

Damir Mustafin

Building Analytics Plugin for Erlang
MQTT Broker

Bachelor’s Thesis
Information Technology

2017

Author (authors)

Degree

Time

Damir Mustafin

Bachelor of
Engineering

May 2017

Thesis Title

Building Analytics Plugin for Erlang MQTT Broker

39 pages
10 pages of appendices

Commissioned by

Sampo Software OY

Supervisor

Reijo Vuohelainen

Abstract

The purpose of this thesis was to research and develop a piece of software that would allow

to collect analytics data from a proxy server that is built for Internet of Things. The main work

was done around EMQ broker, which was selected as a proxy server for this project. EMQ

serves requests over MQTT protocol, an alternative to traditional HTTP. It is written in Erlang

programming language that belongs to a family of functional programming languages that

gives high fault-tolerance and concurrency when serving requests on the server-side. The

following proxy was selected to work with APInf, an API management platform, for a number

of reasons that are described in the thesis.

The methods used for researching and implementing the system involved learning an Erlang

programming language in order to develop a plugin for the broker. In addition, EMQ provided

a pre-defined template that was used as a starting point for the development process. The

gathered analytics data was then visualized via the web user interface that involved creating

a simple analytics dashboard that shows requests distribution over time. In order to navigate

over the big amounts of data, filtering options were added to the dashboard.

The outcome of the development was a number of functioning components that were per-

forming the requested task. As the initial goal of this project was to fully integrate EMQ with

APInf, the work in that direction will continue and this thesis describes steps that are left for

the integration.

Keywords

Erlang, MQTT, JavaScript, NodeJS, EMQ, IoT, REST, API, ElsaticSearch

CONTENTS

1 INTRODUCTION ... 4

2 ERLANG PROGRAMMING LANGUAGE .. 4

2.1 HISTORY OF ERLANG .. 5

3 HTTP ... 9

4 MQTT PROTOCOL ... 10

4.1 PUBLISH/SUBSCRIBE PATTERN... 11

4.1.1 Scalability .. 13

4.1.2 Message filtering ... 13

4.2 CONNECTION ESTABLISHMENT ... 13

4.2.1 Open a connection .. 14

4.2.2 Publish, subscribe and unsubscribe .. 16

4.3 MQTT TOPICS.. 20

4.3.1 Topic structure .. 20

4.4 QUALITY OF SERVICE .. 21

5 PRACTICAL PART .. 23

5.1 SOFTWARE USED .. 23

5.1.1 APInf ... 24

5.1.2 Erlang MQTT Broker ... 27

5.1.3 EMQ analytics plugin .. 28

5.1.4 Elasticsearch installation and setup .. 31

5.2 ANALYTICS DASHBOARD .. 32

6 RESULTS .. 35

7 CONCLUSIONS AND FUTURE WORK .. 38

REFERENCES ... 39

APPENDICES ... 40

4

1 INTRODUCTION

Nowadays, a lot of small digital services and startups like web-sites, mobile appli-

cations, servers and databases by the matter of fact, unexpectedly, can be highly

loaded. That high usage can be represented as unpredictable flow of users or a

DDOS attack. For that reason, it is quite important to setup the environment and

security at least at a minimum level in the beginning, support and improve it while

the user base grows.

Setting up environment can mean a lot of things. But the main focus of this thesis

is studying Erlang MQTT Broker, a tool which by its nature is built to be massively

scalable, distributed, extensible broker for Internet of Things that is able to handle

millions of concurrent clients and extending it with a plugin for analytics data col-

lection. The gathered data should be then visualized via the dashboard.

The requirement for this project came from a company called SampoSoftware.

APInf is the project the team has been working on. It is an API Management plat-

form, fully open-sourced and built around API Umbrella – a proxy that does all the

heavy lifting for managing APIs. In order to extend the functionality towards multi-

proxy support and to enhance product offering, it was decided to add EMQ as a

second proxy for API Management.

This thesis describes the essential language and protocols that were used not only

for analytics plugin development, but also for the tools on top of which the plugin

itself was built on. The practical part introduces to the development process, overall

system configuration and describes software that was used more specifically.

2 ERLANG PROGRAMMING LANGUAGE

According to Wikipedia (2017a) Erlang is a functional programming language that

was designed for writing concurrent programs that “run forever”. Erlang uses con-

current processes to structure the program. These processes have no shared

memory and communicate by asynchronous message passing, they are also light-

weight and belong to the language, not the operating system. Erlang also allows

5

changing code and adding patches “on the fly”, so that there is no need to restart

the program since it can be updated during runtime. These mechanisms simplify

the construction of software for implementing non-stop systems. (Joe Armstrong.

A History of Erlang, Ericsson AB)

Since Erlang belongs to the family of functional programming languages, it has a

number of essential differences in routine development approaches and methods.

All variables in Erlang are “single-assign”, meaning that once the variable is as-

signed to certain value, it cannot be re-assigned to different value. The closest

example from the other programming languages that have similar feature, would

be “final” keyword in Java. Due to lack of variable re-assigning, loop construction

in the language makes no sense, as there is no way to change a variable over

successive iterations. All control that could imitate looping mechanisms in the lan-

guage is done by recursive calls. In addition to Erlang’s syntax and internal lan-

guage features, it has a huge standard library which includes a HTTP and SSH

client, server, SNMP capabilities and embedded NoSQL database server.

Erlang was selected as a programming language for a plugin development, mostly

because EMQ Broker itself is written on Erlang (and supports only plugins written

on the same language), and the advantages of the language listed above only

strengthened this choice. In fact, EMQ broker was selected as a suitable proxy for

APInf because it is written in Erlang and takes advantage of all its features like

high-availability and fault-tolerance.

2.1 History of Erlang

The actual Erlang development took place in 1986 at the Ericsson Computer Sci-

ence Laboratory. The team was given a task of investigating programming lan-

guages suitable for programming the next generation of telecom products – they

needed to provide a better way of programming telephony applications. At that time

telephony applications were very different from the ones that we have today. They

used to have a lot of problems that ordinary programming languages were de-

signed to solve. These applications by their nature are highly concurrent, a single

6

switch must handle tens or hundreds of thousands transactions. Transactions are

distributed and the software is expected to be highly fault-tolerant.

