
Bachelor’s thesis

Information technology

NTIETS13P

2017

Kasperi Ekqvist

IMPLEMENTING USER
INTERFACE FUNCTIONALITY
FOR MOBILE GAMES IN UNITY
GAME ENGINE

BACHELOR’S THESIS | ABSTRACT

TURKU UNIVERSITY OF APPLIED SCIENCES

Information Technology | Game Technology

June 2017 | 64 pages

Instructor: Lecturer Werner Ravyse

Kasperi Ekqvist

IMPLEMENTING USER INTERFACE
FUNCTIONALITY FOR MOBILE GAMES IN UNITY
GAME ENGINE

The aim of this thesis was to form a set of guidelines and best practices for both implementing
and optimizing user interface functionality developed in the Unity game engine. This was achieved
with the implementation and the optimization of user interface functionality for two separate mobile
games, Movenator and Mini Golf Universe.

For both projects, the initial requirements were set and the final products were developed based
on the required functionality. The number of interfaces that were developed and later examined
was six for Movenator and four for Mini Golf Universe. This thesis describes both final products
before examining the technical implementations in more detail. In the optimization process, two
specific optimization tools were used, a custom framerate counter and the Profiler of the Unity
game engine.

A table of the development choices was compiled to present the findings. In this table, the choices
that were made for the two games were compared, and conclusions were drawn based on those.
This involved analyzing both the similarities and the differences of the choices, as well as the
reasoning behind the choices. Another table was compiled that shows the effects of optimization.
This included data of the number of draw calls made and the framerate that was recorded both
before optimization and after the process.

Based on this data, a set of guidelines and best practices were defined for Canvas objects, Text
objects, object positioning for both static and dynamically added objects, Scroll View objects, and
functionality scripting. Both the custom framerate counter and the Profiler were determined to be
useful for the optimization process.

KEYWORDS:

Unity, UI, mobile, games, optimization

OPINNÄYTETYÖ (AMK) | TIIVISTELMÄ

TURUN AMMATTIKORKEAKOULU

Tietotekniikka | Peliteknologia

June 2017 | 64 sivua

Ohjaaja: Lecturer Werner Ravyse

Kasperi Ekqvist

MOBIILIPELIEN
KÄYTTÖLIITTYMÄTOIMINNALLISUUDEN
TOTEUTTAMINEN UNITY-PELIMOOTTORILLA

Opinnäytetyön tavoitteena oli muodostaa suosituksia Unity-pelimoottorilla luotujen
käyttöliittymätoiminnallisuuksien toteutusta ja optimointia varten. Tämä tehtiin toteuttamalla ja
optimoimalla käyttöliittymätoiminallisuudet kahteen eri peliin. Pelit olivat Movenator ja Mini Golf
Universe.

Molempiin projekteihin asetettiin alkuvaatimukset, ja lopulliset tuotokset kehitettiin vaaditun
toiminnallisuuden mukaisesti. Lopputuotteita kuvailtiin ensin kokonaisuuksina ja tämän jälkeen
syvennyttiin niiden teknisiin toteutuksiin tarkemmin. Optimointiprosessissa käytettiin erityisesti
kahta eri optimointityökalua, joita olivat pelimoottorin oma Profiler-työkalu ja erikseen integroitu
ruudunpäivitysnopeuslaskuri. Tuloksiksi saatiin prototyyppikäyttöliittymät molempia projekteja
varten. Käyttöliittymäkokonaisuuksia toteutettiin Movenator-peliin kuusi ja Mini Golf Universe -
peliin neljä.

Tämän jälkeen tarkasteltiin molempien pelien kehityksessä tehtyjä päätöksiä ja päätöksien
yhteneväisyyksiä, eriäväisyyksien ja näihin johtaneita syitä. Lisäksi tarkasteltiin, millä tavoin
optimointia oli toteutettu. Näiden tietojen perusteella suosituksia muodostettiin Canvas-
objekteille, Text-objekteille, dynaamisesti lisättyjen ja staattisen objektien sijoittelulle, Scroll View
-objekteille ja toiminnallisuuden skriptaamiselle. Sekä integroitu ruudunpäivitysnopeuslaskuri että
pelimoottorin Profiler-työkalu todettiin hyödyllisiksi optimointiprosessin kannalta.

ASIASANAT:

Unity, käyttöliittymä, mobiili, pelit, optimointi

CONTENT

LIST OF ABBREVIATIONS 7

1 INTRODUCTION 8

1.1 Unity Game Engine 8

1.2 Optimization 10

2 RESEARCH 12

2.1 Problem Statement 12

2.2 Aim 13

2.3 Objectives 13

2.4 Methods 14

3 REQUIREMENTS AND FINAL PRODUCTS 18

3.1 Movenator 18

3.1.1 General Game Interface 19

3.1.2 Resource Exchange Interface 20

3.1.3 Construction Interface 21

3.1.4 Building Production Interface 22

3.1.5 Team Interface 23

3.1.6 Competition Interface 25

3.2 Mini Golf Universe 27

3.2.1 General Menu Interface 27

3.2.2 Adventure Menu 28

3.2.3 Versus Menu 30

3.2.4 Shop Menu 31

3.2.5 Settings Menu 31

4 TECHNICAL IMPLEMENTATIONS 33

4.1 Movenator 33

4.1.1 User Interface in General 33

4.1.2 General Game Interface 36

4.1.3 Resource Exchange Interface 40

4.1.4 Construction Interface 41

4.1.5 Building Production Interface 45

4.1.6 Team Interface 46

4.1.7 Competition Interface 50

4.2 Mini Golf Universe 52

4.2.1 User Interface in General 53

4.2.2 General Menu Interface 53

4.2.3 Adventure Menu 54

4.2.4 Versus Menu 55

4.2.5 Shop Menu 56

4.2.6 Settings Menu 57

5 FINDINGS 58

6 CONCLUSION 61

REFERENCES 63

PICTURES

Picture 1. General game interface for Movenator. 19
Picture 2. Resource exchange interface for Movenator. 20
Picture 3. Construction interface for Movenator. 21
Picture 4. Building production interface for Movenator. 22
Picture 5. Team interface for Movenator. 23
Picture 6. Unit detail interface for Movenator. 25
Picture 7. Competition interface for Movenator. 26
Picture 8. General menu interface for Mini Golf Universe. 27
Picture 9. Default view of the adventure menu for Mini Golf Universe. 28
Picture 10. Galaxy view of adventure menu for Mini Golf Universe. 29
Picture 11. Planet view of adventure menu for Mini Golf Universe. 29
Picture 12. Versus menu for Mini Golf Universe. 30
Picture 13. Shop menu for Mini Golf Universe. 31
Picture 14. Settings menu for Mini Golf Universe. 32
Picture 15. Canvas component. 33
Picture 16. Canvas Scaler component. 34
Picture 17. Elements of general game interface for Movenator. 37
Picture 18. Button component. 38
Picture 19. Rect Transform component determining the position of object. 39
Picture 20. Elements of resource exchange interface for Movenator. 40
Picture 21. Elements of construction interface for Movenator. 41
Picture 22. Horizontal Layout Group component. 41
Picture 23. Scroll Rect component. 42
Picture 24. Custom Building Button component. 43
Picture 25. Elements of building production interface for Movenator. 45
Picture 26. Elements of team and unit detail interfaces for Movenator. 46

Picture 27. Grid Layout Group component. 48
Picture 28. Elements of competition interface for Movenator. 50
Picture 29. Rect Transform component determining the position and size of object. 52
Picture 30. Elements of general menu interface for Mini Golf Universe. 53
Picture 31. Elements of adventure menu for Mini Golf Universe. 54
Picture 32. Elements of versus menu for Mini Golf Universe. 55
Picture 33. Elements of shop menu for Mini Golf Universe. 56
Picture 34. Elements of settings menu for Mini Golf Universe. 57

TABLES

Table 1. Implementation choices made during development. 58
Table 2. Performance improvements. ... 60

LIST OF ABBREVIATIONS

2D Two-dimensional

3D Three-dimensional

API Application programming interface

CPU Central processing unit

FPS Frames per second

GPU Graphics processing unit

UI User interface

8

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Kasperi Ekqvist

1 INTRODUCTION

The global games market is continuously growing, and mobile games are expected to

take over half of the market by 2020 (Brightman 2017). Even on Apple’s App Store alone,

the generated revenue has exceeded 70 billion dollars, the number of downloaded

applications has grown by 70 percent in the last 12 months, and the category of games

and entertainment is the most popular (Dring 2017). Both the supply and the demand of

mobile games is growing all the time.

For this thesis, I worked on two separate mobile games. Both games were developed

using the Unity game engine; an engine that I was already previously familiar with. It is

also an engine that is the most popular third-party game engine among the top 1000 free

mobile games (Unity Technologies 2017a).

I developed user interface (UI) functionality for two different mobile games, Movenator

and Mini Golf Universe, with the aim of producing a set of guidelines of best practices for

the implementation and optimization of UI functionality for mobile games in general; this

was done specifically in the Unity game engine environment.

The Movenator project was a part of a research project at the Department of Nursing

Science at the University of Turku; its purpose “is to promote the physical activity (PA)

and PA self-efficacy of pre-adolescents” (University of Turku 2017). The development of

the current prototype started in November 2016, and the development of its UI

functionality started in early 2017.

Mini Golf Universe was a game project of a local game start-up, which was made for

pure entertainment purposes. The development of it started in early 2017, and the

development of its UI functionality started in May 2017.

1.1 Unity Game Engine

Unity offers the developers a wide variety of tools that can be used in the process of

developing and implementing a UI for a game or an application, but it is up to the

developer to do so efficiently. The fact that some of the pre-packaged solutions are not

well-optimized increases the difficulty of making the right decisions (Tantzy Games

2016).

9

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Kasperi Ekqvist

Unity is a popular game engine developed by Unity Technologies. Since the launch of

its first version in 2005, Unity has grown to become one of the most used game

development software in the world (Fear 2009; Unity Technologies 2017a).

The story of Unity started in 2002 when two of the original founders, Nicholas Francis

and Joachim Ante, of Unity met each other through a mailing list while working on their

own game engines. After some time, they decided to combine their forces to develop

one single game engine which would later be known as Unity. (Fear 2009.)

