
 

 

 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ali Akhondzada 
 

Modelling the Occupancy Profile 
Deterministically, Probabilistically and 
Stochastically  
 
Literature Review 

 

Metropolia University of Applied Sciences 

Bachelor of Engineering 

Sustainable Building Engineering  

Bachelor’s Thesis 

30 May 2017 

 

 



 Abstract 

 

 

Author 
Title 
 
Number of Pages 
Date 

Ali Akhondzada 
Modelling the occupancy profile deterministically, probabilistically 
and stochastically 
38 pages 
30 May 2017 

Degree Bachelor of Engineering 

Degree Programme Civil Engineering 

Specialisation option Sustainable Building Engineering 

Instructor 
 

Jarek Kurnitski, Adjunct Professor 
Jorma Säteri, Head of Department 
Kaiser Ahmed, MSc.   

This bachelor’s thesis aimed at analyzing and comparing the properties and principles of 

deterministic, probabilistic and stochastic occupancy approaches using various models. For 

each model, the results of this analytical assessment were compared against either the out-

comes of similar models or the results of measured databases. The purpose was to evaluate 

the performance of the different occupancy models.  

 

Literary sources, such as articles and books were reviewed. For the assessment of the func-

tionality of the models functionality, algorithms presented in each model were followed step 

by step and their formulas and equation sets tested with random numbers.   

 

The final results showed that the models based on probabilistic and stochastic approaches 

could simulate the occupancy rate more accurately compared to the models based on the 

deterministic approaches. The results of the methodological review also showed that each 

model can capture a certain number of diversity factors of occupancy rate. The findings from 

this thesis can be used for developing a new occupancy model based on a combination of 

both stochastic and probabilistic approaches. Furthermore, the developed model can be 

integrated in developing a building simulation tool.  

 
 
 
 

Keywords occupancy profile, stochastic approach, probabilistic approach 



 

 

Acknowledgment  

  

This study was carried out at the Department of Civil Engineering, Aalto University. 

Firstly, I am heartily thankful to my supervisor, Professor Jarek Kurnitski, for this great 

opportunity, which enabled me to develop a deep understanding of the subject. My sin-

cere thanks go also to my other supervisor Dr. Kaiser Ahmed for his introduction to the 

subject and his guidance during writing of the thesis. I would also like to extend my thanks 

for the constant support of the Head of Civil Engineering Department at Metropolia Uni-

versity of Applied Sciences Mr. Jorma Säteri. My greatest thanks go to my mom, who 

always supported and encouraged me to study.  

 

  



 

 

 

Contents 

 

1 Introduction 1 

2 Occupancy Modelling 1 

2.1 Deterministic Approach 2 

2.1.1 Deterministic Occupancy Profile in ASHRAE 2 

2.1.2 Discrete Deterministic Occupancy Profiles 3 

2.2 Probabilistic Approach 5 

2.2.1 Probabilistic Occupancy Model for Single-Person Offices 5 

2.2.2 Three-states Probabilistic Based Model 9 

2.2.3 Event Driven Framework for Occupancy Simulation 11 

2.3 Stochastic Approach 12 

2.3.1 Movement Based Stochastic Occupancy Model 12 

2.3.2 Agent-Based Stochastic Model 19 

2.3.3 Occupancy Model for Regular Occupancy of Office Building 24 

2.3.4 Two-State Stochastic Occupancy Model for Residential Buildings 27 

2.3.5 Four-State Stochastic Occupancy Model for Residential Buildings 30 

3 Conclusion and Discussion 33 

References 36 

 

 

 

 

 

 

 

 

 

 

 

 

  



 

 

 

Abbreviations 

 

ASHRAE 

 

American Society of Heating, Refrigerating and Air-Condition-

ing Engineers 

CDF 
 

Cumulative Distribution Function 

HAC 
 

Hierarchical Agglomerative Clustering 

HBS  
 

Household Budget Survey 

HMC 
 

Homogeneous Markov Chain 

HVAC 
 

Heating, Ventilation and Air Conditioning 

HW  
 

Hallway 

MLE  
 

Maximum Likelihood Estimation 

MOMZ  
 

Multi-Occupants Multi-Zone 

MOSZ  
 

Multi-Occupants Single-Zone 

MUMO 
 

Multiple Modules  

PDF  
 

Probability Distribution Function 

PMF 
 

Probability Mass Function 

PZ  
 

Primary Zone 

RR  
 

Restroom 

SOSZ  
 

Single-Occupant Single-Zone 

SZ  
 

Secondary Zone 

TUS  
 

Time-Use Survey 



1 

 

 

1 Introduction 

 

Buildings account for nearly 40% of the total energy usage in European countries [1]. 

The energy consumption of buildings is influenced by several factors including the phys-

ical properties of the building, heating, ventilation and air conditioning (HVAC) systems, 

lighting, geometry, occupancy and the behaviour of the occupants. Also, a large percent-

age of energy is used to maintain a comfortable and healthy indoor environment for the 

occupants. [2.] To provide an acceptable indoor thermal condition and adequate ventila-

tion in a building, it is necessary to know the occupancy rate in the building. Occupancy 

rate is one of the key factors in HVAC system sizing, and in most cases the maximum 

occupancy rate is used in calculations due to a lack of information about the actual oc-

cupancy information. Vieira reported an oversizing of HVAC systems due to overestimat-

ing the peak occupancy rate. [3.] This overestimation, which is the result of insufficient 

information of occupancy rate, causes more energy consumption in buildings. Also, the 

internal heat gain from lighting and appliances, together with the occupancy rate may 

change the heating and cooling demand. Therefore, realistic characterization of a build-

ing’s occupancy is required for a reliable prediction of the energy performance of a build-

ing. Up to 30% of the energy used by HVAC systems can be saved by implementing 

occupancy-driven HVAC control strategies [4]. Different models have been developed to 

simulate the occupancy rate in both residential and commercial buildings. These models 

are used in simulation tools such as DeST, EnergyPlus and ESP-r [5;6;7].  

 

In this thesis, deterministic, probabilistic and stochastic approaches of occupancy mod-

elling are introduced and the methodologies used in the occupancy models are dis-

cussed in detail. The formulas and equation sets used in the methodologies are tested 

with random numbers and the results are compared either against similar models or 

measured databases. The study focuses on the stochastic and probabilistic approaches, 

due to several diversity factors that they can capture. 

2 Occupancy Modelling 

 

To simulate the building occupancy profile, different methods have been introduced. In 

each, certain characteristics of occupancy have been emphasized. The deterministic ap-

proach is one of the first methods used in occupancy modelling. Later, using the recorded 
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behaviour of occupancy, probabilistic approaches were introduced. To minimize the dis-

crepancy between real and simulated occupancy modelling, stochastic approaches have 

been introduced, which can capture more unpredicted occupancy behaviours.  

 

2.1 Deterministic Approach 

 

In deterministic models, occupancy rate is determined based on a regular daily schedule 

varying between zero for unoccupied and one for occupied spaces. The models use the 

occupancy schedules of existing buildings to simulate the occupancy rate for similar 

buildings. The presence of occupants in a specific zone depends on many factors, and 

further a factor that keeps the occupant in a specific zone does not guarantee the pres-

ence of him/her at the same place next time. [8.] For example, cooking keeps the occu-

pant in the kitchen for Saturday, but next Saturday he/she may go out to eat at the same 

time. These uncertainties are the results of the stochastic nature of human behaviour. 

The deterministic models, therefore, cannot take all diversity factors for occupant pres-

ence into account.  

 

2.1.1 Deterministic Occupancy Profile in ASHRAE 

 

The American society of Heating, Refrigerating and Air-conditioning Engineers 

(ASHRAE) is a society that focuses on energy efficiency, building systems, indoor air 

quality, sustainability technologies and refrigeration. ASHRAE standard 90.1-2004 pro-

vides guidance for energy-efficient new building design required in the deterministic ap-

proach. [9.] Studies show that there are some differences between ASHRAE reference 

data and measured data. As an example, Duarte et al. revealed a 45% and a 12% re-

duction in daily average occupancy peaks for a single-person office and shared office 

room, respectively, compared to the ASHRAE reference data. A comparison of the 

ASHRAE reference data to the data collected from 223 single-person offices shows sim-

ilarities between two simulation models, especially in capturing diversities factors. How-

ever, there are two significant differences as well. In the ASHRAE 90.1 2004 guidelines, 

the diversity factors peak at 95%, while in the measured single-office data they peak at 

50%. [10.]  
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2.1.2 Discrete Deterministic Occupancy Profiles  

 

In another study, Aerts et al. developed a set of occupant profiles based on the deter-

ministic approach that took a number of variables, including employment, income, house-

hold size and age into consideration, as illustrated in figure 1. The occupant profiles 

determine how long the occupants spend their time at home on weekdays and week-

ends. The data was then categorized in seven profiles according to the similarities, to 

check what factors are more effective for the occupancy rate of residential buildings. [11.]   