Joe Armstrong (A History of Erlang, Ericsson AB) states: “When the software that

controls telephone fails, newspapers write about it, something which does not hap-

pen when a typical desktop application fails.”

It is very important that in telephony applications, software is updated while the

system runs without loss of service that is occurring. It must also operate in the

“soft real-time” domain and with strict timing requirements for some operations, but

with more simplified timing for other classes of operations.

Another requirement for Erlang was virtually zero down-time. The rise of popularity

of the Internet at that time and the need for non-interrupted availability of services

has extended the class of problems that Erlang can solve. For example, building a

non-stop web server, with dynamic code upgrade, handling millions of requests per

day is very similar to building software to control a software exchange.

Usually the software for call control is modeled using limited number of state ma-

chines that carry state transitions in response to protocol messages. From the soft-

ware point of view, the system behaves as a very large collection of parallel pro-

cesses. At any point in time most of the processes are waiting for an event caused

by the reception of a message or the triggering of a timer. When the event occurs,

the process does some amount of computation, changes state, sends messages

to other processes and then waits for the next event. The amount of time spent on

computation is very small. Any switching system, on the other hand, should be able

to handle hundreds of thousands of very lightweight processes where each of them

performs little computation. Also, software errors in any process should not be able

to crash the system or damage other processes in the system. The issue with this

was that in a system having too large number of processes there was a need to

protect processes from memory corruption problems. In languages with pointers,

processes are protected from each other using memory management hardware,

allocating lower limit of the memory to the process. It also means that the memory

7

requirements for an individual process can be very small and that all memory for

all processes can be in the same address space without needing memory protec-

tion hardware. In Erlang, processes are actually a part of the language itself, not

the underlying operating system. It simply does not need most of the services of

the operating system, since the language provides both – memory management

and protection between parallel processes. Other operating system services, such

as resource allocation and device drivers needed to access the hardware are writ-

ten in C and dynamically attached to Erlang runtime.

Three properties of a programming language were central to the efficient operation

of a concurrent language or operating system:

1. The time to create a process

2. The time to perform a context switch between two different processes

3. The time to copy a message between two processes

Joe Armstrong (A History of Erlang, Ericsson AB) states: “The earliest motivation

for Erlang was ‘To make something like PLEX, to run on ordinary hardware, only

better.”

Ideas for Erlang were heavily inherited from PLEX and AXE design. PLEX is a

special-purpose, event-driven, real-time programming language dedicated for AXE

telephone exchanges. One of such ideas was the possibility to change code “on

the fly”. Thus, AXE had “pointer” problems like parallel manipulation of a large num-

ber of telephone calls. Memory requirements for each call were variable and

memory was allocated using linked lists and pointer manipulation. This led to a big

number of errors. This was the inspiration of the process and garbage-collected

memory strategy used in Erlang.

The final key idea that comes from the AXE/PLEX culture is that the failure of a

process or hardware should only affect the transaction that is being processed and

that all other operations should remain up and running. Because of this, the Erlang

design was simplified and hanging pointers between processes were removed.

8

Message passing was implemented by copying message buffers between the

memory spaces of the different processes. To achieve fault-tolerance, the team

denied all the ideas of sharing resources between processes because of the diffi-

culties with error handling and decided that all processes should have enough local

information to keep running if something fails in another part of the system. So, in

order to make system reliable, the data was copied between processes so that the

processes had enough data to continue running by themselves, if other processes

crash.

Due to AXE/PLEX history and its internal architecture, a list of requirements has
been provided for each new programming language to have. (Joe Armstrong. A
History of Erlang, Ericsson AB.)

This list included the following:

 handling a very large number of concurrent activities

 actions to be performed at a certain point of time within a certain time

 systems distributed over several computers

 interaction with hardware

 very large software systems

 complex functionality such as feature integration

 software maintenance without stopping the system (reconfiguration, etc.)

 stringent quality and reliability requirements

 fault tolerance both to hardware failures and software errors

These requirements were pretty straight forward, and existing systems solved

some of them at that time already, sometimes in operating system and sometimes

in application libraries. Even though, in order to meet all the requirements, it was

decided to continue experiments in prototyping telecom applications with all the

available programming languages at that time.

9

3 HTTP

According to Wikipedia (2017b), HTTP (Hyper Text Transfer Protocol) is a request-

response based protocol in the client-server computing model. HTTP operates on

an application layer on the Internet protocol suite and defines how messages are

formatted and transmitted and what actions should the web-server take in re-

sponse to various commands. The web-browser is a well-known example of a cli-

ent, while an application running on a computer hosting a web-site could be a

server.

HTTP is often called a Stateless Protocol due to its nature of executing each re-

quest independently, without any knowledge of the requests that came before it.

HTTP provides a wide variety of status codes and error messages that are attached

to each response that came from the server as a payload. These status codes

define the precise scenario that was either successful or unsuccessful while re-

questing a web-page or some document. User agent (UA), a web-browser for ex-

ample, should deliver and display any related entity to the user. Official HTTP sta-

tus codes are divided into five classed and each of these classes indicate as fol-

lows:

- 1xx status codes are informational responses that indicate that the re-

quest was received and understood.

- 2xx status codes are successful responses that indicate that the action

requested by the client was received, understood, accepted and processed

successfully.

- 3xx status codes class is a redirection. It indicates that the client must take

an additional action to complete the request.

- 4xx status codes are client errors. These status codes are intended for

situations in which the client seems to have errored.

- 5xx status code are server errors that indicate cases in which the server is

aware that it has encountered an error or is otherwise incapable of perform-

ing the request.

10

Some most common status codes are: 200 that is standard “OK” response for suc-

cessful HTTP requests, 403 refers to “Forbidden” and tells that the user might have

a lack of permissions for a resource, 404 or “Not Found” means that the requested

resource could not be found and 500, “Internal Server Error”, is a generic error

message given when an unexpected condition was encountered and no more spe-

cific message is suitable.

In addition to official status codes, there is a number of unofficial ones that are not

specified by any standard and usually are extensions provided by software or ser-

vices like web-servers or reverse-proxies.