The original intention of the founders was to develop a game engine that they could use

to not only license to others but also use to develop games themselves. However, the

focus later shifted to only developing a game engine for others to use. (Fear 2009.)

The Unity software was also originally only available for use on the Mac platform. The

development team had to build it again from the ground up to support the Windows

platform. The first version with Windows support was not released until 2009. (Fear

2009.)

In the first quarter of 2016, 34 percent of the top 1000 free mobile games were developed

with Unity, more than with any other third-party game development software. In the third

quarter of 2016 alone, 5 billion games developed with Unity were downloaded.

Furthermore, games developed with Unity have reached 2.4 billion unique mobile

devices. (Unity Technologies 2017a.)

There are multiple reasons why Unity is the software of choice for both Movenator and

Mini Golf Universe. Firstly, it is free to use for individuals and companies whose annual

revenue is less than $100,000, and furthermore, it is completely royalty free (Unity

Technologies 2017b). For organizations, such as universities, and small game

development companies, it is an excellent choice because it does not place as a great

of a financial strain on the developer, and therefore, it also reduces risk for entering the

market.

Unity also features a multiplatform support. This allows developers to quickly deploy the

game to multiple different platforms. The engine features support for a wide variety of

mobile, virtual reality, augmented reality, desktop, console, web, and smart TV platforms.

(Unity Technologies 2017c.).

Since Movenator and Mini Golf Universe are set to be released on mobile devices, the

most attractive feature of Unity is its mobile support for both iOS, the operating system

10

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Kasperi Ekqvist

of Apple mobile devices, and Android, the operating system used by most other mobile

device manufacturers (Unity Technologies 2017c). According to data provided by the

American market research company International Data Corporation (2017), Android and

iOS smartphones formed a total of 99.3 percent of the smartphone market in the third

quarter of 2016, based on unit shipments.

Furthermore, Unity features a comprehensive user manual and a documentation of the

scripting application programming interface (API) to support developers working with the

software. The user manual “helps you learn how to use the Unity Editor and its

associated services” (Unity Technologies 2017d).

The Scripting API provides developers “details of the scripting API that Unity provides”;

the Scripting API features example code for developers to study to gain a better

understanding of the API, and it offers a lot of these examples in both C# and a heavily

modified version of JavaScript. (Unity Technologies 2017e.)

It should be noted that Unreal Engine is another well-known option for 3D game

development. Like Unity, it is free to use, but unlike Unity, the developers “are obligated

to pay to Epic 5% of all gross revenue after the first $3,000 per game or application per

calendar quarter” (Unreal Engine 2017). Unreal Engine also supports Android and iOS

mobile platforms. However, free access to the Unity game engine has been around for

a much longer period of time. Therefore, there are a lot more tutorials and documentation

available for Unity, and that is why Unity is still much more widely used in game

development, especially when targeting mobile platforms.

1.2 Optimization

To start the work of optimization in practice, or to even discuss it further in detail, some

context must be provided. It must first be known what exactly is meant by optimization

and what is meant by it in the context of video game development. It should also be clear

how important optimization is, and in which circumstances it is important.

When optimization is exercised correctly, it leads to improvements in the game’s

performance. This performance consists of the performance of all the various parts of

hardware, such as the central processing unit (CPU), the graphics processing unit

(GPU), and the memory. Optimization can help ease the burden on the hardware,

increasing the performance, and providing a better game experience for the player.

11

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Kasperi Ekqvist

Optimization itself is a concept that has been used for a long time. It does not have a

concrete meaning without any context or explanation. However, what is generally meant

by optimization in the context of video games, is the act of assuring that the performance

of a game is on the best level it can be on a wide range of different target platforms. Even

though the importance of optimization is commonly known, it is still not practiced to the

extent that it requires. There are three different key issues. (Thorn 2013, 259.)

Firstly, optimization in game development is not something that should be done only

when the development is done. Optimization is not synonymous with the concept of

polish which only happens as the game in development nears completion. To only

consider optimization at this stage, can be disastrous. Optimization should already be a

part of the design process of the game. (Thorn 2013, 259.)

Secondly, optimization cannot be done using the exact same approaches and methods

for all games. Every part of optimization does not apply for every game in development.

It is required to identify the areas of the game in question that could be and should be

optimized. Optimization can “require lots of hard work and planning”, but at times it “can

be made by making only the simplest of adjustments”. (Thorn 2013, 260.)

Finally, while optimization is more important when dealing with mobile devices, due to

their relatively more limited power level, it should be noted that optimization is equally

necessary on all platforms. There is no platform that would have access to unlimited

processing power. Thus, games of larger scale, or of poor execution, always have the

possibility to reach the limits of the hardware it is run on. (Thorn 2013, 260.)

12

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Kasperi Ekqvist

2 RESEARCH

2.1 Problem Statement

Developers should aim to properly optimize the UI implementations and functionality in

games. Naturally, they should aim to do the same for all aspects of game development.

However, the UI is rarely the focus of the gameplay experience, but rather something

that, when properly implemented, should help the player enjoy the actual game content.

For that reason, the UI should be implemented and optimized so that it does not become

a burden on the performance.

A UI that performs poorly can diminish the game experience. For the user, playing a

game and using an interface which performs in a sluggish or unresponsive manner can

induce feelings of frustration or even anger with the game or application; this could

decrease the user’s desire to play the game or interact with portions of it which naturally

is never the intention behind the development process.

This is especially true for mobile games. When games are run on desktops, laptops,

consoles, or other relatively powerful machines, the developers and the consumers of

video games have access to much more power than on mobile devices. Even game

features which seem fairly usual can easily clog the performance of a mobile device;

these features can be as simple as the initialization of objects in the game world, be they

characters or a part of the UI.

Nowadays, a lot of the newer mobile devices pack a lot of punch. However, as a game

developer, all the different devices in use must be considered already during the

development process. This allows the final product to be playable for as many customers

as possible. Older and less expensive devices usually perform worse; all the functionality

might not work properly on them, especially if it has been implemented with care.

However, implementing a UI with all its functionality for a game is not necessary. The

Unity game engine offers a wide variety of tools to implement UI elements for games.

The problem for a developer can be to choose the ones that best fit the task at hand.

The Department of Nursing Science at the University of Turku has already been involved

in the development of different game projects, and they will most probably continue to

do so as we move towards a world where technology and gamified elements are getting

13

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Kasperi Ekqvist

more and more popular. They also occasionally employ students, who can still be

inexperienced in the field of game development, for their projects. Because of this

inexperience, game interface optimization is often overlooked until the diminished

performance is noted during the play-test phase. Attempting to rectify the optimization

issue at this stage results in reworking much of the coding and even altering designs. In

money and time terms, this is a costly oversight that should be avoided.

By following a simple set of guidelines and best practices, even less experienced

developers can successfully implement a UI that does not hinder the game experience,

but rather supports it. The guidelines formed as a part of this thesis could help these less

experienced developers to get a better understanding of how different UI tools in the

Unity game engine work and what they can be used for, without consulting different

multiple sources.

2.2 Aim

The aim of the thesis is to produce a set of guidelines for best practices for implementing

UIs for mobile games in the Unity game engine. These guidelines will not cover

everything that can be done with the UI tools, but rather focus on the areas that will be

encountered during the development of two separate game projects introduced earlier.

These areas include the kind of functionality that is arguably most commonly used in

different game projects, and thus forms the basis of UIs.

Only general guidelines for implementing UIs will be set. If the guidelines and best

practices set here are too game-specific, they might be of no use when implementing UI

functionality for other games, even if the work was done using the same game engine.

2.3 Objectives

To produce a set of guidelines for UI implementation and optimization, this thesis will

explain a set of Unity-based UI tools and describe how to use them and how to assess

their effect on optimization so that the right interface tools are given the highest priority

according to the impact they may have on optimization. Furthermore, this thesis will

investigate the different optimization tools offered by Unity and describe the thought

process that goes into deciding which tools are most appropriate for the task at hand.

14

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Kasperi Ekqvist

The first objective is to not only list and discuss the various interface tools, but also to

include key aspects that need to be considered in the implementing of efficient

functionality for the UI elements to interact with both the user as well as other game

elements and UI elements.

The second objective is the comparison and the purposing the optimization tools offered

by Unity. There are two main tools that are the focus of this study; they are Profiler, which

provides general information on performance and resource allocation, and Frame

Debugger, which provides additional information and statistics on the graphics rendering

process. Additionally, the functionality and usefulness of a custom frames per second

(FPS) counter, that has been integrated into the game engine, will be assessed.

2.4 Methods

The main method of completing the objectives, that have been set for the thesis, is by a

detailed development journal. This journal will offer insight to the choices that have been

made regarding the UI tools that have been chosen to be used, and the ways that

different pieces of functionality have been implemented.

The focus of the journal will be Movenator, the game project of the Department of Nursing

Science at the University of Turku. This is where the bulk of the work behind the thesis

lies. However, additional insights from Mini Golf Universe, a separate game project will

be offered as well. This is done to provide more basis for setting up guidelines for the

best practices, and to prevent the guidelines, which should be fairly generic, from being

based exclusively on experience from a single game project and specific circumstances.

Naturally, as also mentioned before, this Bachelor’s thesis will not cover every possible

aspect of implementing UIs in the Unity game engine. However, a journal of the

development process of the basic aspects of UIs for the two different games should

provide a clear documentation of the process and the guidelines.

Both games in question are to be released on mobile platforms in the future. Movenator

will be focused on elements such as building towns and competing in match-3 puzzles.

On the other hand, as the name suggests, Mini Golf Universe is a minigolf game. This

means that the actual gameplay goals of the games are very different. That is why they

are good choices for the process of determining a single set of universal rules for the

development of UIs for mobile games.

15

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Kasperi Ekqvist

The idea is to find the optimized and simplified solutions to various aspects of the UI

implementation. When analyzing and comparing the solutions that are developed for

each of the games, it is important to try to examine the solutions in a general context,

rather than in a game-specific context. Naturally, each game developed is a separate

entity, and thus requires its own solutions to its specific problems and needs. However,

it is important, for the sake of the guidelines, to determine the practices that are generally

the most useful.