 

The profiles show three possible states: at home and awake, at the home and sleeping, 

or absent. They were constructed from a cluster analysis on the 2005 Belgian time-use 

survey (TUS). The Belgian survey included the activity data of 6400 individuals from 

3474 households. To determine the variations in the Belgian behaviour, a hierarchical 

clustering on the TUS data was used. The seven developed profiles (for weekdays, Sat-

urdays and Sundays) show that there is a relationship between the employment of oc-

cupants and the occupancy rate. The full-time employed occupants are largely repre-

sented by two profiles with low occupancy levels during day time. Conversely, the un-

employed or retired occupants are mainly situated in the profiles 6 and 7, which show a 

high occupancy rate. The occupant profiles show the full-time employed occupants, with 

an average age between 25-39 years and an average income between $ 1000 to 1500 

spend their daytime outside and probably at their work place. The unemployed occu-

pants, with the same age and almost the same monthly income, spend most of their 

weekdays at home. 

 



4 

 

 

 

Figure 1. Occupancy profile for weekdays [11].  
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In order to minimize the discrepancy between the results of a simulated model and the 

real performance of buildings, a more realistic model is needed to take the uncertainties 

of occupant presence, randomness of behaviour, as well as time variation of behaviour 

into account. [11.] 

 

2.2 Probabilistic Approach 

 

The probabilistic approach uses statistical data to predict the occurrence of certain ac-

tions in buildings. Probabilistic models use the observed data from the past to provide 

models which can predict the occupancy in the future. [12.] Compared to the determin-

istic approach in which the direct correlation of certain action or time and occupancy rate 

determines the occupancy rate, probabilistic models can capture more variations in the 

occupancy rate. 

 

2.2.1 Probabilistic Occupancy Model for Single-Person Offices 

 

Wang et al. presented a probabilistic model for the occupancy of a single-person office. 

The study examined the statistical properties of occupancy obtained from 35 single- per-

son offices during one year. The occupancy logs in this model are taken from motion 

sensors in each office. The space is recorded occupied when the office is vacant initially 

and the sensors detect motion before 15 minutes, and the space is recorded vacant 

when the sensors do not detect any motion for a time interval of 15 minutes. The model 

is used a heterogeneous Poisson process in which two different exponential distributions 

explains the occupancy and vacancy of a single-person office. Occupancy and vacancy 

intervals are the two exponential distributions of the Poisson process. It is assumed that 

the occupancy and vacancy intervals are independent and sequential random variables. 

[13.] The results of simulation using the Wang model are compared against the results 

of measured data, which have been collected from the actual time use data of office 

spaces. This comparison is illustrated in table 1.   

 

The probability of a transition between the states (e.g. occupied to vacant) in a specified 

time interval can be determined using the Poisson process as  

𝑝(𝑘 𝑖𝑛 𝑇) =
𝜆𝑘 . 𝑒−𝜆

𝑘!
, 

where 𝑘 is the number of events (e.g. occupied to vacant) in a time interval T (e.g. one 

day). The parameter 𝜆 is the average number of events in a unit of time. 

(1) 
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Table 1. Comparison of simulation and measurement [13].  

 

 Measurement Simulated 

Total number of analysed days per year 171 171 

Average occupied hours per day 6.17 6.47 

Average vacancy ratio per day 0.20 0.33 

Average departures and arrivals per day 4.93 5.51 

 

For instance, using the data provided in table 1 the average number of departures per 

day in the simulation is 5.51 (λ=5.51) and whereas in the measured data the number is 

4.93. [13.] Using equation (1), the probability of having 1 to 12 departures, which is as-

sumed to be the maximum number of departures per day can be calculated as,  

 

𝑝(𝑘 = 1,2,… ,12 𝑖𝑛 24ℎ) =
5.511,2,…,12. 𝑒−5.51

1,2,… ,12!
 

 

For example, the probability of having exactly 1, 4, 7 or 11 departures per day would be 

calculated as below, respectively  

𝑝(1 𝑖𝑛 24ℎ) =
5.511. 𝑒−5.51

1!
 = 0.022 

𝑝(4 𝑖𝑛 24ℎ) =
5.514. 𝑒−5.51

4!
 = 0.155 

𝑝(7 𝑖𝑛 24ℎ) =
5.517. 𝑒−5.51

7!
 = 0.123 

𝑝(11 𝑖𝑛 24ℎ) =
5.5111. 𝑒−5.51

11!
 = 0.014. 

 

Using the average number of departures per day provided in table 1 (bolded) and the 

equation (1), the distribution of the number of departures per day or transition from oc-

cupied state to vacant state, for the whole office is illustrated in figure 2 for both simulated 

and measured data. Additionally, Wang provided the distribution of number of departures 

per day for a randomly selected office. The distribution is provided based on the meas-

ured data. [13.] To make an easier comparison the number of departures from the ran-

domly selected office is also illustrated in figure 2. Since the exact occupancy values for 

randomly selected office were not available the numbers are taken from the figure from, 

the Wang model therefore there might be small assumption error.  
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Figure 2. Probability distribution of the number of departures per day.   

 

The results display that the most probable number of transitions (departures) is five per 

day for the whole office building according to the simulation, while the measured data 

shows that four transitions per day is more probable. The random office also shows five 

departures per day as the most probable number.  

 

The lengths of the intervals are considered to be an exponentially distributed random 

variables. The parameters of the exponential distribution are determined using the Max-

imum likelihood estimation (MLE). The probability distribution function (PDF), is defined 

using alternative parameterization 

𝑓(𝑥; 𝛽) = {
(1 𝛽⁄ )𝑒−𝑥/𝛽 , 𝑥 ≥ 0

0,           𝑥 < 0.
 

 

The parameter’s mean (𝛽) and variance are estimated using Maximum likelihood esti-

mation (MLE). To examine the exponential distribution, the dispersion parameter 

∅ should be equal to 1, and the  ∅̂  must be correct,   

∅̂ =
1

(𝑛 − 1)
∑((𝑥𝑖 − �̂�)/�̂�)

2
𝑛

𝑖=1
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For example, the length of the occupancy and vacancy intervals of the random office is 

calculated to be �̂�𝑜𝑐𝑐𝑢𝑝𝑖𝑒𝑑 = 72.8 𝑚𝑖𝑛 and �̂�𝑣𝑎𝑐𝑎𝑛𝑐𝑦 = 42.6 𝑚𝑖𝑛, respectively. [13.] A 

scaled deviance is used to evaluate the goodness of fit of the model 

  

𝐷 ∗ (𝑥; �̂�) = 2∑
log (

�̂�

𝑥𝑖
)

∅̂

𝑛

𝑖=1

 . 

The exponential distribution model is accepted if the above scaled deviance is smaller 

than 𝑋𝑛−1;1−𝛼
2 , where 𝛼 is 0.05. The results from the Wang models show that the occu-

pancy intervals of randomly selected is not exponentially distributed because the 𝐷 ∗

(𝑥; �̂�)
𝑜𝑐𝑐𝑢

= 2853.5 >   𝑋𝑛−1;1−𝛼
2 = 859.6. The scaled deviance of vacancy intervals has 

a chi-squared distribution with 𝑛 − 1 degree of freedom, therefore the model of exponen-

tial distribution for vacancy intervals is accepted, or 𝐷 ∗ (𝑥; �̂�)
𝑣𝑎𝑐

= 516.8 <   𝑋𝑛−1;1−𝛼
2 =

797.0. [13.] 

 

The PDFs of the randomly selected office show that the length of occupancy intervals is 

not exponentially distributed while the lengths of vacancy intervals are exponentially dis-

tributed as shown in figure 3. 

 

 

 

 

 

 

 

 

 

 

Figure 3. Probability distribution of the vacancy intervals for a randomly selected office based on 
the observed data [13]. 

 

The frequencies of the lengths of both occupancy and vacancy intervals for the randomly 

selected office are plotted in figure 4 according to the observed and fitted data. As figure 

4 illustrates, exponential distributions fit better for longer intervals. Both distributions un-

derestimate the frequencies for intervals that last less than 15 minutes. 

 

 

(4) 
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Figure 4. Occupancy and vacancy intervals resulted from fitted and observed data [13]. 