4 MQTT PROTOCOL

According to Wikipedia (2017c), MQTT is a light weight publish/subscribe based

messaging transport protocol (application layer protocol) designed for Machine to

Machine and Internet of Things (M2M/IoT) communication. MQTT is very light-

weight and binary protocol, which excels when transferring data over the wire in

comparison to protocols like HTTP, because it has only a minimal packet overhead.

Also, HTTP is often too verbose, sends a lot of meta-data, and TLS handshake is

required every time the connection is requested. Another advantage of MQTT is

that it is really easy to set it up on a client side. This is useful for constrained devices

with limited resources (mobile phones, smart watches).

MQTT was created by Andy Stanford-Clark (IBM) and Arlen Nipper in 1999. They

created a list with specifications which the future protocol should have:

 simple to Implement

 provide a Quality of Service data delivery

 lightweight and bandwidth efficient

 data agnostic

 continuous session awareness

IBM used it for some time internally until they open sourced the specification in

2010. And since then MQTT became widely used by a lot of different companies.

11

In 2013 a committee was built to standardize MQTT. And, at the end of 2014 MQTT

became a standard.

MQTT client is a client that has MQTT library running on it and is connected to the

MQTT broker over the network. This could be any kind of device, starting from a

micro controller up to full-fledged server that has a TCP/IP stack and speaks to

MQTT over it. MQTT client libraries are written for a huge variety of languages and

platforms (like Android, C, C++, C#, Go, iOS, Java, JavaScript, NodeJs, Erlang)

and are available freely. The full list of MQTT libraries is also available on GitHub.

MQTT broker is a counterpart to MQTT Client and is a core of the MQTT pub-

lish/subscribe mechanism. The MQTT broker is primarily responsible for pro-

cessing, receiving and filtering messages. The broker also decides who is inter-

ested is particular messages by the topic and distributes them accordingly to all

the subscribed clients. It also handles session information of all the connected cli-

ents, subscriptions and missed messages that are delivered due to the absence of

the client’s connectivity. In addition, the broker also responsible for authenticating

and authorizing clients. Depending on the specific library, the broker is also ex-

tendable. This feature allows integrating custom layers of authentication, authori-

zation and integration into backend systems. Integration plays a very important role

as the broker component itself exposed to public access and handles a lot of clients

passing messages. In general, the broker operates as a hub for all the connected

clients which must be highly scalable, integratable into backend systems, easy to

monitor and most importantly failure-resistant.

4.1 Publish/Subscribe pattern

The biggest difference between MQTT and some other request-response protocols

is that MQTT uses the publish/subscribe pattern. It is an alternative to the tradi-

tional client-server model where the client communicates directly with an endpoint.

The publish/subscribe method operates in a way that it decouples a client sending

a message (publisher) from another client (or more clients) receiving the message

(subscriber). This way a publisher and a subscriber do not know about the exist-

ence of each other. However, there is a one more component (broker) who both

12

the subscriber and publisher know about. The broker filters all incoming messages

and broadcasts them accordingly.

Let’s take a look at the example of publish/subscribe operation in the Figure 1.

Figure 1. MQTT Publish/Subscribe pattern diagram

Referring to the diagram, there is a temperature sensor that publishes temperature

value regularly to devices that might be interested in this data. In addition, there is

a MQTT broker in the middle that manages all the connections. There are two par-

ties here: MQTT clients (temperature sensor, laptop and mobile divide) and a bro-

ker. All of these clients have only one MQTT connection to the broker and can

publish and subscribe. It is more or less similar to magazine subscription, for ex-

ample. Once subscribed, the new magazine will be delivered once the new release

is published. Mobile device subscribes to a temperature value and gets it from the

sensor directly. The client can be a subscriber and publisher at the same time.

However, as mentioned earlier, this approach decouples the publisher and sub-

scriber which can be differentiated in more dimensions which are represented in

the list:

13

 space decoupling: the publisher and subscriber do not know each other (by
IP address and port for example)

 time decoupling: Publisher and subscriber do not need to run at the same
time

 synchronization decoupling: Operations on both components are not sus-
pended during publishing or receiving

It is possible that only certain clients receive certain messages during message

filtering. The decoupling has three dimensions: space, time, and synchronization.

4.1.1 Scalability

The publish/subscribe approach provides a great scalability because operations

on the broker running in parallel and processes are event-driven. Message caching

and intelligent routing of messages are important ways for improving the scalability.

4.1.2 Message filtering

Message filtering is needed for the broker to filter all the incoming messages so

that each subscriber gets only messages it is interested in.

 Subject-based filtering: based on a subject (or topic) which is a part of each
frame

 Content-based filtering: based on a specific content filter-language

 Type-based filtering: filtering based on the type/class of the message
(event)

4.2 Connection establishment

MQTT is built on top of TCP/IP of the OSI layer model and requires both the client

and the broker that are using it to support TCP/IP stack. Each client has a connec-

tion to a broker and this allows to push connections to other clients and they get

messages in real time (in addition to network latency). Each client can open only

one connection and is capable of pushing messages.

14

4.2.1 Open a connection

The connection is initiated by the MQTT client sending a CONNECT message to a

broker. The broker will respond with a CONNACK and a status code after which

clients are officially connected. Once the connection is established, the broker will

keep it open until the client sends a disconnect message or loses the connections.

Table 1. MQTT CONNECT packet

Contains Optional Example

clientId no client01

cleanSession no true

Username yes “bob”

Password yes “Passw0rd12345”

lastWillTopic yes “/bob/will”

lastWillQos yes 2

lastWillMessage yes “unexpected exit”

lastWillRetain yes false

keepAlive no 60

The table above represents the example CONNECT message that is sent from the

client to the broker to initiate a connection. If the message contains errors (some

parameters are missing or incorrect) or it takes too long from opening a network

socket to sending it, the broker will close the connection. This good security feature

helps to avoid malicious clients that can slow down the broker. Referring to the

message structure, there are three required parameters that the message must

contain. They include the following:

 clientId in a client identifier used to identify each of the clients connected to
the MQTT broker. The ClientID should be unique for each broker.

 cleanSession is a flag that indicated whether the client wants to establish
a persistent connection or not.

 keepAlive defines the time interval in milliseconds to which the client in
committed to by sending regular PING requests to the broker. The broker
responses to PING with PING response and this allows both parties to de-
termine that the other side is still alive and reachable.