In this thesis, documenting the thought and development process is how the data is

collected. The documentation of the process should be detailed enough so the reader

can easily follow the process. The data that is collected should have clear examples of

different implementations, and offer context of their use. This should create, in certain

cases but not necessarily all of them, a timeline of the development process of a certain

functionality. This allows the reader to also gain a better understanding of the though

process behind the development and determination. Based on the collected data, some

of the best practices for developing UIs in the Unity game engine can be determined by

analyzing the data.

When the data is analyzed, the practices that are presented as optimal, or even the best

in certain situations, should also always offer reasoning as to why they have been

analyzed and determined to be just that. The reasoning behind these decisions and

determinations can be based on several different forms of analysis; these include things

like measured efficiency, graphical determination, or various sources. The analysis also

might not always be limited to simply one of these, but can include more of them.

Firstly, the analysis can be conducted by measuring the efficiency of different solutions.

For this thesis, there are several ways for measuring the efficiency of an implementations

or a functionality. Some of these are packaged with the Unity game engine itself. These

include the Profiler and the Frame Debugger windows. There are also additional tools

that can be developed and used. The usefulness of the different optimization tools

depends on the matter at hand; some are naturally better and more useful at certain

aspects than others, and vice versa.

The Profiler is a general optimization tool; it provides information on the amount of

resources spent on various aspects of the game, from rendering the graphics to

executing scripts. It also provides information on what kind of resources are used for

different processes; these can include the GPU, the CPU, and memory of the computer.

16

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Kasperi Ekqvist

Should the Profiler be used in the optimization process, the focus should generally be on

“those parts of the game that consume the most time”. The Profiler should also be used

both before and after making changes; this is done to ensure that the changes made

have been beneficial to the performance and not vice versa. (Unity Technologies 2017f.)

The Frame Debugger is used to, as the name implies, analyze single frames of the game.

The tool can be used to pause the game and gain information on how a specific frame

of the game is rendered; this is done to gain a better understanding how all the graphics

elements are drawn on the screen. The Frame Debugger provides information on the

draw calls, in which the CPU sends data to the GPU to render on the screen for the user,

and their total number; this can help the user to identify problem areas in the rendering

process. There could be an unnecessarily high amount of draw calls for objects for which

the process could be simplified; there could also be simply any number of draw calls for

objects which are not even displayed for the player, and therefore may not even need to

be rendered. (Unity Technologies 2017g.)

In addition to the two tools that come prepackaged with the game engine, a custom tool

should be integrated to measure the framerate, i.e. the FPS being rendered, of the

games that are developed; this is done because the framerate provided by the Profiler

is not entirely accurate. The Profiler calculates the FPS by dividing 1 by the amount of

time, usually only milliseconds, the CPU spent on that specific frame. To measure the

framerate more accurately, the actual number of frames being rendered each second

should be calculated. (Flick 2015.)

The use of these different tools as a part of the process of determining the optimal

implementations also helps in completing the objective of determining their own

usefulness in the process. The occasions that these tools are used as a part of the

determining process will then be further analyzed as a part of the results.

Secondly, the analysis can be simply based on the visual aspects. These can come into

question when, for example, a graphical element of the UI needs to be anchored onto

the screen in a certain way. This might be required because of the need to support a

wide variety of different devices, and a certain element might always be required to, for

example, appear in a certain part of the screen area.

To back up this form of analysis, the UI tools and their specific elements should be

carefully explained. In practice, screenshots of the situation at hand should be presented

to offer the reader a better understanding of the results of an analysis of this kind.

17

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Kasperi Ekqvist

In summary, the research method will journal the game development of two games;

make a comparison of the journals; extract the common decision-making processes from

both journals; show the performance impact that the optimization decisions have had;

and produce a set of guidelines for UI implementation and optimization.

18

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Kasperi Ekqvist

3 REQUIREMENTS AND FINAL PRODUCTS

Different sets of requirements were set for each of the projects. These acted as

guidelines for the UI elements and functionality that were to be developed. For the

Movenator project, a lot of UI functionality was required; this functionality was mainly

built around the part of the game that focused on city-building. For Mini Golf Universe,

the task was to build the basic UI functionality of its main menu.

In this section, the focus will be on the various parts of the UIs of the games developed.

The initial requirements will be provided, and the final implementations will be discussed

briefly to give a better understanding of the end result. However, the decisions made

during the development and optimization process for each of the elements will be

discussed more in detail in the next section.

3.1 Movenator

The task for the Movenator project was to build most of the UI functionality that was

required for the player to play the city-building part of the game; this involved many kinds

of menus, panels, and interfaces. A user experience designer also worked on the project.

His responsibility was to design the look and most of the general functionality of the UI;

he set the basic requirements for the kind of functionality that was needed to be

developed.

The designer provided plans of all the various parts of the UI; the development was

based on his plans. It should be noted that his plans involved the graphical look and the

functionality that was required for the project, but he was not in charge of the actual

technical implementation.

The development process was spread over several different months; during the

development, the designer of the user experience also conducted tests where people

tested a wireframe version, i.e. a visual representation of the future UI and its

functionality. This provided valuable feedback, but also caused some significant changes

to functionalities that had already been implemented, and thus, slowing down the overall

rate of progression.

19

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Kasperi Ekqvist

For each of the different UI elements, the final products will be presented. Both the initial

requirements and the final implementations will be discussed to provide more context on

how they function.

3.1.1 General Game Interface

As the game is focused on city-building, there were several traditional elements that

wanted to be shown in the default city view. These elements included different buttons

as well as relevant information that needed to be displayed for the player; these can all

be seen in Picture 1.

Picture 1. General game interface for Movenator.

Buttons were included for opening all the game’s other interfaces, and all the buttons

featured a specific image to symbolize its functionality; a plus sign for the resource

exchange interface, a penguin for the team interface, a trophy for the competition

interface, and a hammer for the construction interface.

The opening a specific interface also, naturally, required the closing of all other interfaces

that were open; this was done to prevent the overlapping of interfaces and the cluttering

of the screen. There was also no need to keep unnecessary interfaces open as they

would only take unnecessary resources to render.

20

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Kasperi Ekqvist

The information that needed to be displayed included the player’s level, progression

towards the next level, progress in their quest, the amount of the three different basic

resources they possessed, and the amount of premium resource they possessed. In

addition to displaying all this information, it also needed to be updated in real-time as the

player progressed in the game.

3.1.2 Resource Exchange Interface

The game also needed functionality for exchanging resources. As mentioned above, the

game needed to have support for three different basic resources and a premium

resource. The exchanging of resources needed to be done through a dedicated interface,

and the final product can be seen in Picture 2.

Picture 2. Resource exchange interface for Movenator.

The actual exchange was done in the form of trading in premium resources in exchange

for basic resources. The player could choose the amount of resources being traded in

and see what they would receive in return.

The interface had functionality for increasing and lowering the amount of premium

resources being traded in; this amount was incremented or decremented by 1 per button

press. The values on the interface needed to be updated accordingly, and general

21

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Kasperi Ekqvist

resource totals needed to be updated whenever the player decided to make the

exchange by pressing the corresponding button. The amount of resources possessed

by the player was also checked each time an exchange was attempted to prevent any

exchanges the player could not afford.

3.1.3 Construction Interface

For city-building, a crucial aspect is constructing buildings. To allow players to do this, a

construction interface, seen in Picture 3, was needed; the construction interface would

allow the players to choose the buildings they want to construct in their city.

Picture 3. Construction interface for Movenator.

The construction interface needed two different functionalities; these included choosing

a genre of buildings to limit the choices, allowing players to find the ones they were

looking for more easily, and choosing the actual building they wanted to construct.

The building genres were divided by what the buildings produce; some of the buildings

would produce basic resources for further constructions and other gameplay features,

while others would produce units for the player to use in other game modes.

Once the player had chosen the genre of buildings they wanted to see, they needed to

be able to browse the buildings in the chosen category. They also needed to see various

22

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Kasperi Ekqvist

kinds of information regarding the buildings; this included the name of the building, its

image, and the resources needed for its construction. Furthermore, the selection needed

to be limited by the available resources so that the player could not choose to construct

a building they could not afford.

Additional Unity Editor functionality was also built for the artists working on the project.

In Unity, it is possible to build things called prefabs. These prefabs are game objects that

consists of multiple different components. These components can range from 3D models

to 2D images to scripts of C# or UnityScript code to a variety of different things. The

creation of prefabs allows a rapid reproduction of the object, along with other benefits.

As the artists produced buildings that were used in the game, a quick method of creating

a new entry for the construction interface was also needed. This involved creating a

prefab for a building card for which another person could later attach the building prefab

they had created. Then, by pressing a single button, the building card would be filled with

all the information that needed to be shown to the player. This also allowed the data to

be processed during the development phase, and thus, it reduced the processing time

needed when the player started playing the game.

3.1.4 Building Production Interface

Once the player had constructed a building, they needed to be able to examine it and

access its features; therefore, the building production interface, seen in Picture 4, needed

to be implemented.

Picture 4. Building production interface for Movenator.

23

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Kasperi Ekqvist

The player needed to be able to see the name, image, and description of the building

after opening the interface so they would still remember the building they were

examining. They also needed to be able to see the production timer which controlled

how much time was left for the player to collect whatever that specific building was to

produce; the timer also needed to be updated in real-time, and the player needed to be

able to collect the produced items after the timer had reached zero. Additionally, the

player needed to be able to destroy the building should they want to do so; this would

then reward the player with premium resources.

A separate production interface for each of the buildings would have been unnecessary

since the information shown for the buildings was the same. Therefore, a single interface

was implemented. This, of course, meant that the data needed to be updated based on

the building that player tapped on.

3.1.5 Team Interface

The units produced by certain buildings needed to be presented on a separate interface;

the player needed to be able to examine all the units, as seen in Picture 5, they had

produced. In addition to examining their units, they also needed to be able to form teams

with them. The buildings of the same category would produce units of the same category

which could then be used to form teams of that specific category.

Picture 5. Team interface for Movenator.