 

This non-homogeneous model has been tested on 35 office rooms and the results indi-

cate that the vacancy intervals are exponentially distributed while for the occupancy in-

tervals the exponential distribution is rejected. This deficiency might be caused by the 

presence of more than one occupant in a room. In this case, a single motion sensor 

cannot precisely tell the arrival time and duration of stay for each occupant individually. 

[13.] 

 

2.2.2 Three-states Probabilistic Based Model 

 

In another probabilistic model, Aerts et al. developed a probabilistic occupancy model 

which has three possible states; (1) at home active (awake), (2) at home inactive 

(asleep), and (3) absent [14]. The model predicts the probability of  occupancy se-

quences for each occupant using statistical data collected from two surveys, the Belgian 

Time-Use Survey (TUS) and the Belgian Household Budget Survey (HBS) conducted in 

2005 [15]. The average occupancy profile is illustrated in figure 5. The three states of 

occupancy which are present, absent and sleeping are shown in respect to the time of 

day. The vertical axis represents the fraction of being present in each of these states (at 

home, sleeping, absent) and the horizontal axis shows the time. Between midnight and 

04:00 AM the majority of people are at home and asleep, after 05:00 AM the number of 

people asleep decreases gradually. They are either at home and awake or they are ab-

sent. Between 07:00 AM to 04:00 PM the probabilities of being active and absent are 

distributed equally. The number of active occupants increases after 04:00 PM which is 

the time people usually come back from work. [14.] 

 



10 

 

 

 

 
 

 
Figure 5. The average occupancy profile based on TUS dataset [14]. 

 

Transition probability together with duration probability are the two main variables in the 

model, they are both time dependent. The initial state in the chain is determined using 

the presence proportion observed in the TUS data. From the first state onward a 3*3 

matrix (5) explains the probabilities  

    𝑃 = [

𝑝11 𝑝12 𝑝13

𝑝21 𝑝22 𝑝23

𝑝31 𝑝32 𝑝33

]

.

                    

 

In the transition probability matrix, each element demonstrates the probability of a tran-

sition to the next state given the current state. The transition probability for the previous 

state “at home” to the next state “absent” increases during the day time for 08:00 AM to 

08:00 PM while the probability of transition to the next state “Sleeping” with the same 

previous state is at the minimum level during the day time (08:00 AM-80:00 PM). Based 

on the observed data, the transition between the states at home and absent or sleeping 

is time dependent, while the probability of transition between the state sleeping to the 

state at home is almost one during the day time. [14.] 

 

In addition to the transition probability in this model, duration probability is another im-

portant factor. It depends on the current state and the time a person stays in that state. 

Based on the TUS data, the duration of at home is influenced strongly by the starting 
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time. [14.] For instance, in the figure 6, it is illustrated that the duration of at home in the 

afternoon (after 02:00 PM to 04:00 PM) is longer than in the evening, when individuals 

go from being active to being inactive or sleeping.  

 

 

Figure 6. (a) The transition probability as a function of the previous state and the time, and (b). 
The start probability of an occupancy state as a function of time [14].  

 

In order to increase the accuracy of the model, seven categories have been defined for 

occupancy using the hierarchical agglomerative clustering (HAC) method. HAC catego-

rizes the elements in dataset hierarchically based on their similarities. Clusters with sim-

ilarities are merged into pairs using linking method and this process continues till making 

one cluster. The categories produced by the HAC method are “mostly absent”, “mostly 

at home”, “very short daytime absence”, “night-time absence”, “daytime absence”, “af-

ternoon absence” and “short daytime absence”. The main differences between the cat-

egories are the time spent at home, the time of transition between states, and the number 

of transitions in a day. Aerts’ model is calibrated using the Belgian Time Use Survey 

(TUS) database and the Belgian Household Budget Survey (HBS) [15]. The database is 

extracted from the results of 6400 respondents of 3455 households. In the time- use 

survey weekdays and weekends are considered separately. A time slot of 10 minutes is 

determined with at least one activity in each. [14.] 

 

2.2.3 Event Driven Framework for Occupancy Simulation  

 

In an agent based model, Gunathilak et al. proposed a generalized event-driven frame-

work for the simulation of building occupancy. Unlike other agent based models, this 

model can simulate a variable number of agents. In the framework, the authors used 

a) b) 
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categorized events as inputs of an algorithm, the outcomes are a user log and a building 

occupancy list. The first output provides information about the events that each individual 

is involved in, and the second one presents information about the number of occupants 

present in a specified time slot. The study claims that the model can capture sudden 

peaks and drops in occupancy rate with a good accuracy for both office and laboratory 

environments [16.] 

 

2.3 Stochastic Approach 

 

In order to simulate the building occupancy more accurately, recent studies have focused 

on the modelling of occupancy profile with stochastic approaches. In a stochastic model, 

the occupancy status is considered as a random variable, and at a certain time the pre-

diction is done according to the previous status, not the long-term historical data. [17.] 

The main principle behind this method is the Markov chain. The Markov chain is memor-

yless, which makes the method independent form other occupancy statuses but the pre-

vious one. Therefore, the initial state and the transfer probability are the important pa-

rameters in a stochastic process. [18.] However, each stochastic model emphasizes dif-

ferent parameters. In some models the limited occupancy states are used to predict the 

occupancy rate in buildings, others consider more states to cover all possible events. 

[19;20.]  

 

2.3.1 Movement Based Stochastic Occupancy Model 

 

Wang et al. developed a stochastic model for building occupancy. It sees the occupancy 

as a result of occupant movement inside and outside a building. The homogeneous Mar-

kov chain (HMC) method is used to simulate the occupancy of the building. The main 

properties in the HMC are the current state and the transition probability from one state 

to another. To generate the location of an occupant at each time slot, a module called 

“movement process” is used. Further, the final module to complete the Markovian prop-

erty is “events”. The “events” module is used to determine the transition probabilities. In 

the Wang model, three assumptions are made in order to simulate the occupancy status: 

1) the occupant location has a Markovian property, 2) each time step is long enough for 

changing location and 3) occupant movement is an independent process. The movement 

of an occupant is driven by a number of events and in some cases the movements are 
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driven by multi-events. Therefore, a priority system has been defined to consider the 

events according to their importance and effectiveness. [21.] 

 

To simulate the occupancy in an office building the movement process has been defined 

as “walking around”, “going to and coming back from lunch”, “going to and getting off 

work”. This process is illustrated in figure 7.  

 

 

Figure 7. The occupancy rate of the sample office building in a working day [21].  

 

The total occupancy increases between 𝑡1 and 𝑡2, the morning arrival time to the office, 

and decreases due to night departure between 𝑡5 and 𝑡6. In between the total occupancy 

is almost constant during working hours except for the lunch break which is between 𝑡3 

and 𝑡4. The event of “walking around” includes moving inside the office and going outside 

during business time (8:00 AM- 05:00 PM). “Leaving for launch” is excluded from the 

“walking around” as it is described in a separate category. [21.] 

 

Each of the events is determined with different formulas and equation sets. The stochas-

tic process can be explained using an ergodic Markov chain with a stationary distribution.  

 

 

The transition probability matrix for walking around between spaces is defined as 
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𝑃 = [

𝑃00     𝑃01  ⋯  𝑃0𝑛

𝑃10     𝑃11  ⋯  𝑃1𝑛

⋮       ⋮                   ⋮  
𝑃𝑛0   𝑃𝑛1   ⋯  𝑃𝑛𝑛

] .  

 

The model uses an ergodic Markov chain and the stationary distribution of the ergodic 

Markov chain is denoted by 𝜋 = (π1, π2, …, π𝑛) where 𝜋𝑖 is the long-run proportion of time 

that the Markov chain remains in state 𝑖. The vector 𝜋  can be specified with the following 

equations  

∑𝜋𝑖 = 1

𝑛

𝑡=0

 

𝜋 = 𝜋𝑃 . 

 

By giving the transition probability matrix P to the equation (7), the stationary distribution 

vector will be determined. The Equation (7) shows that the sum of all probabilities in a 

vector 𝜋 is equal to one. The Equation (8) tells that after long a run the vector 𝜋 will give 

steady state and the multiplication of the transition matrix P does not affect the results. 

Using equation (7) and the fact mentioned in equation (7), given the transition matrix P, 

the vector 𝜋 can be specified. In this study the π is determined using a transpose vector 

denoted by 𝜋𝑇. [21.]  