15

In addition to the required parameters, it is possible to pass more parameters,

which are optional by default, to extend the configuration of the connection. Here

are some of them:

 Username and Password are credentials used to authenticate and author-
ize a client. It is important to mention that a password is sent by plain text
by default. Although it is possible to encrypt or hash it by implementation or
to use TLS underneath.

 Will message is a part of the last will and testament feature of MQTT. It al-
lows notifying other clients, when the client disconnects without sending
DISCONNECT message beforehand.

Table 2. MQTT CONNACK packet

Contains Example

sessionPresent True

returnCode 0

Once the broker receives a CONNECT message, it is obligated to respond with a

CONNACK message. The CONNACK message only contains two fields:

 sessionPresent is a flag that represents whether the broker already has a
persistent session of the client from previous interactions. It helps the client
to determine if it has to subscribe to topics, or if these are still stored in his
session.

 returnCode is the connection acknowledgement flag. It tells the client, if the
connection attempts ware successful or, if not, what is the issue.

Here is a table to all possible status codes that the broker can respond with:

Table 3. MQTT CONNACK packet

Return Code Status Reason

0 Connection Accepted -

1 Connection Reused Unacceptable protocol version

2 Connection Refused Identifier rejected

16

3 Connection Refused Server unavailable

4 Connection Refused Bad username or password

5 Connection Refused Not authorized

4.2.2 Publish, subscribe and unsubscribe

After the client device has successfully connected to the MQTT broker, it can start

publishing messages. As message filtering in MQTT is based on topics, each mes-

sage must contain a topic. When a broker receives the message, it then forwards

it to interested clients. The message publishing can be described in three steps:

1. client sends a publish message to a broker
2. the broker reads the publish message
3. the broker processes messages by determining which clients have sub-

scribed to this topic and sending the message to those who is interested
(subscribed)

Table 4. MQTT PUBLISH packet

Contains Example

packetId 1234

topicName “topic/1”

qos 1

retainFlag false

payload “temperature:28.5”

dupFlag false

 Topic Name is a string value that defines a topic to publish message to,
structured hieratically, using forward slashes as “topic level” separators.

 QoS is a number that represents a Quality of Service level which defines
the guarantee of the message delivery to the end, other client or broker.

 Retain Flag determines, if the message will be saved by the broker for the
specified topic as a last known useful value. New clients subscribed to that
topic will receive the last retained message on that topic instantly after sub-
scribing.

17

 Payload is the actual content of the message. MQTT supports sending data
of any kind, such as images, texts, encoding, encrypted and binary data.

 Packet Id is a unique identifier used to identify a message in a message
flow.

 DUP flag indicates that the message is a duplicate and is sent again due to
other end not sending a message of acknowledgment.

In order to subscribe to a topic and receive relevant messages, a client needs to

send a SUBSCRIBE message to the MQTT broker. Subscribe message contains

the packet identifier and list of subscriptions, as shown in the Table 5:

Table 5. MQTT SUBSCRIBE packet

Contains Example

packetId 1234

qos1 1

topic1 “topic /1”

qos2 0

topic2 “topic /1”

… …

 Packet Id is a packet identifier that is used to identify a message in a mes-
sage flow.

 List of Subscriptions represents a list of the QoS & topic pair which are
later used by the broker to route messages to clients. SUBSCRIBE mes-
sage can contain any number of QoS & topic pairs. The topic value can
contain wildcards that are useful for subscribing to different topic patters,
which gives more flexibility. If subscriptions are overlapping, the broker se-
lects a message for delivering based on the highest QoS value.

After the client sends a SUBSCRIBE message to a broker, it will be confirmed and

sent back to the client as an acknowledgement in the form of the SUBACK mes-

sage.

Table 6. MQTT SUBACK packet

Field Example

packetId 1234

18

returnCode 1 0

returnCode 2 2

 Packet Id is a packet identifier

 Return Code a code returned for each of the QoS/topic pair broker received
from the SUBSCRIBE message. It represents a code to acknowledge each
topic with the QoS level granted by the broker. If the subscription was not
success-full because of lack of permissions for example, the broker will re-
spond with a failure return code.

Table 6. Possible return codes

Return Code Return Code Response

0 Success - Maximum QoS 0

1 Success - Maximum QoS 1

2 Success - Maximum QoS 2

128 Failure

Figure 2. MQTT subscribe pattern

The UNSUBSCRIBE message is used to delete existing subscriptions of a client

on a broker. The message structure is similar to the SUBSCRIBE message, it also

contains a packet identifier and list of topics from which unsubscribe to.

Table 7. MQTT UNSUBSCRIBE packet

Field Example

packetId 1234

topic1 “topic/1”

19

topic2 “topic/2”

… …

 PacketId is used as identifier to detect the acknowledgement of an UNSUB-
SCRIBE message which will contain the same ID.

 List of Topics represents a list of topics, the client wants to unsubscribe
from. The QoS value is not provided in the UNSUBSCRIBE message, since
the topic will be unsubscribed regardless of the QoS level it was initially
subscribed with.

The UNSUBACK message contains only the packet identifier is sent after broker

has received and processed the request to unsubscribe. When the client receives

the UNSUBACK from the broker, it can assume that all the subscriptions in the

UNSUBSCRIBE message are deleted.

Table 8. MQTT UNSUBACK packet

Field Example

packetId 1234

Figure 3. MQTT UNSUBSCRIBE pattern

20

4.3 MQTT topics

Beyond the publish/subscribe pattern that is one of the core features of MQTT,

there is a concept called topics. The entire message routing in a broker is built on

topics. Topics have hierarchical structure which gives flexibility and ease of use.

The best explanation to topics would be an example that is popular in IoT these

days. Let's assume that there is a house with a number of rooms and floors in it.

Each room in this house has a sensor which measures temperature in the room

regularly and sends it to the broker. For a living room, which is located on a ground

floor, the topic would look like the following

myhome/groundfloor/livingroom/temperature

The topic values are constructed like URLs and contain different topic levels. This

is a core concept of MQTT, and it is very important because routing of messages

is only built on topics. This way the broker knows to which topic to send the mes-

sages and the client knows to which topic to subscribe to.