24

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Kasperi Ekqvist

The team interface was arguably the most complicated one of all the interface that

needed to be developed for the Movenator project. It consisted a lot of data that needed

to be displayed for the player. In addition to this, the data also needed to be constantly

updated as the player progressed in the game and as they acquired more units.

As mentioned previously, every category needed their own team of units. These teams

are represented on the left in Picture 5. Furthermore, the level of the team also needed

to be displayed and updated as the player progressed. On the top of the interface, the

highlighted team needed to be displayed; this team was chosen by tapping on one of the

teams on the left-hand side of the interface.

For the highlighted team, several things needed to be displayed; these included a symbol

of the team category, all of units on the team and their corresponding levels, and the

combined level of the units on the team. If the player had an empty slot in their team of

five, a plus sign was displayed for the slot; tapping on that allowed the player to filter the

unit cards on the interface to show only the ones that could be used to fill that empty slot.

The bulk of the interface consisted of the unit cards that can be seen in the middle of the

screen in Picture 5. Each of the cards were to represent one unit that the player had

produced. For the cards, various kinds of information needed to be available for the

player to see; this included the name, image, level, and competition power of the unit. In

addition to this, the unit card also needed to be highlighted by a specific color. Inside

each of the categories, there were 5 different sub-categories of units, represented by the

five different colors. Each of the teams contained one slot for each of the sub-categories.

Furthermore, only the relevant unit cards were to be shown for the player; this was done

to prevent the player from adding units of incorrect category to a team. The unit cards

needed to be filtered every time the player chose to examine a team of a certain category,

and they needed to be updated every time any changes had been made to them.

The interface also required further functionality for the players to be able to examine

each of the produced units individually; these involved displaying more detailed

information and functionality regarding the unit. The unit detail interface can be seen in

Picture 6.

25

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Kasperi Ekqvist

Picture 6. Unit detail interface for Movenator.

The interface was required to display the image, name, main category, sub-category,

level, and competition power of the specific unit for the player. Additionally, the player

was to be able to upgrade the unit to the next level, with the cost of premium resources,

and they needed to see how the unit’s competition power would change with the

upgrade.

Via this interface, the player also needed to be able to add and remove the unit from the

team of its main category; this naturally also required background functionality for

tracking the different teams the player had assembled. Furthermore, the player was to

be able to delete existing units in exchange for premium resources by “retiring” them,

and the amount of the gained resources needed to be tied to the level of the unit; this

needed to be achieved because the game would provide the player with new units, and

a substantial number of unnecessary units could have ended up clogging up the team

interface altogether.

3.1.6 Competition Interface

The last of the interfaces, that were required to be developed, was the competition

interface. This interface was set apart from the rest because it is heavily tied to another

game mode in the game. Through this interface, seen in Picture 7, the player would be

26

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Kasperi Ekqvist

able to join a minigame with a team of their choosing, and the chosen team would then

affect the gameplay.

Picture 7. Competition interface for Movenator.

The interface needed to display 3 different minigames to the player; the player could then

choose one from these that they could then play. All the minigames required that the

player had a team of the same category as the minigame itself; another requirement was

that the player’s team needed to be of high-enough level before they could access the

minigame.

The interface needed further functionality in the form of so-called “re-rolling” of the

minigames; in practice, the player could spend a specific amount of their premium

resources to discard one of the minigames, and the game would then generate one from

a different category for them to play.

Each of the competition elements also needed a button to act upon the competition. If

the team level was not high enough to enter the competition, the player was taken to the

team interface where they could manage the team in question; and if the level

requirement was met by the player’s team, the player was able to enter the competition.

27

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Kasperi Ekqvist

3.2 Mini Golf Universe

Arguably, for the Movenator project, there was more time to focus on the development

of the UI which allowed multiple iterations. Thus, the final products for the prototype that

was used for user testing was something that also could have been perceived to be much

further along in development.

Technically, this was true as well. However, the requirements were quite different as

well. For the Movenator project, a lot of UI graphics were implemented as well. However,

for Mini Golf Universe, it was essential to build the functionality for the first prototype so

that it could be tested and further iterated. For the UI of Mini Golf Universe, the

implementation of actual graphics was also of no importance.

3.2.1 General Menu Interface

The purpose of the main menu in Mini Golf Universe was to access different sub-menus

including the Adventure, Versus, Shop, and Settings menus. The general menu controls

can be seen in Picture 8; these four buttons shown cover most of the general menu

interface functionality.

Picture 8. General menu interface for Mini Golf Universe.

28

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Kasperi Ekqvist

These buttons are used to access the menus. Each of the buttons had specific content

attached to them. When one of the buttons was tapped, it triggered an event that was

then handled by all the buttons; this caused the buttons to individually show or hide their

content based on which of the buttons was pressed.

3.2.2 Adventure Menu

The adventure menu was built to allow the player to access the single player content of

the game. The adventure menu contained three different views inside it: the default view,

the planet view, and the galaxy view. The default view is shown in Picture 9.

Picture 9. Default view of the adventure menu for Mini Golf Universe.

The purpose of the default view was to allow the player either to quickly continue playing

the set of levels they had previously been playing, or to switch to another set of levels.

The default view was also to show an image reflecting the set of levels the player had

previously been playing. If the player had not yet started playing any set of levels, they

would instead be shown the level set selection view, titled “galaxy view”, seen in Picture

10.

29

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Kasperi Ekqvist

Picture 10. Galaxy view of adventure menu for Mini Golf Universe.

As the game was to feature multiple sets of levels, the ”galaxy view” allowed them to

choose a set of levels they wanted to play. By tapping on any of the sets shown, the

player could then proceed to choosing the level they wanted to play; this was done in the

“planet view” shown in Picture 11.

Picture 11. Planet view of adventure menu for Mini Golf Universe.

30

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Kasperi Ekqvist

The ”planet view” allowed the player to choose a level to play from the set of levels they

had previously chosen. By tapping on any of the level icons, they would then be launched

into that level. Later functionality would also include level statistics shown for the player,

but this was not yet included in this prototype.

3.2.3 Versus Menu

The versus menu was implemented to allow the player access to the multiplayer

components of the game. Additionally, the player would be able to open prizes for playing

the game and watch video ads to gain in-game resources. The versus menu can be seen

in Picture 12.

Picture 12. Versus menu for Mini Golf Universe.

The right half of the screen was reserved for on-going online matches that the player

was taking part in. This was implemented ahead of the multiplayer functionality, but there

would be a button representing each of the matches in a scrollable list, allowing any

number of on-going matches. By tapping on any of them, provided that it was the player’s

turn, they could continue playing the match.

The buttons on the left-side of the screen allowed three kinds of functionality. The player

could press a button a few times a day to allow them to open a prize that would reward

them in-game currency. They could press another button to start a new match, which

31

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Kasperi Ekqvist

would then add a button to the list of on-going matches. They could press a third button

to watch a video ad to gain additional in-game currency.

3.2.4 Shop Menu

The shop menu was built to allow the player to purchase several types of currencies as

well as additional sets of levels. The shop menu was also to feature additional

possibilities in future versions; the menu is shown in Picture 13.

Picture 13. Shop menu for Mini Golf Universe.

The menu would allow the player to make three kinds of purchases: level sets for coins,

coins for diamonds, and diamonds for real money. By tapping on a purchase option, an

online confirmation would be made to validate the purchase. Future additions included

several types of customization options that the player could purchase. This would then,

naturally, cause additional changes to the layout.

3.2.5 Settings Menu

The purpose of the settings menu, seen in Picture 14, was to gather all the different

settings, options, and miscellaneous features that the player could access into one place.

32

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Kasperi Ekqvist

Many of the functionalities had not yet been implemented for the first menu prototype,

and many of the functionalities also included connecting to services outside of the game.

Picture 14. Settings menu for Mini Golf Universe.

The menu consisted of simple buttons. The planned functionality for these buttons

included turning the game audio on and off, accessing the support channels of the game,

inviting friends to the game, rating the game on Google Play or App Store, changing the

interface language, and modifying the notification settings.

33

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Kasperi Ekqvist

4 TECHNICAL IMPLEMENTATIONS

This section will focus on providing information on how the final implementations were

done and what UI and optimization tools were used in the process. This offers insight as

to why certain decisions were made. As the process is presented, the different UI tools

and their fundamental functionalities are introduced. Testing of the UIs was conducted

on a low-end mobile device to offer best insight into optimization; the device in question

was an LG Spirit 4G LTE H400N.

4.1 Movenator

Movenator was a large project, and the UI duties involved developing a rather complex

UI with a lot of different kind of functionality. On top of this, it should be noted that the

functionality for the Movenator project was focused on providing support to the gameplay

functionalities. When comparing the two projects discussed in this thesis, the Movenator

project is clearly the larger one.

4.1.1 User Interface in General

The Unity game engine features a pre-made Canvas component that can be attached to

a Game Object to create a Canvas object. The Canvas object is something that holds all

the different UI elements that are shown for the player, and the Canvas component

features different options to alter the way the UI elements behave. The Canvas

component and its options can be seen in Picture 15. (Unity Technologies 2017h.)

Picture 15. Canvas component.

The most important option at this point is the Render Mode. The Render Mode has three

different options: “Screen Space – Overlay”, “Screen Space – Camera”, and “World

34

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Kasperi Ekqvist

Space”. The different options affect how the Canvas is rendered, i.e. how the player will

see it on their screen.

The “Screen Space – Overlay” mode is the one we wanted for the implementation of the

UI. In this mode, all the UI elements are rendered on top of all the objects in the game

world (Unity Technologies 2017h). This way, the UI elements are always visible for the

player and no game object will ever block any of them.

Alternatively, the “Screen Space – Camera” mode could be used to render the UI

elements with a specific Camera in the game world, and they could be set within a certain

distance of that Camera. In this mode, the settings of the Camera object would also affect

how the UI would be rendered for the player. This could, for example, allow the addition

of perspective for the UI, should that be desired by the developer. (Unity Technologies

2017h.)

Lastly, the “World Space” mode is very different from the other two modes. When the

Canvas is set to “World Space” mode, it can be placed anywhere in the game world,

rather than being tied to always appear on the screen (Unity Technologies 2017h). This

has its own purposes, but for the sake of implementing most of the interface elements in

the Movenator project, the “World Space” mode was of no use.