 

𝐴 = [

𝑃00     𝑃01  ⋯  𝑃0𝑛

𝑃10     𝑃11  ⋯  𝑃1𝑛

⋮       ⋮                   ⋮  
𝑃𝑛0   𝑃𝑛1   ⋯  𝑃𝑛𝑛

]          𝑏 = [

1
0
⋮
0

]       𝜋𝑇 = 𝐴−1𝑏 . 

 

The time that an occupant stays at a certain state, e.g. 𝑖 is distributed geometrically, and 

the expected value for this distribution is determined as 

𝐸(𝑆𝑇𝑖) =
1

1 − 𝑃𝑖𝑖
                 →        𝑃𝑖𝑖 = 1 −

1

𝐸(𝑆𝑇𝑖)
      

 

As the geometric distribution determines the number of failures before the first success, 

here a failure is defined as the number of time slots during which the occupant is out of 

the state 𝑖 and shown by 𝑘.  

The vector for the sojourn time can be written as 𝐸𝑠𝑡 = (𝐸𝑠𝑡0, 𝐸𝑠𝑡1,⋯ , 𝐸𝑠𝑡𝑛). The two key 

elements for determining the transition matrix P, which are the long run proportion and 

the expected sojourn time, can be specified using equations (7) and (11). [21.] 

 

(6) 

(7) 

(8) 

(9) 

(11) (10) 
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Using a two state homogeneous Markov chain together with an absorbing state, the 

morning arrivals can be expressed 

 

𝑃𝐴𝑟𝑟𝑖𝑣𝑎𝑙 = [
𝑃00 𝑃01

0 1
] 

 

The expected arrival time in the morning can be determined by 

 

𝐸(𝐹𝐴) =
1

1 − 𝑃00
     𝑃00 = 1 −

1

𝐸(𝐹𝐴)
   

 

The departure in the evening is shown by a 2*2 matrix equation 14, and the expected 

departure time can be expressed by 

𝑃𝑑𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒 = [
1 0

𝑃10 𝑃111
] 

𝐸(𝐿𝐷) =
1

1 − 𝑃11
     𝑃11 = 1 −

1

𝐸(𝐿𝐷)
 

 

Leaving for lunch and coming back from the lunch break are considered separately. It is 

assumed that occupants have their lunch outside of the office, thus, similarly to the morn-

ing arrival and evening departure, the equations (16), (17), (18), (19) are used to deter-

mine the lunch break along with the expected time of leaving for and returning from the 

lunch break. [21.] 

 

𝑃𝑙𝑢𝑛𝑐ℎ_𝑜𝑢𝑡 = [
1 0

𝑃10 𝑃11
] 

𝐸(𝐿𝐿) =
1

1 − 𝑃11
     𝑃11 = 1 −

1

𝐸(𝐿𝐿)
 

 

 

𝑃𝑙𝑢𝑛𝑐ℎ_𝑏𝑎𝑐𝑘 = [
𝑃00 𝑃01

0 1
] 

𝐸(𝐿𝐵) =
1

1 − 𝑃00
     𝑃00 = 1 −

1

𝐸(𝐿𝐵)
 . 

 

Using a Markov chain, the movement patterns of occupants in a typical office building 

are modeled. During different periods of a day (morning arrival, lunch break, and evening 

departure) the probabilities of events are distinguished by statistical indices of events. 

To validate this model, an illustrative case study is used to check the model capacity. 

(12) 

(13) 

(14) 

(15) 

(16) 

(17) 

(18) 

(19) 

. 

. 

. 
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Theoretically, the introduced validation system is not accurate enough because the out-

come can be totally different than the real life situation. [21.] 

 

In a case study, the simulation is applied to an office building to demonstrate the accu-

racy of the proposed model. The building has 4 office rooms, 1 corridor and 1 restroom, 

together with the “outside” makes a total of 7 spaces, indexed from 0 to 7, as it is illus-

trated in figure 8.   

 

 

Figure 8. Plan of the office building used in simulation [21].  
 
 

Rooms 1 and 2 belong to ordinary employees, room 3 is occupied by a secretary and 

the manager is in room 4. There are 6, 6, 2 and 1 occupants in offices 1 to 4, respec-

tively.The working schedule is 08:00 AM to 05:00 PM and the lunch break is from noon 

to 01:00 PM. The detailed description of events and their time are illustrated in table 2. 

 

Table 2. Events and their time [21]. 
 

Events  Valid Time 

Arrival 07:00- 08:30 

Leave for lunch 12:00- 12:30  

Return from lunch 12:30- 13:30 

Departure 17:00- 21:00 

Walk around 08:00- 12:00 & 13:00- 17:00 

Meeting 10:00- 11:30 

 

Wang has provided the probability of each event for office number 1. [21.] For walking 

around, the transition probability matrix is denoted by matrix and the initial state 𝑃0 is the 

night time. As shown in equations (7) and (8), where a transition matrix is created for the 
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next time step, the current transition matrix shall be multiplied to the vector matrix. There-

fore, with one transition matrix and the stationary distribution matrix, it is possible to gen-

erate a transition matrix for 1, 2 …n step. This can be done step by step by multiplying 

the results of previous step to the stationary distribution matrix, or it is possible to directly 

calculate the transition probability matrix in the certain time step using the matrix power. 

[21.]   

 

𝑃 =

[
 
 
 
 
 
 
0.5000 0.3724 0.0247 0.0247 0.0250 0.0260 0.0272
0.0042 0.9583 0.0023 0.0023 0.0023 0.0042 0.0263
0.0244 0.2120 0.6667 0.0234 0.0237 0.0243 0.0255
0.0242 0.2131 0.0233 0.6667 0.0235 0.0241 0.0253
0.0247 0.2110 0.0237 0.0236 0.6667 0.0246 0.0258
0.0257 0.3747 0.0242 0.0243 0.0245 0.5000 0.0267
0.0055 0.4734 0.0052 0.0052 0.0053 0.0055 0.5000]

 
 
 
 
 
 

      𝑃0 = [1  0  0  0  0  0  0 ] 

 

Using the dot product of matrices and equations (7) and (8), the stationary distribution of 

the Markov chain can be determined. To examine the calculation an online calculator is 

used [22]. 

𝜋 = [0,01 0,9 0,01 0,01 00,01 0,01 0,05] 

 

The expected staying time in a certain state can be specified using equation (10).  For 

instance in state 𝑃𝑖𝑖, the 𝐸(𝑆𝑇𝑖) is,  

𝐸(𝑆𝑇00) =
1

1 − 0,5000
= 2 (𝑒𝑎𝑐ℎ 𝑡𝑖𝑚𝑒 𝑠𝑙𝑜𝑡 𝑖𝑠 5 𝑚𝑖𝑛) 𝑡ℎ𝑒 𝑡𝑜𝑡𝑎𝑙 𝑙𝑒𝑛𝑔𝑡ℎ 𝑎𝑡 𝑎 𝑐𝑒𝑟𝑡𝑎𝑖𝑛 𝑠𝑡𝑎𝑡𝑒 𝑖𝑠 10 𝑚𝑖𝑛 

𝐸(𝑆𝑇11) =
1

1 − 0,9583
= 24 (𝑒𝑎𝑐ℎ 𝑡𝑖𝑚𝑒 𝑠𝑙𝑜𝑡 𝑖𝑠 5 𝑚𝑖𝑛)  𝑡ℎ𝑒 𝑡𝑜𝑡𝑎𝑙 𝑙𝑒𝑛𝑔𝑡ℎ 𝑎𝑡 𝑎 𝑐𝑒𝑟𝑡𝑎𝑖𝑛 𝑠𝑡𝑎𝑡𝑒 𝑖𝑠 120 𝑚 

𝐸(𝑆𝑇22) =
1

1 − 0,6667
= 3 (𝑒𝑎𝑐ℎ 𝑡𝑖𝑚𝑒 𝑠𝑙𝑜𝑡 𝑖𝑠 5 𝑚𝑖𝑛) 𝑡ℎ𝑒 𝑡𝑜𝑡𝑎𝑙 𝑙𝑒𝑛𝑔𝑡ℎ 𝑎𝑡 𝑎 𝑐𝑒𝑟𝑡𝑎𝑖𝑛 𝑠𝑡𝑎𝑡𝑒 𝑖𝑠 15 𝑚𝑖𝑛 

𝐸(𝑆𝑇33) =
1

1 − 0,6667
= 3 (𝑒𝑎𝑐ℎ 𝑡𝑖𝑚𝑒 𝑠𝑙𝑜𝑡 𝑖𝑠 5 𝑚𝑖𝑛) 𝑡ℎ𝑒 𝑡𝑜𝑡𝑎𝑙 𝑙𝑒𝑛𝑔𝑡ℎ 𝑎𝑡 𝑎 𝑐𝑒𝑟𝑡𝑎𝑖𝑛 𝑠𝑡𝑎𝑡𝑒 𝑖𝑠  15 𝑚𝑖𝑛 