4.3.1 Topic structure

The topic’s structure looks very much like a URL. The topic level separator is slash

(“/”), and we have different topic levels that can be arbitrary topic values. When it

happens so that the client subscribed to too many topics, the topic will look messy

and big. For this reason, in order to minimize the topic, the single-level wildcard

can be used. Single-level wildcard represents only one topic level. In case of the

example with the house and temperature values, the route may look like the fol-

lowing:

myhome/groundfloor/+/temperature

The client subscribes to topic that looks like this (when single-level wildcard is

used), the client will receive messages for all the topics that are located on this

level. The “+” character can be used more than once in a route.

21

Another possibility if the client wants to subscribe to all hierarchies below a specific

topic label is a multi-level wildcard. It can only be used in the end of the route, as

follows:

myhome/groundfloor/#

This makes topics a flexible concept and every client that subscribes to them, can

use wildcards. When the client is publishing, no wildcards are allowed. Wildcards

can be used only on the subscribe level.

4.4 Quality of Service

QoS defines a level at which one of the parties (a client or broker) guaranteed to

deliver a message to another party. It is a major feature in the MQTT protocol,

since it helps to avoid bottlenecks in unreliable networks as well as empowers a

client to choose a QoS level depending on the network reliability and application

logic. There are tree QoS levels in MQTT:

 QoS 0 – at most once

 QoS 1 – at least once

 QoS 2 – exactly once

QoS 0 is a minimal level. It sends a message only once and the message will not

be acknowledged by the receiver.

22

Figure 4. MQTT QoS 0 publish pattern

QoS level 1 guarantees that the message will be delivered to the other party at

least once. But it is possible that the message will be delivered more than once.

The sending party will keep sending the message over and over until it receives a

PUBACK message. The PUBACK message contains only the packet id and is used

to compare its value with the packet identifier in each packet for determining, if the

message was received or not.

Figure 5. MQTT QoS 1 publish pattern

QoS 2 is the highest QoS level and it is the safest and slowest one. It guarantees

that the second party of the communication will receive a message only once.

Figure 6. MQTT QoS 2 publish pattern

23

Once the PUBLISH message with QoS 2 is received by one of the parties, it will

process it and respond with acknowledgement in the form of the PUBREC mes-

sage. It also will also keep the reference to the packet id, so it is possible to later

recognize duplicated messages. When the sender receives PUBREC it discards

the initial PUBLISH because it knows that the other party has successfully received

it. The receiver then will store PUBREC and respond with PUBREL. When

PUBREL is received by the second party, it discards every stored state and re-

sponds with PUBCOMP. After the sender gets the last message and the flow is

completed, both sides can be sure that the message has been delivered and the

sender knows about it. If it happens so that some message is lost and was not

received by one of the parties, the sender is responsible for sending the same

message once again after a reasonable amount of time.

5 PRACTICAL PART

The goal of the practical part was to develop a plugin for EMQ that must collect

analytics data from EMQ and store it somewhere. The decision of the data storage

should be used, was made in favor of elasticsearch. The reason for choosing this

tool came from the amount of features, flexibility, scalability, ease of use and speed

that EMQ provides, such as comprehensive query language that elasticsearch sup-

ports and allows developers to fetch not only stored data but also aggregated buck-

ets that are useful for analytics dashboard.

5.1 Software used

The software that has been used during the practical part is listed below and in-

cludes software versions which were used:

 Ubuntu Server 16.04.1 LTS 64-bit

 Oracle JDK

 ElasticSearch v5.2.0

 EMQTT v2.0.7

 EMQ-PLUGIN-APINF v2.1.1 (based on EMQ-PLUGIN-TEMPLATE v2.0.7)

 Meteor Boilerplate

24

5.1.1 APInf

APINF is an API Management platform that has been in the development over the

last two years as a Sampo Software product. APINF is an open source tool, that

allows API administrators to host their APIs and gives a possibility to provide dy-

namic documentation powered by Swagger, comprehensive API usage analytics

and more. Initially, APInf was built around API Umbrella. Then, its architecture has

been redesigned from the bottom up, and the core feature that was added there is

a multi-proxy support. This means that administrators that hosts their APIs via

APInf are able to add new, and switch between proxies. This gives more flexibility

and more ease for testing and further development.

There are three core APInf features:

 API Catalog (As shown on the Figure 7)

 Analytics Dashboard (Comprehensive dashboard with many filtering op-
tions)

 API Documentation

25

Figure 7. APInf API Catalog

The practical part was implemented around APInf dashboard in order. The dash-

board represents API usage over time. Charting libraries that handle visual data

rendering It are powered by D3 – JavaScript front end library for building Data

Driven Documents. To give more clear understanding of the dashboard design and

what it contains I will divide it into four parts, as follows:

 Filtering

 statistics

 charts

 data table

These components are shown in the Figures 8 and 9.

26

Figure 8-9. APInf Analytics Dashboard

The filtering component is the one of the controllers that manipulate the data to be

shown on the dashboard. There are multiple options for filtering. First of all, filtering

by specific API(s). Selecting one or more APIs will instantly trigger a filter function

that will re-render charts depending on a query. It is also possible to filter data

within a specific time range by selecting the date to filter by using from and to date-

pickers. Finally, there is an option to select custom granularity for data – hour, day,

week or month. Higher granularity like week or month values are useful on a large

scale if it is needed to structure the records over a wide range like one year. Se-

lecting “hour” in this case would give very precise overview which might not be

needed, while “month” can give much more general understanding of API usages.

The second component is nothing but an average summary of different data di-

mensions: total number of records in a memory, average response time, response

rate and number of unique users.

The third component contains four charts. There are four of them – range and

overview charts that show requests over time, a bar chart that groups HTTP status

codes and visually compares them to each other, and lastly a row chart that shows

grouped statistics for response time distribution in milliseconds. The overview chart

is used for manual range selection on the chart using an in-built brush tool.

In addition, there is a data table that lists currently selected data providing much

more detailed information about each request such as the exact time stamp when

27

the request took place, county from where the request came from, URL path, IP

address, response time and HTTP status code.