Another important part of the Canvas object is the Canvas Scaler script component; it is

also a pre-made part of the Unity game engine. The Canvas Scaler script component

and its options can be seen in Picture 16.

Picture 16. Canvas Scaler component.

The Canvas Scaler script component also has two specific options that should be

focused on the most. First of them is the UI Scale Mode. The UI Scale Mode “determines

how UI elements in the Canvas are scaled”. It features three different options: “Constant

Pixel Size”, “Scale With Screen Size”, and “Constant Physical Size”. The names are

descriptive so it is easy to deduce what their functions are. For the Movenator project,

35

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Kasperi Ekqvist

the UI elements needed to scale along with the game world, and that is why the “Scale

With Screen Size” was chosen to be used. (Unity Technologies 2017i.)

Additionally, attention should be paid to the Reference Resolution. This is the resolution

for which the UI is designed; it is also used as a reference when the player has a screen

with a different resolution and the UI needs to be scaled. It was set to 1920 by 1080 as

this is an extremely common resolution. When later adjusting the positions and sizes of

the UI elements, that is also done with this resolution in mind.

For many of the game’s interfaces, the initial idea was to have them slide into the game

view, making them look better for the player. However, this was not yet implemented for

the current prototype due to time constraints. These sliding elements included the

resource exchange interface, construction interface, building production interface, team

interface, and competition interface.

Even though the slide functionality could not be implemented, the elements’ effect on the

performance was still measured, should they have been active in the game; this was

done because “active UI elements are still calculated and added to the draw calls even

though they aren’t seen”. (Tantzy Games 2016).

The effect was measured by examining the number of draw calls made by using the

Profiler tool. To give context to the number of draw calls, their number was measured

with only the general game interface open; in this situation, the total number of draw calls

amounted to 32.

Before measuring the number of draw calls again, the interfaces were activated and

moved outside of the Camera’s view. This meant that they could not be seen, and the

screen for the player seemed exactly like before; nevertheless, the number of draw calls

now amounted to 78. This is more than double the amount of draw calls that were made

when those interfaces were not active; that is certainly a huge increase with no visible

gain.

Deactivating an object in the game means, of course, that none of its functionality will

work, and none of the attached scripts are run. This can problematic if the UI elements

contain functionality that involves data being processed even when the element in

question is not shown on the screen. Fortunately, there was a way to both keep the UI

elements active and not increase the number of draw calls.

36

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Kasperi Ekqvist

The Unity game engine features a Rect Mask 2D component. This component can be

used as a part of the Canvas to hide the UI elements that the player cannot see (Tantzy

Games 2016). The component thus provides better performance for the user, but in

development, it should be noted that, as the name suggests again, this “only works in

2D space” (Unity Technologies 2017j). Before measuring the number of draw calls again,

a Rect Mask 2D component was attached to the Canvas. The number of draw calls was

now measured to be 32; the same number of draw calls made in the beginning while

none of the specified UI elements were active.

As was mentioned before, the slide functionality was not implemented for this prototype

of the project. Thus, the method of activating and deactivating the interfaces was used

to reduce the amount of draw calls made.

For the Movenator project, the default Text component of Unity game engine was used

to implement all the text elements. However, Unity Technologies acquired the TextMesh

Pro asset midway the development process of the Movenator project. The new

component should replace the old Text components, and it should offer optimized

performance for mobile platforms as well. The current Unity Text component is known to

have certain performance problems. However, the change was not deemed necessary

for the sake of this prototype. (Tantzy Games 2016; Winter 2017.)

4.1.2 General Game Interface

To control the interactions between the various interfaces of the game, a UIManager

script was written. One of its functionalities was to keep the resource totals, shown in the

top of the screen in Picture 17, up-to-date as the game progressed; this required

interaction between the UIManager and another script, ResourceManager.

37

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Kasperi Ekqvist

Picture 17. Elements of general game interface for Movenator.

ResourceManager was written to keep track of the resources the player possessed. Its

main functionalities also included methods for adding, removing, and checking

resources; furthermore, it featured an event for whenever the resource totals were

changed.

The UIManager had its own method for updating the resource totals shown. This method

was set to subscribe to the event contained in an instance of the ResourceManager.

Whenever the resource totals were changed, the event was triggered, and the

UIManager could react upon it by updating the resource totals shown for the player.

Another functionality for the general game interface was to open the other interfaces that

were included in the game. For this, another functionality of the UIManager was

developed; this was a method that could be called on the UIManager instance which

allowed to change the interface shown by passing a string identifier as a parameter of

the method. This way, the method could be used both in other scripts and directly with

the Button script components that were part of the Button objects in the general game

interface; an example of the Button script components can be seen in Picture 18.

38

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Kasperi Ekqvist

Picture 18. Button component.

The Button script component features many functionalities. At this point, however, the

focus is on the “On Click ()” container and its content. “On Click ()” refers to an event

“that is invoked when when a user clicks the button and releases it”. (Unity Technologies

2017k). With the Button script component, the developer can directly set what should

happen when this Button is pressed. First, a reference to the game object which holds

the desired UIManager script is set for the field in the bottom-left; in this case, the

UIManager script had been attached to the Canvas object. Secondly, the desired script

and its method was chosen from the dropdown menu in the top-right. Finally, the

parameter for the method was set in the text field in the bottom-right. This allowed the

“On Click” event to directly call the method in the UIManager instance.

All the UI elements in Unity feature a Rect Transform component. This component

determines affects the position, rotation, and size of the element; an example of a Rect

Transform component can be seen in Picture 19.

39

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Kasperi Ekqvist

Picture 19. Rect Transform component determining the position of object.

This example is of the element holding the basic resource totals. As seen in the picture

of the general game interface, this element was positioned in the top-center of the

screen. This was achieved by setting the Anchors of the element there. The Anchor

values, set between 0 and 1, control where the element is anchored on its parent

element, which in this case was the Canvas itself as the element in question was a direct

child object of the Canvas.

When both the X and the Y values are set to 0, the element is anchored to the bottom-

left corner of the parent element; when they are both set to 1, the element Is anchored

to the top-right corner of the parent element. Setting both the minimum and maximum

values of an Anchor to the same value allows the size on that axis to be determined

manually, as was done with both the width and the height of this element.

The Pivot was set to 0.5 on the X axis, which is the horizontal center of the element; on

the Y axis, it was set to 1 which is the top of the element on the vertical axis. This way,

the Pivot was set to the top-center of the element.

After setting both the Anchor and the Pivot values, the objects position can be further

adjusted by adjusting the Position values. For these elements, only the X and Y values

were of importance since the UI elements were always going to be rendered on top of

the other game objects, as was discussed before. Setting the Pos Y value to -30,

positioned the elements Pivot 30 pixels below the Anchors; in this case, the top-center

of the resource totals element was 30 pixels below the top-center of the screen.

This method of anchoring the element on the screen was used for all the UI elements in

the general game interface. This is because the purpose for all of them was to appear

on the edges of the screen, and this method allows that on all resolutions.

40

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Kasperi Ekqvist

4.1.3 Resource Exchange Interface

The resource exchange interface included functionality for exchanging premium

resources for basic resources; it was one of the simplest interfaces implemented for the

game. This interface, seen in Picture 20, consisted of three similar rows; each of the

rows was for one of the basic resources. Inside the row, there were buttons for both

decreasing and increasing the amount of premium resources being traded in. Next to it,

the amount of basic resources, that would be gained by the exchange, was shown.

These values updated with each button press. This process was controlled by a custom

ResourceExchange script component.

Picture 20. Elements of resource exchange interface for Movenator.

When the player decided to make the trade by pressing on a button on the right, the “On

Click” event would call on the ResourceManager instance to check if the player could

afford the trade. If so, it would also call the methods for adding and removing reduces

accordingly, which would then trigger the event mentioned before and update the

resource totals shown on the screen.

41

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Kasperi Ekqvist

4.1.4 Construction Interface

The construction interface, as seen in Picture 21, featured the functionality for choosing

the building that the player wanted to construct. As it was discussed before, the buildings

in the game were divided into different main categories based on what they produce.

Picture 21. Elements of construction interface for Movenator.

These category selection buttons in the bottom were set as a child object of an element

with a Horizontal Layout Group script component attached to it. This component allows

easy positioning of UI elements that are part of a unified group; an example of the script

component can be seen in Picture 22.

Picture 22. Horizontal Layout Group component.

As can be seen in Picture 21, the buttons are positioned right next to each other. This

was intended behavior, and it is caused by the Spacing value of 0. The parent object, on

which this component was attached, horizontally covers the whole screen. Therefore,

setting the Child Alignment is important. Basically, it sets the pivot point of the objects in

the Horizontal Layout Group. As it is set to Lower Center, should there be only one child

added to the group, it would be in the bottom-center of the parent element.

42

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Kasperi Ekqvist

Each of the buttons added to the Layout Group has its own size. Setting both the Width

and Height values to true on the Control Child Size option gives the script component

the authority to resize the elements so that they all fit on the area of the parent element,

should the child elements in their original size take more space than that. This is useful

because it allows to constrain the elements to the area that was set for the parent

element.

It should be noted that the use of Layout Groups can be expensive performance-wise.

This is because they “are re-evaluated every time they are marked as dirty, which

basically means lots of calculations any time anything is changed”. Another solution

would be to use the Anchors of the Rect Transforms, in a separate way than the one

introduced before, to achieve the same effect. This is, of course, manual work, and

because the functionality for adding new buttons dynamically was needed, the

implementation was done using a Layout Group. (Tantzy Games 2016.)

The category buttons’ Button components’ “On Click” events contained a reference to

the ConstructionInterface script and its method for changing the content. In this context,

the content refers to the content of the Scroll Rect script component on the Scroll View

object; an example for this can be seen in Picture 23.

Picture 23. Scroll Rect component.

The Scroll View object is a pre-made Unity object. Using a Scroll View object allows the

developer to quickly build a UI element which has scrollable content. This content can

43

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Kasperi Ekqvist

be almost anything in the UI; it could be plain text, a set of images, or even a set of button

prefabs, as is the case with the construction interface.