𝐸(𝑆𝑇44) =
1

1 − 0,6667
= 3 (𝑒𝑎𝑐ℎ 𝑡𝑖𝑚𝑒 𝑠𝑙𝑜𝑡 𝑖𝑠 5 𝑚𝑖𝑛) 𝑡ℎ𝑒 𝑡𝑜𝑡𝑎𝑙 𝑙𝑒𝑛𝑔𝑡ℎ 𝑎𝑡 𝑎 𝑐𝑒𝑟𝑡𝑎𝑖𝑛 𝑠𝑡𝑎𝑡𝑒 𝑖𝑠  15 𝑚𝑖𝑛 

𝐸(𝑆𝑇55) =
1

1 − 0,5000
= 2 (𝑒𝑎𝑐ℎ 𝑡𝑖𝑚𝑒 𝑠𝑙𝑜𝑡 𝑖𝑠 5 𝑚𝑖𝑛) 𝑡ℎ𝑒 𝑡𝑜𝑡𝑎𝑙 𝑙𝑒𝑛𝑔𝑡ℎ 𝑎𝑡 𝑎 𝑐𝑒𝑟𝑡𝑎𝑖𝑛 𝑠𝑡𝑎𝑡𝑒 𝑖𝑠  10 𝑚𝑖𝑛 

𝐸(𝑆𝑇66) =
1

1 − 0,5000
= 2 (𝑒𝑎𝑐ℎ 𝑡𝑖𝑚𝑒 𝑠𝑙𝑜𝑡 𝑖𝑠 5 𝑚𝑖𝑛) 𝑡ℎ𝑒 𝑡𝑜𝑡𝑎𝑙 𝑙𝑒𝑛𝑔𝑡ℎ 𝑎𝑡 𝑎 𝑐𝑒𝑟𝑡𝑎𝑖𝑛 𝑠𝑡𝑎𝑡𝑒 𝑖𝑠  10 𝑚𝑖𝑛 

 

Thus, the expected time that an occupant stays in office 1 is  

 

𝐸𝑠𝑡 = [10𝑚𝑖𝑛, 120𝑚𝑖𝑛, 15𝑚𝑖𝑛, 15𝑚𝑖𝑛, 15𝑚𝑖𝑛, 10𝑚𝑖𝑛, 10𝑚𝑖𝑛] 
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The valid period of morning arrival is assumed to be between 7:00 AM to 8:30 AM. The 

expected value for this event is 7:45 AM, resulted from the 9 time slots (each time slot is 

5 min). The 9 time slots totally gives 45 minutes and the from earliest time of arrival which 

is 07:00 AM the expected time of arrival is 07:45 AM, thus; 

 

𝑃𝐴𝑟𝑟𝑖𝑣𝑎𝑙 = [
0.8889 0.1111

0 1
] 

 

The expected time of first arrival would be,  

𝐸(𝐹𝐴) =
1

1 − 0.8889
  = 9 𝑢𝑛𝑖𝑡 𝑜𝑓 𝑡𝑖𝑚𝑒 𝑠𝑙𝑜𝑡, 𝑒𝑎𝑐ℎ 𝑠𝑙𝑜𝑡 𝑖𝑠 5 𝑚𝑖𝑛 

 

Similarly, the scheduled time of leaving for lunch and coming back to the office are 12:00 

AM-12:30 AM and 12:30 AM-13:30 AM, respectively. The expected values would be  

 

𝑃𝑙𝑢𝑛𝑐ℎ_𝑜𝑢𝑡 = [
1 0

0.5000 0.5000
] , 𝐸(𝐿𝐿) =

1

1 − 0.5
 = 2 𝑢𝑛𝑖𝑡 𝑜𝑓 𝑡𝑖𝑚𝑒 𝑠𝑡𝑒𝑝 . 

 

The expected time of leaving for lunch is 12:10 PM. It means the earliest scheduled time 

for lunch plus the two units of time (2*5= 10 𝑚𝑖𝑛), driven from equations (16) and (17) 

above. Similarly for coming back from lunch break which is 12:30 PM to 01:30 PM, the 

expected time would be 

𝑃𝑙𝑢𝑛𝑐ℎ_𝑏𝑎𝑐𝑘 = [
0.7368 0.2632

0 1
] ,        𝐸(𝐿𝐵) =

1

1 − 0.7368
= 3.8 𝑢𝑛𝑖𝑡 𝑜𝑓 𝑡𝑖𝑚𝑒 𝑠𝑡𝑒𝑝 . 

 

Thus, the expected time of coming back to the office is 12:50 PM driven from equation 

(18) and (19), or the earliest scheduled time for coming back from lunch plus the 3.8 

units of time (3.8*5= 20 𝑚𝑖𝑛).  

Finally, the time for leaving the office is assumed to be between 05:0 PM and 09:00 PM. 

The expected time can be driven from equations (14) and (15).  

𝑃𝑑𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒 = [
1 0

0.0833 0.9167
] 

 

The expected time of departure is 06:00 PM or 12*5 min from the earliest departure at 

05:00 PM. this can be written  

𝐸(𝐿𝐷) =
1

1 − 0.9167
= 12 𝑢𝑛𝑖𝑡 𝑜𝑓 𝑡𝑖𝑚𝑒 𝑠𝑡𝑒𝑝 
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The number of occupants during a working day is illustrated in figure 9. The occupancy 

gradually increases after the morning arrival and reaches to maximum between 9:00 AM 

to 10:00 AM. [21.] 

 

 

Figure 9. Occupancy rate at office room [21]. 
 

Two or three occupants leave the room between 10:00 AM and 11:30 AM for meetings. 

After lunch time the office is fully occupied until night departure, which starts at 05:00 

PM. After 07:30 PM the office is unoccupied. [21.]  

 

2.3.2 Agent-Based Stochastic Model 

 

Liao et al. proposed a stochastic agent based model which is extendable for an arbitrary 

number of zones and occupants. The model, which is a extend version of the model 

provided by Page et al. incorporates the presence of multiple occupants in a zone. 

[23;24] Therefore, the model generates a time series for the location of each occupant.  

Then the occupancy rate in different zone is produced using this information.  

 

 

The occupancy of a building with 𝑛 zones can be calculated with,  
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𝑥(𝑘) ∶= ∑ x𝑗

𝑛

𝑗=1
(𝑘),   

  

where k is time discrete, individuals (agents) are indexed as I, and building zones, to-

gether with the outside, are indexed as j. Since the proposed model consists four mod-

ules, it is named Multiple Modules (MuMo) which together determine the state of an 

agent at every time step. [24.] For instance, in a sample building with 4 zones 𝑗 =

{1,2,3,4}, and each zone occupied by 1,0,2,1 agents respectively. For the a weekday the 

occupancy of the building for the 𝑘 = 41, (10:00 AM- 10:15 AM) using equation (20) can 

be calculated as  

 

𝑓𝑜𝑟 𝑗 = 1 →  𝑥_1 (1) = 1
𝑓𝑜𝑟 𝑗 = 2 →  𝑥_2 (1) = 0
𝑓𝑜𝑟 𝑗 = 3 →  𝑥_3 (1) = 2
𝑓𝑜𝑟 𝑗 = 4 →  𝑥_4 (1) = 1

} →  𝑥(41) ∶= ∑x𝑗

4

𝑗=1

(1) = 1 + 0 + 2 + 1 = 4 

 

The equation (20) shows that the building is occupied with four agents during time inter-

val 10:00 AM to 10:15 AM. In the simulation, the number of occupants in each zone at 

each time step will be specified using the four modules below,   

 

 Preliminary state generator module is used to determine the initial state of oc-

cupants by giving the presence probability of each agent to this module.  

 Acceleration and damping modules are used to simulate the agent behavior 

using transition probability parameters. The inputs of this module are the primary 

state of each agent driven from first module together with the transition probability 

parameters which are  𝑝𝑎 and 𝑝𝑑 . The node of the agent 𝑖 at time (𝑘 − 1) is in-

dexed by 𝑧𝑖(𝑘 − 1). If the state of an agent at current time (𝑘) is the same as the 

state at the previous time (𝑘 − 1), i.e. 𝑧𝑖
(0)

(𝑘) = 𝑧𝑖(𝑘 − 1) 

 , the preliminary state determiner runs again to compute the state of the agent  𝑖 

using 𝑝𝑎 . If the equation 𝑧𝑖
(0)

(𝑘) ≠ 𝑧𝑖(𝑘 − 1) is true then the damping module is 

used 𝑧𝑖(𝑘 − 1) either outside node or a primary zone. In this case 𝑧𝑖
(1)

(𝑘) ←

𝑧𝑖(𝑘 − 1) is true with the probability 1 − 𝑝𝑑.  