The dashboard also uses a crossfilter – a JavaScript library that gives real-time

data reactivity over all the components that handle filtered data. That means that if

either data is filtered by a specific chart or via filtering component, all charts, data-

table and statistics summary will at once receive the actual filtered data without

page refresh.

APInf dashboard gets its analytics data from the proxy it is connected to. Data is

stored in the elasticsearch data store. In case of the API Umbrella proxy, the elas-

ticsearch instance is built inside it and represented as an adapter.

5.1.2 Erlang MQTT Broker

EMQ is an Erlang MQTT Broker which is selected as a second proxy in addition to

API Umbrella. EMQ is built as modular software and by default has a list of plugins

that can be used and enabled during run time using either terminal (command line

interface) or user interface.

According to the EMQ documentation, the EMQ broker internal design philosophy

is represented in the following five points:

1. Focus on millions on concurrent MQTT connections and routing MQTT mes-
sages between clustered nodes.

2. Embrace Erlang/OPT, soft real-time, low-latency, concurrent, and fault tol-
erant platform.

3. Layered design: Connection, Session, PubSub and Router layers.

4. Separate the Message Flow Plane and the Control/Management Plane.

5. Stream MQTT messages to various backends including MQ or databases

28

5.1.3 EMQ analytics plugin

EMQ provides a template plugin which already has preconfigured setup and al-

lows easily extending EMQ workflow. As the plugin was implemented within the

APInf project, the template plugin was forked and stored as an organization repos-

itory on GitHub. Initially the plugin template has a list of pre-defined hooks that are

called when client does a certain action like connect, disconnect, subscribe and

unsubscribe. The broker uses a chain-of-responsibility pattern to implement a hook

mechanism. This is a mechanism that gives more than one object an opportunity

to link receiving objects together. So the hook functions registered to a hook will

be executed one by one.

Table 9. EMQ hooks available in plugin template

Hook When triggered

on_client_connected client connects to the broker successfully

on_client_disconnected client disconnects from the broker

on_client_subscribe before the client subscribes to topics

on_client_unsubscribe client unsubscribes from topics

on_session_created session is established

on_session_subscribed after the client(sessions) subscribed to a topic

on_session_unsub-

scribed

after the client(sessions) unsubscribed to a topic

on_session_terminated the session is terminated

on_message_publish the MQTT message is published

on_message_delivered the MQTT message is delivered

on_message_acked the MQTT message is received

Each of these hooks, as shown in Table 9, needed to be extended to send a bucket

of data to the elasticsearch. There is a Erlang library called ESIO that provides an

HTTP client API for communication with elasticsearch. The library is open-sourced

and distributed under the MIT license.

Each application or library written on Erlang that follows community development

principles and conventions is most likely to contain a dependency manager called

29

“rebar”. This is done by adding a rebar.config file to the project root directory, even

if the application does not have any dependencies. In addition to dependencies

list, the configuration file can also contain general package information like an ap-

plication name, description, version and environment variables. ESIO documenta-

tion has a clear installation instruction, API and usage examples.

Once the dependency is added to the project and compiled, `esio` instance is glob-

ally available over the project. In order to collect the information that we might be

interested in, a simple function was written that should make following steps: open

the connections, check if the connection did not return any errors, write to the elas-

ticsearch and close the connection.

Figure 10. Code example: Erlang function that writes data to elasticsearch

Figure 10 shows the implementation of the function described above. In Erlang,

functions are defined in the following manner: first comes the function name fol-

lowed by brackets with can take a number of parameters separated by a comma.

In our case it is only one parameter which is a tuple that contains the data to be

saved. The function body is separated from the previous part with an arrow “->”.

Function calls, variable assignments, etc. are written inside function body and sep-

arated by comma. In order for a compiler to separate the function from other func-

tion or code, it must be ended with a fullstop. The `esio:start` function initializes

esio instance. Next, on line 45 the connection is opened to a socket and due to

Erlang's nature for dynamic pattern matching it is possible to perform an error

check right on the same line. The next line is needed for generating a unique iden-

tifier, so that it is possible to differentiate each record later if needed. `esio:put` is

used to write documents to elasticsearch mapping of the index “mqt”, identifiable

30

by key which is contained by “Id” variable. This function has three parameters: the

actual socket connection, that we opened earlier, query string that defines the in-

dex to where to write the record, and lastly, the data tuple. The last line closes the

connection.

Next, it is needed to call that function when certain event occurs. Each hook, when

called, contains data needed for logging. In fact, each hook contains data that de-

pends on a context of each hook, so it is different for each of them. Also, there

were some fields that are not needed for analytics, because this kind of data does

not really make any sense and is not valuable for a user or an administrator viewing

this analytics (ClientId for example). For that reason, it was decided to develop a

schema, that will not be actually used anywhere, but will help to group all the avail-

able fields and put them into one record, because all records should have similar

schemas as close as possible. Table 10 demonstrates data fields that have been

used in the schema.

Table 10. Single document schema

Field Type Availability Description

date string yes Timestamp when the record was

saved

type string yes Title oh hook that has been called

username string yes Username of authenticated client

topic_table object depends on hook List of topics to subscribe to

topic_and_opts object depends on hook Topic and options

reason string depends on hook Reason for session terminate

message object deoends on hook Message send via Publish

It is worth noting that the date field represents a timestamp when the record has

been saved. It is not available within the hook and was generated manually simply

using the erlang:localtime() function.

31

5.1.4 Elasticsearch installation and setup

Elasticsearch is an open-source platform for distributed search and analysis of data

in real time. The reason for choosing this platform came from number of features

that it provides such as its flexibility, scalability, ease of use and speed. Elas-

ticsearch supports RESTful operations, allowing to manipulate data using HTTP

methods (GET, POST, PUT, DELETE, etc.) in conjunction with an HTTP URI (/col-

lection/entry). In addition to that, elasticsearch also provides a complex, JSON-

style domain-specific query language (Query DSL) which makes it easy to fetch

not only stored data but also an aggregated bucket that are useful for analytics

dashboard for example.

For this project elasticsearch version 5.2.0 was used (latest at that time). The in-

stallation was performed via CLI and a Debian package.

The list of commands used for installation and configuration can be found in ap-

pendices.