The Content field of the Scroll Rect component requires a reference to the Rect

Transform of the object that is to be scrolled. This is the value that the category buttons

would change. Each of the various categories featured their own Game Object with a

Rect Transform. These objects were placed on top of each other, at the same position

on the screen. As the Content was changed, a method was called on the

ConstructionInterface script. This method did three things: it activated the Game Object

featuring content of the corresponding button’s category, it deactivated the Game

Objects for other categories, and it set the activated Game Object’s Rect Transform

component as the Content for the Scroll Rect component, allowing the content to be

scrolled.

For each of these objects that contained the button prefabs, a Horizontal Layout Group

component was also attached. This was done for the same reason as before; there was

need to allow the quick addition of new buttons in the future without having to manually

adjust the Anchor values of the buttons’ Rect Transforms. Each of the building buttons

featured a custom BuildingButton script component, seen in Picture 24.

Picture 24. Custom Building Button component.

This component was part of the functionality for spawning buildings in the game world,

but it also featured functionality for the development of the UI. As was mentioned before,

the artists on the project developed buildings and created so-called prefabs of them. The

game then needed a button in the construction menu for all of them. Therefore, the

BuildingButton component featured the Building Prefab field.

44

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Kasperi Ekqvist

The artist could simply add an empty button to the Layout Group of a category, add their

prefab reference to its BuildingButton component, and click on the Fill Button Info button

on the component. This custom button would then take all the information from the prefab

the artist had created and place it on the button. This way, the artist did not need to set

the building name, image, and cost for each of the buttons.

Another upside for the implemented functionality was performance. Because all the

information for the buttons was there when the game launched, there was less

processing needed on startup.

However, an issue with the performance was noticed during tests for which both the

Profiler and the custom FPS counter was used. The FPS counter was used to check the

overall performance and the Profiler was used to determine where the problem was in

case there was one.

While the game could regularly be run at 60 FPS, which is considered a very acceptable

framerate on any device, on a low-end smartphone, the framerate dropped down to

approximately 45 FPS immediately upon opening the construction interface.

As it climbed back to 60 FPS upon closing the interface, it was easy to determine that

this specific interface was the reason for poor performance. However, there was still the

need to determine which part of the interface was causing problems. Upon using the

Profiler, it could be noticed that the ScrollRect script was using a lot of resources.

Even though the pre-made Scroll View object is easy to use, it is also known for causing

performance issues (Tantzy Games 2016); however, this still needed verification. By

deactivating the Scroll View object, the framerate rose back up to 60 FPS. The Scroll

View was still something that was needed so the problem needed a solution. A known

improvement is to replace the UI Mask component, which comes pre-packaged with the

Scroll View object, with a Rect Mask 2D component, which was also used with the

Canvas object.

Once the improvements had been made, the performance was tested again. This time,

the FPS counter showed a solid 60 FPS, even after opening the interface. The

performance was deemed to be good and the problem solved.

45

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Kasperi Ekqvist

4.1.5 Building Production Interface

The building production interface was something that needed to appear whenever the

player tapped on one of their buildings; an example can be seen in Picture 25. This

allowed the player to examine the building information as well as use functionalities

related to that building.

Picture 25. Elements of building production interface for Movenator.

Whenever a building was clicked and the interface was open, the information regarding

the building was filled in the interface; this involved the building image, name, description,

production timer, and the amount of resources they would produce. This was read

directly from the building’s own Building script component which contained this

information.

Most of this was simple, as it involved only reading data from another script, but the

tracking of the production timer was more complicated. Each of the building’s scripts had

their own timer which started running when the building’s construction phase was

46

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Kasperi Ekqvist

finished. The script then featured an event which was triggered every second and passed

on the current time remaining in the building’s production phase.

The building production interface did not have a script of its own, but its functionality was

handled from the UIManager script instead. Whenever the interface was opened, the

UIManager would add its listener method to the corresponding building’s Building script’s

event. This way, the correct production timer was always tracked. Whenever the

interface was closed, the listener was removed from the previous Building script’s event

to avoid conflicting data for the interface.

The interface also had buttons for destroying the building and collecting the products of

the building. Destroying the building gave the player extra resources through the instance

of the ResourceManager, but it also removed the building from play. Collecting the

products added those to the player and restarted the production timer.

4.1.6 Team Interface

The greatest amount of work was the team interface. This involved managing the units

that the player had produced with their buildings. The team interface, as well as the

included unit detail interface, can be seen in Picture 26.

Picture 26. Elements of team and unit detail interfaces for Movenator.

47

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Kasperi Ekqvist

This interface is very much tied to an instance of PenguinManager. PenguinManager

contains a collection of the units in the player’s possession; these are objects of the

Penguin class. These objects can have a main type, which is one of the three categories

available, and a sub-type, which can be one of five different sub-types contained in each

of the main types. These are used to sort the units in the team interface.

The instance also tracks the player’s different teams; there is one for each main type.

Each of the teams contains five different units, one of each sub-type of that main type.

The PenguinManager script also contains five different events it can trigger: (1)

PenguinAdded, which is triggered when the player adds a new unit to their collection; (2)

PenguinRemoved, which is triggered when a unit is removed from the player’s collection;

(3) AddedToTeam, which is triggered when a unit is added to its corresponding team;

(4) RemovedFromTeam, which is triggered when a unit is removed from its

corresponding team; and (5) TeamLevelUpdated, which is triggered whenever a unit in

a team progresses to a new level, increasing the combined team level as well. The

TeamPanel class features listeners for all the events.

The interface can be broken down into four parts: the team buttons on the left, the

highlighted team on the top, the unit cards in the middle, and the unit detail interface on

the right. Each of these had their own implementation, and they can be examined one

by one.

Of the four parts of the interface, the unit cards in the middle should be examined first as

they are what the whole interface is built around. The unit cards are child objects of a

parent which has a Grid Layout Group component attached to it; an example can be

seen in Picture 27. These Layout Groups work as the Content of a Scroll Rect component

on a Scroll View object. This allows the same kind of behavior that was used for the

building cards in the construction interface.

48

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Kasperi Ekqvist

Picture 27. Grid Layout Group component.

This component is very similar to the Horizontal Layout Group used previously. It is also

important to note here that a Layout Group was used again because of the need to

support dynamic addition of additional content. Whenever the events PenguinAdded or

PenguinRemoved are triggered in the PenguinManager, a new unit card must be created

or an old one must be destroyed.

The team buttons on the left were used to select the team to manage and to filter the unit

cards accordingly. Pressing one of the buttons would change the highlighted team to the

team of the button’s category. There were buttons included for each of main types

included in the prototype at this time. These buttons also included a number to indicate

the current level of the corresponding team; this was updated whenever the

TeamLevelUpdated was triggered.

The section of the highlighted team involved several different functionalities. This team,

and the unit cards in the middle, was updated to show the desired team any time tapped

on any of the team buttons on the left-side of the interface, allowing them to manage that

specific team.

Firstly, the symbol for the main type of the team was updated by changing Sprite for the

Image component based on the main type choice. Secondly, the buttons including either

a plus sign or a unit were updated accordingly. To make the choice, the team of the

corresponding main type of units was examined.

49

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Kasperi Ekqvist

If there was no unit of a certain sub-type on the team, an empty button with a plus sign

on it was shown for the player. By tapping on a button of this kind, the player could then

filter the unit card in the middle to only show the ones that could be used to fill this empty

spot on the team.

If there was a unit of a certain sub-type on the team, the image and level of that unit

would be shown on the player on the corresponding spot. By tapping on this kind of a

button, the player could open the unit detail interface for this unit to remove that unit from

the team, making that spot empty again.

Lastly, the highlighted team section needed to display the combined level of the units on

that team as well; this was done to make it even clearer for the player. This number also

needed to be updated any time the TeamLevelUpdated was triggered, involving the

currently highlighted team.

The unit detail interface was implemented to, much like the building production interface,

allow the player to further examine a specific unit and use features related to that unit.

There were several types of information and functionality that the player needed to be

able to access; these included the unit image, name, main type, sub-type, level,

competition power, upgrade functionality, retirement functionality, and team

management functionality.

Whenever a certain unit card was tapped on, the data required was read from the unit

reference that the card had. This data was then used to fill the interface. Likewise, this

provided the possibility for the interface to have a reference to the object of the Penguin

class so that the unit-specific features could be used by the player.

Upon testing the performance of the team interface, a clear problem in performance was

noticed. Whereas the framerate would regularly be 60 FPS, it would drop as low as 30

FPS when the interface was opened. This interface also contained a default Scroll View

object, just like the construction interface.

Again, the UI Mask component was swapped for a Rect Mask 2D component. The

performance was then tested again, and the performance increased to 40 FPS. For the

construction interface, the improvement in framerate was 15 FPS. For this interface, it

was 10 FPS. It is still a noticeable increase in framerate, and the smaller increase could

be because the Scroll View covered a much larger area than in the construction interface.

50

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Kasperi Ekqvist

The framerate of 40 FPS on a low-end device was determined to be good enough for

the prototype. However, for future development, the issue should be further investigated

to gain an even further increase in performance.

4.1.7 Competition Interface

The competition interface was heavily tied to both the teams the player possessed and

the different competition minigames that were built by other developers for the game.

The interface offered the player the chance to enter these competitions; the competition

interface can be seen in Picture 28.

Picture 28. Elements of competition interface for Movenator.

The competition interface is clearly divided into three elements which perform similar

functionality. Each of these competition cards would tell the player the competition’s

name, required team level to enter, a button to act on the competition, and a button to

“re-roll” the competition.

51

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Kasperi Ekqvist

The parent object of the competition interface had a custom CompetitionPanel script

component attached to it; this component controlled the actions the player performed on

the interface, and generated new competitions for the player whenever they had beaten

an existing one.

When generated, a competition card would be assigned a type which would be one of

the main types of the buildings and units. It would, additionally, be assigned a level

requirement. This level requirement was based on the level of the player so the

competitions would get more difficult as the player progressed in the game.