 Scheduled activity module is used in order to determine the constraints on the 

agent’s locations according to the preset schedule, and denoted by  𝑧𝑖
(2)

(𝑘). 

(20) 
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 Access module is used to ensure that the agents are not presence inside zones 

they do not have access to. Thus if 𝑧𝑖
(2)

(𝑘) = 𝑗, where 𝑗 is the node which is una-

vailable for an agent 𝑖, then  𝑧𝑖
(3)

(𝑘) ← 𝑧𝑖(𝑘 − 1) would be true, and the output of 

this module is the state of the agent 𝑖 at time (𝑘), 𝑧𝑖
(3)

(𝑘) ← 𝑧𝑖(𝑘). [23.] 

In addition to the modules mentioned above, three scenarios have been defined to cover 

all possible cases: (1) single-occupant single-zone (SOSZ), (2) multi-occupants single-

zone (MOSZ) and (3) multi-occupants multi-zone (MOMZ). In order to use the model, the 

nominal presence probability profile for each occupant must be determined. This deter-

mines the initial state of each agent, the occupant presence schedule, and the access of 

each occupant. In addition, the acceleration and damping parameters must also be con-

sidered. [23.] To compute the nominal presence probability profiles, the following proce-

dure can be used: 

Primary and secondary zones are denoted as  

 

𝑃𝑍𝑖(𝑃𝑟𝑖𝑚𝑎𝑟𝑦 𝑧𝑜𝑛𝑒):  𝑝𝑖 𝑃𝑍𝑖

(𝑑)
= 𝑅𝑃𝑖

(𝑑)
+ 𝛼, 

where 𝑅𝑃𝑖
(𝑑)

 is the ratio of the presence of the agent 𝑖 in 𝑃𝑍𝑖 at the 𝑑-th day of week to 

the time between agent’s arrival and departure time for that day. The probability of pres-

ence in the primary zone of all the agents is determined with 𝛼. [23.] 

 

For example, if an agent x occupies his primary zone for 5:30 hours, and his presence 

interval in an office (from first arrival to last departure) is 8 hours. Thus, the  𝑅𝑃𝑖
(𝑑)

  is 

0.687. If the other agents spend half of their time in their primary zone, then the presence 

probability of all agents (𝛼) in their primary zones is 0.5, and the nominal presence prob-

ability of the primary zone is 0.687+ 0.5= 1.187 which is more than 1. [23.]  

  

𝑆𝑍𝑖(𝑆𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦 𝑧𝑜𝑛𝑒):  𝑝𝑖 𝑆𝑍𝑖

(𝑑)
= {

𝐹𝑂𝑆𝑍𝑖

𝐴𝑉𝑇𝑖

𝐷𝑇𝑖
(𝑑)

− 𝐴𝑇𝑖
(𝑑)

   𝑑 ∈ {1,… ,5}

0                                         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  

 , 

 

where 𝐹𝑂𝑆𝑍𝑖 is the frequency of occupying secondary zone, 𝐴𝑉𝑇𝑖 is the average duration 

of visiting a secondary zone, 𝐷𝑇𝑖
(𝑑)

and 𝐴𝑇𝑖
(𝑑)

 are the arrival and departure time respec-

tively. It is assumed that during weekends (𝑑 ∈ {6,7}), the secondary zones are occupied 

only by agent 𝑖. For the restroom (RR) and hallway (HW), it is assumed that an agent 

(21) 

(22) 
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visits the restroom 3 times a day and each visit lasts 5 minutes. For the hallways the 

same assumption has been done. [23.] Thus,  

 𝑝𝑖 𝐻𝑊𝑖

(𝑑)
=  𝑝𝑖 𝑅𝑅𝑖

(𝑑)
=

3 × 5

(𝐷𝑇𝑖
(𝑑)

− 𝐴𝑇𝑖
(𝑑)

) × 𝑇
 . 

 

The initialization of nominal presence probability profiles can be done as; 

 

 𝑝𝑖,𝑗
(𝑑)

(𝑘) =  {
𝑝𝑖,𝑗

(𝑑)
   𝑘 ∈ {𝐴𝑇𝑖

(𝑑)
, 𝐷𝑇𝑖

(𝑑)
} , 𝑗 ∈ {𝑃𝑍𝑖, 𝑆𝑍𝑖 , 𝑅𝑅, 𝐻𝑊, 𝑛 + 1 }

0        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                                          
 . 

 

Therefore, the probability of an agent occupying any zone other than the primary zone, 

secondary zone, restroom, hallway, and outside (n+1) is zero. [23.] 

 

The model verification is carried out by comparing the parameters such as the mean 

occupancy of a zone, the first arrival time and the last departure driven from measured 

data and the results of the model simulation. The results of the model verification for the 

single occupant- single zone (SOSZ) against measurement data are summarized in table 

3. [23.] 

 

Table 3. Kullback–Leibler (K-L) divergence between  𝑝𝑥
𝑚𝑒𝑎𝑠 and  𝑝𝑥

𝑀𝑢𝑀𝑜 in the SOSZ scenario [23]. 
 

Variable (X) 𝒅(𝒑𝒙
𝒎𝒆𝒂𝒔‖ 𝒑𝒙

𝑴𝒖𝑴𝒐) 

First arrival time 0.4968 

Last departure time 0.6388 

cumulative occupied duration  0.3215 

Continuously occupied duration 0.0229 

Number of occupied/unoccupied transitions 0.2421 

 

Table 3 indicates that the Multiple Modules (MuMo) model can accurately simulate the 

continuously occupied duration as it has a 0.0229 K-L divergence with the actual meas-

urements. The data also illustrates the poor prediction of the first and last departure time 

in the MuMo model which are 0.4968 and 0.6388, respectively. The comparison of the 

MuMo model and Page’s model against measured data is illustrated in figure 10. [23.] 

 

(23) 

(24) 
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Figure 10. Result comparison of MuMo Model (blue), Page model (black) and actual measured 

data (red) for SOSZ scenario. (a) First arrival, (b) Last departure, (c) Cumulative occupied dura-

tion, (d) Continuously occupied duration, (e) Number of occupancy frequency. The bin-time in (c) 

is 30 min, and for the rest it is 15 min [23]. 
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2.3.3 Occupancy Model for Regular Occupancy of Office Building 

 

Chen et al. developed a stochastic model for regular occupancy in commercial buildings. 

The model introduces two scenarios, multi occupant- single-zone (MOSZ) and multi oc-

cupant multi zones (MOMZ). The Markov chain theory is used as the basis of this model. 

The MOSZ considers the increment of occupancy in a zone as a state of the Markov 

chain. The maximum number of people moving in or out of a zone is assumed to be one 

within each short interval. According to this assumption, a simple 3×3 matrix can be used 

to explain the transition probability regardless of the maximum number of occupants in 

a single-zone (figure 11). Thereby, it is possible to calculate the transition probabilities 

for different numbers of occupants, e.g. 10, 30, 50, and 100 people using a 3×3 matrix. 

But the problem with this model comes out when calculating the transition probabilities 

of a larger zone (open office), occupied with e.g. 50 or 100 employees. The office has 

more than one transition in each time interval, which means more than one occupants 

might change their states at the same time. [25.]    

 

 
Figure 11. Occupancy states in the MOSZ scenario [25]. 

