskId); 
    taskProcess.stdout.on('data', outputWriter); 
    taskProcess.stderr.on('data', outputWriter); 
} 
 
function createOutputWriter(taskId) { 
    return data => { 
        const taskData = (global.runningTasks[taskId] = 
            global.runningTasks[taskId] || {}); 
 
        // Write to log file for preserving log 
        if (taskData.logstream) { 
            taskData.logstream.write(data); 
        } 
        // Send output to app via event if enabled 
        if (taskData.consoleAppEnabled) { 



 

58 

 

            sendEvent( 
                'consolewindow:log', 
                taskId, 
                taskData.consoleAppNS, 
                data.toString().trim() 
            ); 
        } 
    }; 
} 
 
 

Appendix 3. Code for parsing data from processes 

module.exports = { 
    decorateAnsiColours, 
    parseAnsiCursorCommands, 
    decorateLinks 
}; 
 
/** 
 * http://tldp.org/HOWTO/Bash-Prompt-HOWTO/x361.html 
 * <N>A: Move N line up 
 * <N>B: Move N line down 
 * K: Erase to end of line 
 * @param {string} data 
 */ 
function parseAnsiCursorCommands(data) { 
    return ( 
        data 
            .replace(/\u001B\[(\d+)([A-BK])/g, (_, line, command) => { 
                switch (command) { 
                    case 'A': 
                        return '::UP::'; 
                    case 'B': 
                        return '::DOWN::'; 
                    case 'K': 
                        return '::CLEAR_LINE::'; 
                    default: 
                        console.log(`Unknown Command: ${command}`); 
                } 
            }) 
            .split('::') 
    ); 
} 



 

59 

 

 
function decorateAnsiColours(message) { 
    // eslint-disable-next-line no-control-regex 
    const match = message.match(/\u001B\[((?:\d+;)*\d+)m/); 
    let classNames = []; 
    if (match) { 
        const capture = match[1]; 
        // 0 is reset all 
        if (capture === '0') { 
            classNames.push('ansi-reset'); 
        } else { 
            classNames = capture.split(';').map(code => { 
                switch (+code) { 
                    case 1: 
                        return 'ansi-bold'; 
                    case 31: 
                        return 'ansi-red'; 
                    case 32: 
                        return 'ansi-green'; 
                    case 33: 
                        return 'ansi-yellow'; 
                    case 34: 
                        return 'ansi-blue'; 
                    case 36: 
                        return 'ansi-cyan'; 
                    case 39: 
                        return 'ansi-white'; 
                    default: 
                        console.log(`Unknown code: ${code}`); 
                        return 'ansi-default'; 
                } 
            }); 
        } 
 
        const preTag = `<span class="${classNames.join(' ')}" >`; 
        const postTag = '</span>'; 
        return decorateAnsiColours(message.replace(match[0], preTag) + 
postTag); 
    } 
    return message; 
} 
 
function decorateLinks(data) { 
    return data.replace(/(http[^\s\n<]+)/, '<a href="$1">$1</a>'); 
} 



 

60 

 

 
 

Appendix 4. Main code for running GUI 

import { ipcRenderer } from 'electron'; 
import React from 'react'; 
import { render } from 'react-dom'; 
import { AppContainer } from 'react-hot-loader'; 
import Root from './containers/Root'; 
import { configureStore, history } from './store/configureStore'; 
import './app.global.css'; 
import persistentStore from './utils/store'; 
import { ADD_LOG } from './actions/pconsole'; 
import { updateTaskstateAction } from './actions/task-state.actions'; 
 
const store = configureStore({ 
    counter: 0, 
    consoles: [ 
        { 
            id: 'main-console', 
            name: 'Main Console', 
            logs: [], 
            nsColours: {} 
        } 
    ], 
    services: persistentStore.get('services') 
}); 
 
ipcRenderer.on('message', (event, ...messages) => { 
    console.log('main:', ...messages); 
}); 
ipcRenderer.on('error', (event, ...messages) => { 
    console.error('main:', ...messages); 
}); 
ipcRenderer.on('tasks-snapshot', (_, runningtasks) => { 
    console.log('tasks-snapshot:', runningtasks); 
}); 
ipcRenderer.on('consolewindow:log', (_, taskId, ns, log) => { 
    store.dispatch({ 
        type: ADD_LOG, 
        id: 'main-console', // Add log to main console. 
        ns, 
        log 
    }); 



 

61 

 

}); 
 
ipcRenderer.on('taskstates', (_, state, task: TaskType) => { 
    updateTaskstateAction({ 
        id: task.id, 
        state 
    })(store.dispatch); 
}); 
 
render( 
    <AppContainer> 
        <Root store={store} history={history} /> 
    </AppContainer>, 
    document.getElementById('root') 
); 
 
if (module.hot) { 
    module.hot.accept('./containers/Root', () => { 
        const NextRoot = require('./containers/Root'); // eslint-disable-
line global-require 
        render( 
            <AppContainer> 
                <NextRoot store={store} history={history} /> 
            </AppContainer>, 
            document.getElementById('root') 
        ); 
    }); 
} 
 
 

 

 

 