Each of the cards also contained a button in the bottom. This button’s appearance and

functionality would change based on whether the player’s corresponding team could

match the level requirement of the team. If not, as in Picture 29, the buttons would simply

direct the player to the team interface to make changes to that specific team. However,

if the player’s team’s level matched the requirement, they could use the button to enter

the competition.

Additionally, there was a “re-roll” button placed on the top-right corner of the card. This

button allowed the player to pay a certain amount of premium resources to discard the

currently offered competition and have a new one generated for them. This would be

useful in later stages of development as there would be a lot more variance to the types

of competitions available.

It should be noted how the three elements were aligned inside the interface. Previously,

the use of distinct types of Layout Groups was discussed. However, the reasoning

behind their use was always to give future developers a straightforward way to add more

content, as the Layout Groups would automatically calculate new position and size

values for the UI elements inside the Layout Groups.

For the competition interface, this was not necessary. Instead, a different way of setting

up the Anchor values of the Rect Tranform components on the competition card

elements was used; an example of one of the Rect Transforms can be seen in Picture

29.

52

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Kasperi Ekqvist

Picture 29. Rect Transform component determining the position and size of object.

As was also previously mentioned, the use of Layout Group components creates

unnecessary processing since every time there is a change (Tantzy Games 2016).

Therefore, setting up the Anchor values on the elements’ Rect Transform components

can be beneficial to the performance, and it should be done whenever it is possible to do

so.

In Picture 29, the focus in on the Anchor values. By setting the minimum Y value to 0

and the maximum Y value to 1, the element will cover the whole vertical height of the

parent element. Setting the minimum X value to 0 and the maximum X value to 1/3, the

element will cover one third of the horizontal width of the parent element. By determining

these Anchor values, the elements can be set to always take an equally large area of

their parent element in proportion to the parent element’s other child elements, and they

will continue to do so even if the size of the screen changes.

4.2 Mini Golf Universe

For Mini Golf Universe, the UI duties focused much more on a specific interface, the

main menu, rather than all the interfaces required for a certain game mode. Due to this,

the work overall was done on a much smaller scale. However, there were still many

similarities to the development of Movenator. The work for this project was also done

later than for Movenator which made it easier to implement more optimal solutions.

53

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Kasperi Ekqvist

4.2.1 User Interface in General

For Mini Golf Universe, many of the same development choices, regarding the general

UI options, were made. Here, the Render Mode of the Canvas component of the Canvas

object was also set to “Screen Space – Overlay” as the UI implemented was a traditional

menu interface that needed to be rendered on top of any objects in the background.

For the Canvas Scaler script component, the same choices were made again; the UI

Scale Mode was set to “Scale With Screen Size” and the Reference Resolution was set

to 1920 by 1080. This was done because Mini Golf Universe was also to appear in

landscape mode, and this resolution was a traditional resolution for mobile devices in

landscape mode.

Same steps were also taken to optimized the number of draw calls. A Rect Mask 2D

script component was attached to the Canvas object and any unnecessary UI elements

were disabled. Therefore, no excessive processing was required. The prototype was

tested on a low-end mobile device again, and a framerate of 60 FPS could be reached

on most of the interfaces; the performance and optimization of the UI was determined

adequate.

The TextMesh Pro components were used in the implementation of different text

elements for Mini Golf Universe. As the components were already available at the

beginning of the project, it was chosen over the pre-packaged Text component to offer

any possible performance gain and to get familiar with the components as they were to

replace Unity’s own Text component in the future. (Winter 2017.)

4.2.2 General Menu Interface

The general functionality of the menu is simple. The player has access to four different

buttons, shown in Picture 30, that they can use to change the content displayed in the

main menu. The process of changing content was implemented somewhat differently for

Mini Golf Universe.

Picture 30. Elements of general menu interface for Mini Golf Universe.

54

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Kasperi Ekqvist

Mini Golf Universe also featured a script called MainMenuManager which was

responsible for handling interactions between different interfaces; this worked in a

comparable way to the UIManager script in the Movenator project. However, in the

Movenator project, the UI Manager object had references of all the different UI elements

so that it could enable and disable them. This was partially due to its more complicated

UI.

However, in Mini Golf Universe, the Main Menu Manager object did not contain these

kind of references and objects were not enable and disable in this script. Instead, a press

of a button triggered an event that the objects could subscribe to. Based on the

information of the object which caused the event to be triggered, these objects would

then enable or disable their corresponding content accordingly. This was found to be a

much clearer implementation, especially on the programming side.

4.2.3 Adventure Menu

All three sub-menus of the adventure menu consisted of content that could be set up by

using the previously mentioned Anchors of the Rect Transform components. As

discussed previously, this was a more efficient method for static content than the use of

different Layout Groups which could have calculated the positions and sizes of the

elements automatically

For example, the default view, seen in Picture 31, of the adventure menu consisted of a

TextMesh Pro element, two Button elements, and an Image element. There was no need

to dynamically add or remove content from the view. Therefore, there was no need for

Layout Groups. Similarly, both the planet view and the galaxy view would always have

the same number of elements on them, making the use of Layout Group components

unnecessary.

Picture 31. Elements of adventure menu for Mini Golf Universe.

55

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Kasperi Ekqvist

The sub-menus of the adventure menu were controlled by a custom AdventureMenu

script. The process of changing between the different sub-menus was done by a method

where a parameter of an enum type was used. This kind of parameter was deemed better

than the string parameters used in the UIManager script of Movenator project; this is

because the enum type offers less room for error than a string value a developer would

type in manually, but the enum values can still be descriptive.

4.2.4 Versus Menu

The versus menu, seen in Picture 32, was the interface though which the player would

be able to access the online multiplayer features of the game. It featured buttons for

opening prizes, starting new multiplayer matches, and watching video ads for prizes; it

also contained the functionality for continuing previously started matches.

Picture 32. Elements of versus menu for Mini Golf Universe.

The left half of the menu consisted of simple elements which were positioned on the

screen using the Rect Transform components’ Anchors. The container for previously

started matches on the right was the only part of the whole menu interface that required

support for the dynamic addition of content. Therefore, it consisted of a Scroll View object

with a Vertical Layout Group component as a part of its content.

As with the Movenator interfaces that had Scroll View objects on them, the performance

was expected to be less than ideal on the low-end test device. Upon testing, the original

framerate was only 35 FPS. Several steps were taken to improve the performance.

56

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Kasperi Ekqvist

Firstly, the UI Mask component was replaced by the Rect Mask 2D component as this

had improved the performance for the Movenator project as well; this change increased

the average framerate to 45 FPS, offering a significant increase in performance.

Secondly, the transparent background image, still seen in Picture 32, was disabled; this

boosted the performance by further 5 FPS.

By making these changes, the average framerate was increased from 35 to 50 FPS. The

final framerate was more than high enough for a menu interface on a low-end device.

Thus, no further steps were taken to increase the performance.

4.2.5 Shop Menu

The shop menu, seen in Picture 33, consisted of multiple different buttons. Through

them, the player would be able to purchase in-game currencies and additional levels. All

the elements were positioned by using the Rect Transforms’ Anchor values to offer better

performance.

Picture 33. Elements of shop menu for Mini Golf Universe.

The functionality of making purchases also involved communicating with the back-end

of the game; this was done to check on the player’s available currencies and to also

communicate with either Google Play or App Store to make purchases with real money.

57

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Kasperi Ekqvist

4.2.6 Settings Menu

The settings menu, seen in Picture 34, was designed to offer multiple different settings,

options, and features that could not be categorized under the other menus. This involved

functionality from controlling the audio to changing the notification settings.

Picture 34. Elements of settings menu for Mini Golf Universe.

Much of the menu’s functionality had not been decided on yet for the first prototype.

Therefore, this menu was built as more of a concept for which the functionality could later

be added. The menu elements were again positioned by simply using the Anchor values

of the Rect Transform components.

58

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Kasperi Ekqvist

5 FINDINGS

After the implemented functionalities and performed optimizations, the different

development choices can be examined; this is done by listing the different items, chosen

implementations, and reasons for these choices. This has been done in Table 1.

Table 1. Implementation choices made during development.

Item Game Chosen implementation Reason

Canvas objects

Canvas component –

Render Mode
both Screen Space - Overlay

The UI needed to be rendered on top of

everything else.

Canvas Scaler

component – UI Scale

Mode

both Scale With Screen Size The UI needed to scale with the screen size.

Canvas Scaler

component –

Reference Resolution

both 1920x1080
The default resolution for 16:9 aspect ratio.

Good for game in landscape mode.

Additional components Movenator RectMask2D
Reduced draw calls for active but unseen

elements; implemented for future need

Text objects

Text components

Movenator Default Text component
No other choices available at the beginning of

development.

Mini Golf

Universe
TextMesh Pro components

An improved component available at the

beginning of development; better optimization,

default component in the future

Object positioning

Static objects both achored Rect Transforms Better performance for static groups of objects

Dynamically added

objects
both Layout Group components

Automatic positioning and resizing of groups of

objects when objects are added or removed

during the game

Scroll View objects

Masking both
UIMask component replaced

by RectMask2D component

Framerate increased by 10-15 FPS (3

implementations)

Further optimization
Mini Golf

Universe

Removal of transparent

background Image

Framerate increased by 5 FPS (1

implementation)

Scripting

Toggling UI elements

Movenator
Method with string

parameter
Easy access from anywhere.

Mini Golf

Universe

Events, method with enum

parameter

Events for extremely clear and simple

implementation, enum parameter offers less

room for error and better accessibility.

Dividing script

functionality
both

Separate script component

for each interface
Increase in code readability

59

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Kasperi Ekqvist

As can be seen in Table 1, there were a lot methods of implementations that were valid

for different types of games. For example, it would be safe to say that this specific canvas

implementation could be applied to almost any kind of mobile game and its overlay

interface. There are, of course, small adjustments that would be needed if the game was

played in portrait mode, for example; this would only involve switching the two Reference

Resolution values, though.

It is also safe to say that the new TextMesh Pro component should be used for new Unity

projects since it will become the default component in the future. It should also offer

better performance across multiple platforms and more features as well. The default Text

component should only be used in prototyping as it is somewhat simpler to use.