 

In the MOMZ, the state in the Marko chain is illustrated with a vector in which each com-

ponent is the increment of occupancy in each zone. For instance, the total number of 

states in four zones, with the assumption of one movement in each time step, would be 

34 = 81. The relationship between the matrix dimension and the number of zones is 

defined as d=3𝑚 , where m is the number of zones. Thus, a corresponding transition 

probability matrix has the dimension of 34 ×34 . In the MOMZ scenario just like MOSZ the 

dimensions of the transition probability matrix is independent of the number of occupants, 

thus the matrix dimension is determined by the number of zones. To determine the pa-

rameters of the transition probability matrix, a maximum likelihood estimation (MLE) is 

used. Using The MLE the maximum likelihood of an action can be estimated if have the 

probability of the action. The binomial trail is used to present the occupancy in a zone, 

thus 0 and 1 are the two states for an occupied and unoccupied zone respectively. [25.] 
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The number of present occupants within a specific zone at a particular time step is 

defined as 

𝐹(𝑥𝑖|𝑃) = 𝑝𝑥𝑖(1 − 𝑝)1−𝑥𝑖 

𝑥𝑖 = {
1, 𝑝𝑟𝑒𝑠𝑒𝑛𝑡
0, 𝑎𝑏𝑠𝑒𝑛𝑡

 , 

 

where 𝐹 is the probability distribution function, and 𝑝𝑥𝑖 is the probability an occupant is 

present in the zone. In a zone with only one occupant, the equation can be simplified as 

  

𝐹(1|𝑃) = 𝑝1(1 − 𝑝)1−1  → P which is the probability of presence  

𝐹(0|𝑃) = 𝑝0(1 − 𝑝)1−0  → 1-P which is the probability of absence 

 

For a multi- occupant single-zone the situation is more complex  

𝐹(𝑥1, 𝑥2, … , 𝑥𝑛 |𝑃) = 𝑝𝑥1(1 − 𝑝)1−𝑥1 . 𝑝𝑥2(1 − 𝑝)1−𝑥2 . … 𝑝𝑥𝑛(1 − 𝑝)1−𝑥𝑛 

 

The simplified equation can be presented as a likelihood product equation,  

𝐿 = ∏𝑝𝑥𝑖(1 − 𝑝)1−𝑥𝑖  

𝑛

𝑖=1

 . 

 

For 𝑥𝑘 = 1 the probability is denoted by 𝑝 and 1 − 𝑝 is used to determine the observation 

when 𝑥𝑘 = 0, thus the likelihood function using the observation 𝑥𝑘 can be written as,  

𝐹(𝑝|𝑋𝑘) = {
𝑝,  𝑋𝑘 = 1
1 − 𝑝   𝑋𝑘 = 0 

. 

 

To simplify the above equation, the log-likelihood function is used. The first derivative of 

ln 𝐹(𝑝|𝑋𝑘), which is the likelihood equation, is  

𝜕 ln 𝐹(𝑝|𝑋𝑘)

𝜕𝑝
= 0 . 

 

Thus, the solution is  𝑝 = 𝑝𝑀𝐿𝐸 .To ensure that the given value maximizes the likelihood, 

the second derivative of the likelihood function must be less than 0,  

𝜕2  ln 𝐹(𝑝|𝑋𝑘)

𝜕𝑝2
< 0 . 

 

A binomial trial with the probability of Pr (𝑋𝑘+1 = 𝑠𝑘+1|𝑋𝑘 = 𝑠𝑘) is used to explain the tran-

sition from state 𝑆𝑘 to the state 𝑆𝑘+1. For example, if M is the days where 𝑋𝑘 = 𝑠𝑘 and 

(26) 

(27) 

(28) 

(29) 

(30) 

(25) 
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among these days, W is the days where 𝑋𝑘+1 = 𝑠𝑘+1, then the log likelihood function 

would be  

ln 𝐿(𝑝|∅) = ln
𝑀!

𝑊! (𝑀 − 𝑊)!
𝑝𝑤(1 − 𝑝)𝑀−𝑊 

                                                    = ln
𝑀!

𝑊!(𝑀−𝑊)!
+ 𝑊 ln 𝑝 + (𝑀 − 𝑊) ln(1 − 𝑝),  

where the ∅ is the total number of days collected and the likelihood equation would be,  

 

𝜕 ln 𝐹(𝑝|𝑋𝑘)

𝜕𝑝
=

𝑊

𝑝
−

𝑀 − 𝑊

1 − 𝑝
= 0. 

 

In order to recheck the MLE estimator, the second derivative of log-function must be 

negative, and can be calculated as  

𝜕2  ln 𝐹(𝑝|𝑋𝑘)

𝜕𝑝2
=

𝑊

𝑝2
−

𝑀 − 𝑊

1 − 𝑝2
< 0. 

 

The same process is repeated for each transition probability to determine each parame-

ter of the transition probability matrix. The transition probability matrix in both scenarios 

is independent of the maximum number of occupants. Since this model is based on the 

transition of one occupant at each time interval for a zone, the transition of more than 

one occupant at the same time increases the matrix dimensions which means more com-

plexity. [25.]  

 

The evaluation of the performance of this model is based on five variables related to the 

occupancy properties under two evaluation criteria. The occupancy related variables 

considered are time of first arrival, time of last departure, mean occupancy, cumulative 

occupied duration and the number of transition from occupied to unoccupied and vice 

versa. [25.] 

 

 

 

(31) 

(32) 

(33) 
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Figure. 12. Comparison of the probability mass functions (pmfs) of four random variables in 
weekdays from measured data (red), Liao’s model [22] agent based model (blue) and the pre-
sented model (black). The bin size is 30 m [25]. 

 

 

The result of a comparison of the agent-based model, measurement data and the pro-

posed model shows that the model can predict the time of the first arrival and last depar-

ture more accurately than Liao’s model (figure 12). Neither Chen’s model nor Liao’s 

model could predict the cumulative occupied duration. For the number of transitions be-

tween states occupied to unoccupied, both models give good results. 

 

2.3.4 Two-State Stochastic Occupancy Model for Residential Buildings 

 

Richardson et al. constructed a stochastic occupancy model for active occupants based 

on the Time-Use Survey (TUS) conducted in the United Kingdom in the year 2000. 

[19;26.] The current state, along with the transition probabilities of changing from the 

current state to the next one, are the two important properties of this stochastic model. 

The current state starts at midnight when the occupants (~ 85%) are inactive according 

to the TUS data. The transition probability determines the probability of change from one 

state to another. The transition probability matrices are generated using the TUS data. 

Each day (24 hours) is divided in 10- minute- time slots, which in total the occupancy 

rate of 144 time slots must be computed. [19.] The process of calculating the transition 

probabilities for one person households during weekdays is illustrated in table 4.  

 

Table 4. Calculation of the transition probability matrix on weekdays [19].  
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No. of Active occupants 
No. of occurrences in the TUS 

data 
Transition probability 

At 00:00 At 00:10  

0 0 1428 1428+8= 1436 1428/1436= 0.994 

0 1 8  8/1436= 0.006 

1 0 55 55+211= 266 55/266= 0.207 

1 1 211  211/266= 0.793 

 

As the calculations in table 4 show, during the first time intervals from 12:00 AM to 12:10 

AM, the number of inactive occupants who remain inactive is 1428 in the TUS data, and 

only 8 occupants change their states from inactive to active in 10 minutes. Thus, the 

transition probability can be calculated as number of occurrences total number of popu-

lation (1428/ (1428+8) =0.994). The transition probability for a change in state from in-

active to active is 1-0.996= 0.006. [19.] 

 

Further, the transition probability from active state at 12:00 AM to inactive at 12:10 AM 

according to the TUS data is 0.207, as the number of people who change their state from 

active to inactive is 55, and the number of people who remain active is 211, thus the total 

number of population is 266. To represent the occupancy rate for a whole day, the same 

process must be repeated for all144 time slots. [19.]   

 

The model is provided in the form a computer program and the results of two runs of the 

simulation for a one- person household in weekdays are shown in figure 13. In each run, 

a random initial number is picked, with the same transition probability matrix. [27.] 
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Figure 13. Two runs of model for one resident household in weekdays [20]. 

 

In order to validate this model, the model was run repeatedly and the results were com-

pared against the TUS.  

 

 

Figure 14. Comparison of simulated model and TUS data for sample 2 resident household [19]. 
 

 

A good correlation between the results from the model and the original data form TUS 

database was seen, as shown in figure 14. [19. 
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2.3.5 Four-State Stochastic Occupancy Model for Residential Buildings  

 

In another model, Mckenna et al. presented a four states domestic occupancy model in 

which the active/inactive and absent/present occupancy states are treated separately 

[20]. The model provided by Richardson et al, consideres only two states of occupancy 

(active and inactive), the sates of being absent and inactive are merged together [19]. 

McKenna’s model considers the whole cycle of occupancy in dwelling. Four states of 

occupancy have been defined as not at home and not active (00), not at home and active 

(01), at home and not active (10) and at home and active (11). The first digit represents 

the states of being absent (0) or present (1), where the second digit describes the state 

of being active (1) or inactive (0). A first order inhomogeneous Markov chain method is 

used in this model to precisely simulate the occupancy rate of a residential building. [20.]   

 

Compared to Richardson’s model, the size of transition probability matrices are larger, 

as this model describes two more states. Thus, the size of matrices can be defined as  

 

[(𝑛 + 1) × (𝑛 + 1)] × [(𝑛 + 1) × (𝑛 + 1)] = (𝑛 + 1)4, 

 

where n represents the number of occupants. Therefore, a 4*4 matrix is used to describe 

the transition probability for a single-resident household. [20.] 