During the installation, elasticsearch installer installs it to /usr/share/elas-

ticsearch, configuration files are placed to /etc/elasticsearch and initialization

script to /etc/init.d/elasticsearch. The instance was started as a background

service. To ensure that elasticsearch starts and stops automatically with the

server, initialization script was added to the default run level.

Elasticsearch configuration files are stored in /etc/elasticsearch and there are

two types of them:

 elasticsearch.yml file is used to configure elasticsearch server settings

 logging.yml file stores logging configurations. By default, all logs are writ-
ten to /var/log/elasticsearch

As by default it is running on localhost with the port 9200, it is possible to check

instance status via REST API that elasticsearch provides but sending GET re-

quest to http://localhost:9200/_cluster/health :

32

Figure 11. Elasticsearch instance status

Elasticsearch status is “green” as seen on the screenshot, and in order to make

the site available over the specified address, Nginx server was install and config-

ured as a reverse proxy as well as the networking and firewall.

Figure 12. Elasticsearch instance status

5.2 Analytics dashboard

As all the pieces are ready, the next step is to visualize the analytics data that was

generated. It was decided to build a separate application that contains an analytics

dashboard and makes it as an independent component so that it can then be easily

integrated to APInf when it is well tested independently. The dashboard was built

33

with same technologies that power APInf except the charting library. This time the

choice was made in favor of NDV3. Just like DC.js, NVD3 is also based on D3 in

its core, and contains same features that it provides and stands for “Re-usable

chart for d3.js”. The web application was built using NodeJS runtime and MetorJS

client-server side framework written on JavaScript. Based on Wikipedia (2017d,

2017e, 2017f).

For the initial setup of the environment and configuration, the existing MeteorJS

boilerplate was used (https://github.com/frenchbread/meteor-boilerplate). Beyond

that, a number of supporting libraries was also added to the project: MomentJS –

which helps to manipulate and format the JavaScript Date object, Lodash which

was used for mapping, parsing and manipulating with a dataset fetched from elas-

ticsearch instance, and finally official elasticsearch library for JavaScript used for

fetching the actual analytics data.

Due to MeteorJS’s framework architecture, it has a system called Methods – a

remote procedure call (RPC) system which allows saving user input events that

come from the client-side. Meteor Methods operate over DDP (Distributed Data

Protocol) that was created specifically for MeteorJS Framework for this communi-

cation. Code-wise these methods are defined by passing a function to the “Me-

teor.methods({})” constructor that takes an object as a parameter, in a key-value

pattern, where key is a name of the method to be called on client-side and the

value is a function to be executed. This method was called getAggregatedData.

Before actually writing a method, elasticsearch class instance must be initialized.

ElasticSearch.Client class takes an object with an elasticsearch host value that

points to elasticsearch instance. In general, the function should do following:

1. Take one argument as an object that is constructed and passed from the
client-side and contains options for elasticsearch such as document index,
number of records to be returned and a search query.

2. Run elasticsearch client command.

3. Receive data.

34

4. Parse data so that it is ready for NVD3 on the other end without further
actions.

5. Return parsed data.

6. Display an error, if it has occurred.

On the client side the algorithm is simpler First, it is needed to fetch the data and

pass it to a function that will parse it. For the first step, in order to get data from

elasticsearch using the method created earlier, it should be called once the page

completes rendering. MeteorJS has a number of event listeners which are emitted

when certain action finishes, for instance, when a template is created and when a

template is rendered. The difference between these two callbacks is that “onRen-

dered” gets fired when DOM elements finish rendering, while “onCreated” callback

is fired when the template has been initialized but not yet rendered. To have the

code clean and more readable, two functions were defined and attached to a tem-

plate instance inside “onCreated” callback. This does not really affect the work flow

but, can decrease page loading time and increase performance. Since the main

code that runs these functions is placed inside “onRendered” callback, the func-

tions for fetching data and rendering charts will be already defined. So, inside “on-

Rendered” callback the pattern for calling the defined function will follow the follow-

ing logic:

1. Call the “getAggretationData” method that fetches analytics data and returns
a callback function with error and response arguments.

2. Check, if an error did occur while running the method and if it did, display it.

3. Render charts.

35

6 RESULTS

For the final version of the dashboard, in addition to the initial configuration and

features, a number of filtering options were added. Similarly, to the APInf dash-

board, one of them is granularity selection and date range filtering. Unlike in the

APinf dashboard which shows the usage of HTTP request, the EMQ dashboard

renders data which is generated over MQTT connections and as these protocols

are different and, for instance, the MQTT protocol does not have status codes, it is

not possible to display such kind of data. In fact, event types have been saved, and

as seen in Figure 12, are represented in different colors making it easy to differen-

tiate them from each other. The canvas that contains all the charts now has a num-

ber of them rendered at the same time. Specific color on the chart corresponds to

the same color of the event listed above the canvas. This was implemented using

the NVD3 feature, that allows to support multiple data set inputs. Dashboard is also

filterable by event types, so when clicking on a colored circle that represents certain

event type, the chart will instantly re-render to the selected charts minimum. Multi-

event selections are supported.

Figure 12. First public preview of the dashboard

36

As new suggestion and feature requests arrived, the dashboard got significant

improvements as of the UX and the backend. Figure 13, shows that the event-type

filtering has been redesigned and refactored towards selectbox, manually.

The feature set is still the same, but represented in a differently in more compact

way. It is also worth mentioning that all the filter changes that are triggered (e.g.

selected), instantly affect the chart, forcing it to re-render and update the URL by

appending query a value to it. Modifying URL when filter changes, makes it easier

to share the specific filter query with someone else, since the user vireing it on the

other side will get the same rendered ranges for dates and other filters.

Figure 13. Dashboard final look

Performance is very important aspect of dashboards that provide analytics data on

a scale. When the number of requests is growing, the system should be able to

handle this, using common approached such as caching, indexing and load

balancing. Performance audit has been done for the EMQ dashboard in order to

find pit holes which introduce various memory leackages or useless code

execution. Referring to Figure 14, it is possible to say that the complete page

loading time takes around two seconds (2.200 seconds). This metric contains all

the requests made to the elasticsrach including data aggregation. In fact, the

37

rendering takes around (0.300 seconds). This metric is collected over one month

date rage and contains around 3000 items in the data set.