For positioning groups of objects that are static, anchored Rect Transforms should be

used; it offers better performance compared to the use of Layout Groups. Through

setting up the Anchor values, the same results can be achieved, but the performance

cost will be lower. Layout Groups can be used when objects can be added to or removed

from the group of objects during the game; this allows the positions and sizes of the

objects to be automatically recalculated.

A lot of different Unity tools and components were used in the UI solutions. The Scroll

View object was something that caused performance issues every time it was used.

However, by simply replacing its UI Mask component with a Rect Mask 2D component

often boosted the performance enough. Though, for the team interface of Movenator, the

performance could still have been improved further either by improving the Scroll View

object further or by developing a custom alternative.

Also, when it comes to implementing a general UI controller script and controlling the

other UI elements, it is usually better to use either events or clear parameters such as

enums or object references instead of string parameters. Though string parameters are

simple to use, they also leave more room for error and often make the code more difficult

for future developers to understand. The script functionalities should also be divided into

separate scripts by their functionalities. This makes the scripts much easier to

understand, and they will also be easier to modify.

A bit over half, 6, of the total interfaces, 10, implemented ran fine after the original

implementation. However, for 4 of the interfaces, clear improvements could be made. In

Table 2, the different implementations, their performances before and after the

optimization process, and the tools used in the process have been listed.

60

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Kasperi Ekqvist

Table 2. Performance improvements.

Interface

Draw Calls or Average

Framerate Before

Optimization

Draw Calls or Average

Framerate After

Optimization

Tools used

Movenator

General 78 draw calls 32 draw calls Profiler, custom FPS counter

Resource Exchange 60 FPS - custom FPS counter

Construction 45 FPS 60 FPS Profiler, custom FPS counter

Building Production 60 FPS - custom FPS counter

Team 30 FPS 40 FPS Profiler, custom FPS counter

Competition 55 FPS - custom FPS counter

Mini Golf Universe

Adventure 60 FPS - custom FPS counter

Versus 35 FPS 50 FPS Profiler, custom FPS counter

Shop 50 FPS - custom FPS counter

Settings 60 FPS - custom FPS counter

Generally, the FPS counter was used to check the performance of each interface. Then,

the Profiler was used to find any problematic parts of the implementations. After

optimization, the performance was checked again using the FPS counter to see if the

performance had improved. However, the general game interface of Movenator was an

exception; for that interface, the Profiler was used both before and after the optimization

to measure the number of draw calls.

Even though the Frame Debugger was planned to be used as a part of the optimization

process, no use for it could be found. This could have been because the implementations

consisted of graphically simple 2D objects, and the Frame Debugger could be found

more useful when dealing with 3D objects which require a lot more graphical processing,

for example.

It should be noted again that all the interfaces where clear improvements were made

included a Scroll View object. This raises the question how sub-optimal the default

implementation of the Scroll View object really is; this is something that could be

examined further in the future as well.

61

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Kasperi Ekqvist

6 CONCLUSION

The aim of the thesis was to form a set of guidelines and best practices for the

implementation and the optimization of mobile game user interfaces developed in the

Unity game engine. This was done by going through the process of implementation and

optimization for two different mobile games, Movenator and Mini Golf Universe. In the

optimization process, three tools were determined to be used: a custom FPS counter,

the Profiler tool, and the Frame Debugger tool.

Most of the initial requirements were filled with the final products, and most of the

interfaces’ performance was excellent. After the development process, the different

development choices were listed and compared between the two projects. From that

data, a lot of similarities between the implementations could be found.

The Canvas objects’ implementations were extremely similar for both projects, and the

implementation of a Canvas object was one of the easiest to generalize. For the Text

objects, the implementations varied; however, this was due to the better alternative not

being available when the development of Movenator was started.

Clear practices for object positioning methods could be determined. Static groups of

objects should use anchored Rect Transforms to achieve better performance. When

objects could be dynamically added to a group or removed from it, the different Layout

Group components should be used due to their automatic positioning and resizing of the

objects in the group.

The default Scroll View object was determined to be very disadvantageous for

performance, and it should not be used as is. However, clear steps for optimization could

be determined; this involved removing the default UI Mask component of the object. Still,

some performance issues remained for some of the interfaces because of the Scroll

View objects. In the future, their performance and steps for further optimization should

be researched. Developing a custom alternative to the Scroll View object could also be

a solution to this.

The custom FPS counter was used a lot during the development. It was used every time

the implementations were tested on a real device to determine how well they performed.

The counter was also used after adjusting the solutions to determine if the performance

had truly improved.

62

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Kasperi Ekqvist

The Profiler tool was actively used as well. Whenever the performance was sub-optimal,

the Profiler was used to determine what the cause of it was. Therefore, it was not used

as frequently as the FPS counter, but it was determined to be a very valuable tool in the

optimization process nevertheless.

The Frame Debugger was not used during the optimization process as no use for it could

be found. As discussed previously, the graphically simple interfaces might have been

something for which the tool is useless. When moving towards more complex objects,

the Frame Debugger might prove to be more useful.

63

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Kasperi Ekqvist

REFERENCES

Brightman, J. 2017. Mobile games booming as global games market hits $108.9B in 2017 -
Newzoo. Gamesindustry.biz. Consulted 2.6.2017. http://www.gamesindustry.biz/articles/2017-
04-20-mobile-games-booming-as-global-games-market-hits-usd108-9b-in-2017-newzoo.

Dring, C. 2017. App Store revenue breaks $70bn. Gamesindustry.biz. Consulted 2.6.2017.
http://www.gamesindustry.biz/articles/2017-06-01-app-store-revenue-breaks-usd70bn.

Fear, E. 2009. United They Stand: How Three Guys Found Unity in Starting a Revolution.
Develop. Consulted 6.4.2017. http://www.develop-online.net/analysis/united-they-
stand/0116643.

Flick, J. 2015. Frames Per Second. Catlike Coding. Consulted 9.5.2017.
http://catlikecoding.com/unity/tutorials/frames-per-second/.

International Data Company 2017. Smartphone OS Market Share, 2016 Q3. Consulted
6.4.2017. http://www.idc.com/promo/smartphone-market-share/os.

Tantzy Games 2016. Optimizing Unity UI. Consulted 28.5.2017.
http://www.tantzygames.com/blog/optimizing-unity-ui/.

Thorn, A. 2013. Learn Unity for 2D Game Development. New York, NY, USA: Apress Media.

Unity Technologies 2017a. Company Facts. Consulted 6.4.2017. https://unity3d.com/public-
relations.

Unity Technologies 2017b. Unity Store. Consulted 6.4.2017. https://store.unity.com.

Unity Technologies 2017c. Multiplatform. Consulted 6.4.2017.
https://unity3d.com/unity/multiplatform.

Unity Technologies 2017d. Unity Manual. Consulted 6.4.2017.
https://docs.unity3d.com/Manual/index.html.

Unity Technologies 2017e. Scripting API. Consulted 6.4.2017.
https://docs.unity3d.com/ScriptReference/index.html.

Unity Technologies 2017f. Profiler overview. Consulted 9.5.2017.
https://docs.unity3d.com/Manual/Profiler.html.

Unity Technologies 2017g. Frame Debugger. Consulted 9.5.2017.
https://docs.unity3d.com/Manual/FrameDebugger.html.

Unity Technologies 2017h. Canvas. Consulted 28.5.2017.
https://docs.unity3d.com/Manual/UICanvas.html

Unity Technologies 2017i. Canvas Scaler. Consulted 28.5.2017.
https://docs.unity3d.com/Manual/script-CanvasScaler.html

Unity Technologies 2017j. RectMask2D. Consulted 28.5.2017.
https://docs.unity3d.com/Manual/script-RectMask2D.html

Unity Technologies 2017k. Button. Consulted 28.5.2017.
https://docs.unity3d.com/Manual/script-Button.html

http://www.gamesindustry.biz/articles/2017-04-20-mobile-games-booming-as-global-games-market-hits-usd108-9b-in-2017-newzoo
http://www.gamesindustry.biz/articles/2017-04-20-mobile-games-booming-as-global-games-market-hits-usd108-9b-in-2017-newzoo
http://www.gamesindustry.biz/articles/2017-06-01-app-store-revenue-breaks-usd70bn
http://www.develop-online.net/analysis/united-they-stand/0116643
http://www.develop-online.net/analysis/united-they-stand/0116643
http://catlikecoding.com/unity/tutorials/frames-per-second/
http://www.idc.com/promo/smartphone-market-share/os
http://www.tantzygames.com/blog/optimizing-unity-ui/
https://unity3d.com/public-relations
https://unity3d.com/public-relations
https://store.unity.com/
https://unity3d.com/unity/multiplatform
https://docs.unity3d.com/Manual/index.html
https://docs.unity3d.com/ScriptReference/index.html
https://docs.unity3d.com/Manual/Profiler.html
https://docs.unity3d.com/Manual/FrameDebugger.html
https://docs.unity3d.com/Manual/UICanvas.html
https://docs.unity3d.com/Manual/script-CanvasScaler.html
https://docs.unity3d.com/Manual/script-RectMask2D.html
https://docs.unity3d.com/Manual/script-Button.html

64

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Kasperi Ekqvist

University of Turku 2017. Movenator. Consulted 2.6.2017.
https://www.utu.fi/en/units/med/units/hoitotiede/research/projects/digital-nursing-
turku/tepe/Pages/Movenator.aspx.

Unreal Engine 2017.Frequently Asked Questions (FAQ). Consulted 25.5.2017.
https://www.unrealengine.com/faq.

Winter, B. 2017. TextMesh Pro Joins Unity. Unity Blogs. Consulted 1.6.2017.
https://blogs.unity3d.com/2017/03/20/textmesh-pro-joins-unity/.

https://www.utu.fi/en/units/med/units/hoitotiede/research/projects/digital-nursing-turku/tepe/Pages/Movenator.aspx
https://www.utu.fi/en/units/med/units/hoitotiede/research/projects/digital-nursing-turku/tepe/Pages/Movenator.aspx
https://www.unrealengine.com/faq
https://blogs.unity3d.com/2017/03/20/textmesh-pro-joins-unity/