 

𝑃 = [

𝑇0000 𝑇0100 𝑇1000 𝑇1100

𝑇0001 𝑇0101 𝑇1001 𝑇1101

𝑇0010 𝑇0110 𝑇1010 𝑇1110

𝑇0011 𝑇0111 𝑇1011 𝑇1111

] → 𝑃 = [

1 0 0 0
0.0227 0.9091 0 0.0682

0 0 0.9985 0.0015
0 0 0.1949 0.8051

].  

 

The TUS data is categorized in an excel file. Based on the categorized data provided in 

the excel file, the transition probability matrix for the first time step or first 10 minutes can 

be written as in matrix (35) for one resident house on weekdays. [28.] For instance, the 

probability of remaining in the states, outside and inactive in the 10 min time interval is 

𝑇0000 is 1. The occupants who are outside and active will either change their states to 

the outside and inactive with the probability of 0.0227, or remain in their states with the 

probability of 0.9091. The probability of returning home and becoming active for an oc-

cupant in the state is 0.0682. To generate the transition probability matrix for a whole 

day, the same process is repeated for the other 143 time slots.   

 

(34) 

(35) 
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The starting states are selected on the base of the probability distribution of the states in 

observed data. For the first time step it is described as  

 

𝑆𝑃𝐷 = [
0.0311 0.0517
0.8802 0.1145

]. 

 

Using the starting time together with the transition probability matrix for each time slots, 

the occupancy state for any time interval will be generated. As an example, a simplified 

version of the model is provided in an Excel file To see the outcomes of the Makenna’s 

model, the Excel file is used and the results are illustrated in figure 15. [28.] 

 

 

 

Figure. 15. Three example runs of model for 1 resident household on weekdays [28]. 

 

When the results of the model are compared to the results of the TUS data, it can be 

seen that they are in close agreement, this is illustrated in figure 16.  
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Figure 16. Comparison of the active state probability of Richardson and McKenna models 
against TUS data. 

 

As illustrated in figure 16, the probability of the state at home/active increases between 

06:00 PM to 09:00 PM. When the occupants are at home, they are mostly inactive from 

12:00 AM to 06:00 AM.During the daytime 07:00 AM- 06:00 PM the majority of the oc-

cupants are outside at work. The probability of being in the state not home/inactive de-

creases during the daytime (07:00 AM- 09:00 PM). 
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3 Conclusion and Discussion 

 

Occupancy has a great influence on the energy consumption of a building. This factor is 

not only the key to occupant’s behaviour modelling but also to building simulation tools. 

Therefore, to predict a reliable energy performance in a building using energy simulation 

tools, realistic characterization of a building’s occupancy is required. Different models 

have been introduced to simulate the occupancy rate. This study has reviewed the de-

terministic, probabilistic and stochastic occupancy models. 

 

In the deterministic approach, the presence or absence of an occupant is directly linked 

to a specific time of a day or building types. For instance, in typical residential buildings 

the occupancy rate during daytime (09:00 AM - 05:00 PM) is usually modeled as unoc-

cupied while for an office building the situation is normally considered to be occupied 

during this time interval. The deterministic approach is simple to use but it has some 

limitations, such as a lack of accuracy due to not considering the stochastic nature of 

occupancy in different types of buildings, or un-scheduled activities which lead to a sud-

den presence or absence in a building. The probabilistic approach is introduced to sim-

ulate the occupancy rate more precisely. The probabilistic approach is based on proba-

bility and statistics. Using statistical data, the likelihood of occupant being present or 

absent is predicted. However, the foundation of the probabilistic approach is observed 

data collected from different sources. Still in many cases, the probabilistic models cannot 

capture all possible conditions of occupancy. In order to solve the problem, stochastic 

approaches have been applied in occupancy modelling. Stochastic approaches allow 

more probable states than the other two approaches. The Markov chain technique is 

usually used to trace the stochastic nature of the occupancy rate. The current state along 

with the transition probability of changing states are the two important features of the 

Markov chain technique. The limitations of the stochastic approaches vary from model 

to model, depending on the variables and the method utilized.  

 

In Wang’s probabilistic model, the number of transitions between two states (occu-pied-

vacant) is described using a Poisson process technique. Wang showed that the occu-

pancy intervals are not exponentially distributed, while the vacancy intervals are distrib-

uted exponentially. The comparison of the results from observed data and the model 

simulation show an ignorable discrepancy in the number of transitions. [13.] The Wang 

model cannot capture the long absence of occupants, which decreases the accuracy of 

its results.  
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Aert et al. in a probabilistic model defined three states of occupancy for residential build-

ings. The TUS data was used for generating the model that is based on two parameters, 

“transition probability” and “duration probability”. To capture even more variations, the 

authors categorized the database in seven groups. Each group has a different occu-

pancy pattern. This makes the model easier to use and increases its accuracy. [14.] 

 

In a stochastic model, Wang et al. used a homogeneous Marko chain method to explain 

the movement of occupants inside and outside of the buildings. “Movement” and “events” 

are the two modules applied in this model to describe the occupancy rate. The movement 

determines different sorts of movement in each zone, and the module of events explain 

the transition probabilities between events. The movement of each individual is divided 

in five segments, which increases the accuracy of a simulation. The model is also appli-

cable for an arbitrary number of occupants. Since this model uses time independent 

probabilities, it is easy to use. [21.] The disadvantage of the Wang model is that some 

events, such as short visits or unscheduled departures, are not taken into account, which 

can affect the simulation results. 

 

In agent-based models, certain behaviors are dedicated to an agent, and then the be-

havior of the agent is studied in a specific situation. In case of occupancy modelling, 

agents are designed to mimic the human behavior in a specific zone or building. The 

results are a time series of each individual’s location and, consequently, this can gener-

ate time traces of occupancy in a whole building. A common problem with an agent-

based model is its high level of complexity. The thesis compered the results of the MuMo 

model with those of the Page model. The comparison shows that both simulate the time 

of first arrival and last departure with good accuracy. The two models show poor results 

in a simulation of cumulative occupied duration compared to the measured data. The 

MuMo model simulates the continuously occupied duration with a higher accuracy than 

the Page Model. Generally, the MuMo model can predict the distribution of some varia-

bles fairly well, such as mean occupancy, continuous occupancy duration and the num-

ber of transitions from occupied to unoccupied. The model cannot predict the probabili-

ties of some variables, such as last departure and cumulative occupancy duration pre-

cisely.  In the MOMZ scenario this mismatch is even larger due to more inaccurate data 

when the number of agents increases. [21;23.]  
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Chen et al. in their stochastic model used almost the same methodology as the one used 

by Liao [23;25]. Chen defined two scenarios instead of three. A 3×3 matrix is used to 

explain the transition probabilities. Since the transition probability matrix in both scenar-

ios is independent of the maximum number of occupants, the same 3×3 matrix can used 

for an extended number of occupants, which makes the computation much easier.[25.] 

The comparison of Chen’s model against Liao’s model revealed that the former model 

has less errors and can produce more accurate results.  

 

The occupancy modelling for residential buildings is different from the one for office or 

commercial buildings. Office buildings are typically occupied during daytime (08:00 AM 

to 06:00 PM) on weekdays, which narrows down the variations and shortens the period 

of simulation. In residential buildings, the time circle is 24 hours as people might stay in 

their homes all day long. Richardson et al. explained the occupancy rate in residential 

buildings with a stochastic model based on the two states of active and inactive occu-

pants. The transition probability from one state to another in short time intervals is driven 

from the British TUS data. A time trace of active or inactive occupants is produced for 

each 10 minutes and by repeating the process for 24 hours, the occupancy rate for a day 

is determined. [19.] Later, McKenna et al. provided a four-state occupancy model for 

residential buildings which includes more occupancy states. McKenna’s model, like Rich-

ardson’s model used TUS database to determine the parameters of transition prob-abil-

ities. [20.] The results of the two models are in close agreement. 

 

The results comparison of different occupancy models revealed that the occupancy mod-

els based on the deterministic approaches could capture less diversity factors than the 

models based on the probabilistic and stochastic approaches. The findings also show 

that both the probabilistic and stochastic models capture diversity factors such as first 

arrival, last departures, mean occupancy and continuous occupancy duration with good 

accuracy. All models still have problems with capturing uncertainties such as short visits 

or long absences. For future studies, the results from this thesis can be used to develop 

a model based on a combination of both stochastic and probabilistic approaches, which 

can capture maximum diversity factors with minimum requirements. 
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