Figure 14. Performance metrics from Google Chome Dev tools

In order to measure the performace with a wider date-range, a bunch of dummy

data has been generated.

Table 11. Prefomance metrics for lager data-set

Items count Server -> ES request (ms) ES search execution (ms)

13k 42.9 3.9

20k 30 3.7

50k 28.7 2.3

Table 11 represents average values for the metrics provided in Appendix 6. First

column contains the number of items stored in the elasticsearch and from which

aggregated data-set has been generated for the chart. The column in the middle

shows the time which takes the server to request data from elasticsearch in

milliseconds. The third column shows the amount of time which it takes the

elasticsearch to aggregate the data. The metrics in the third column have been

38

collected manually while metrics in third column is exposed in the eslasticsearch

response object. Therefore, the more entities in the elasticsearch datastore, the

faster execution and aggregation time.

7 CONCLUSIONS AND FUTURE WORK

I must say that the task given me by the company was quite challenging, even

though it sounded easy at first. It was challenging in a degree that required to cover

multiple IT fields at once and at some point to make a step in creatnig an

ecosysteam for Internet of Things. I, as a new-commer to the Erlang world, had to

learn a new programming language which envolved research and writing sample

programs, to be able to understand what is going on under the hood of EMQ and

to extend it with a plugin. The vast majority of the software that was used, is open-

sourced and is driven by the community.

As of the work within this thesis is finished, the work on company’s side is ongoing

and heading towards having complete multi-proxy architecture. That is why, It is

required to add support for features provided by EMQ such as access control rules

and user management. The EMQ analytics dashboard that was created needs to

be integrated into APInf with possible context selection for either HTTP or MQTT

supported dataset. During the dashboard development, the plugin has been re-

named to emq-plugin-elasticsearch, a more generalized version, that is going to

be contributed to EMQ upstream repository.

39

REFERENCES

Erlang programming language 2017a. Wikipedia. WWW document. Available at:

https://en.wikipedia.org/wiki/Erlang_(programming_language) [Accessed 20 Feb-

ruary 2017]

Hypertext Transfer Protocol 2017b. Wikipedia. WWW document. Available at:

https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol [Accessed 29 March

2017]

MQTT 2017c. Wikipedia. WWW document. Available at: https://en.wikipe-

dia.org/wiki/MQTT [Accessed 29 March 2017]

JavaScript 2017d. Wikipedia. WWW document. Available at: https://en.wikipe-

dia.org/wiki/JavaScript [Accessed 20 February 2017]

Node.js 2017e. Wikipedia. WWW document. Available at: https://en.wikipe-

dia.org/wiki/Node.js [Accessed 25 February 2017]

Meteor (web framework) 2017f. Wikipedia. WWW document. Available at:

https://en.wikipedia.org/wiki/Meteor_(web_framework) [Accessed 25 February

2017]

Erlang MQTT Broker website 2017. EMQ 2.0 documentation. WWW document.

Available at: http://emqttd-docs.readthedocs.io/en/emq20/design.html#design-

philosophy [Accessed 17 March 2017]

Fred Hebert. 2013. Learn You Some Erlang for Great Good, A Beginner Guide.

Available at: http://learnyousomeerlang.com/ [Accessed 13 February 2017]

Joe Armstrong. A History of Erlang, Ericsson AB. Available at:

http://webcem01.cem.itesm.mx:8005/erlang/cd/downloads/hopl_erlang.pdf [Ac-

cessed 20 March 2017]

https://en.wikipedia.org/wiki/Erlang_(programming_language)
https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol
https://en.wikipedia.org/wiki/MQTT
https://en.wikipedia.org/wiki/MQTT
https://en.wikipedia.org/wiki/JavaScript
https://en.wikipedia.org/wiki/JavaScript
https://en.wikipedia.org/wiki/Node.js
https://en.wikipedia.org/wiki/Node.js
https://en.wikipedia.org/wiki/Meteor_(web_framework)
http://emqttd-docs.readthedocs.io/en/emq20/design.html%23design-philosophy
http://emqttd-docs.readthedocs.io/en/emq20/design.html%23design-philosophy
http://learnyousomeerlang.com/
http://webcem01.cem.itesm.mx:8005/erlang/cd/downloads/hopl_erlang.pdf

40

APPENDICES

1. Elasticsearch installation commands

Fetch elasticsearch debian package from the officialsource
$ wget https://artifacts.elastic.co/downloads/elasticsearch/elasticsearch-5.2.0.deb

Install it as a debian package
$ sudo dpkg –I elasticsearch-5.2.0.deb

Install JDK 8
$ sudo apt-get install default-jre
$ sudo apt-get install default-jdk

$ sudo apt-get install oracle-java8-installer
$ add-apt-repository ppa:webupd8team/java
$ sudo apt-get update

Update /etc/environment file by settings JAVA_HOME variable
JAVA_HOME="/usr/lib/jvm/java-8-oracle"

Reload the environment
$ source /etc/environment

Start elasticsearch as a service
$ sudo service elasticsearch start

2. NGINX proxy configuration

server {
 listen 9200;

 server_name <IP_ADDRESS>;

 location / {
 proxy_pass http://localhost:9200;
 proxy_http_version 1.1;
 proxy_set_header Upgrade $http_upgrade;
 proxy_set_header Connection 'upgrade';
 proxy_set_header Host $host;
 proxy_cache_bypass $http_upgrade;
 }
}

Also update linux firewall by allowing port 9200 to pass.
Reload nginx service with:
$ sudo service nginx reload

3. Server-side code (emq-analytics-dashboard)

https://artifacts.elastic.co/downloads/elasticsearch/elasticsearch-5.2.0.deb

41

// The full repository is available on github:

https://github.com/apinf/emq-analytics-dashboard

import { Meteor } from 'meteor/meteor';

import ES from 'elasticsearch';

import _ from 'lodash';

import parseDataForNvd from './lib/parse';

import config from '../../config';

// Initialize ES intstance

const client = new ES.Client({

 host: config.host,

});

const opts = {

 // Intiial elasticsearch index & type values

 index: 'mqtt',

 type: 'events',

 // Amount of items to return

 // Since aggregated data is returned, regular records are not needed

 size: 0,

};

Meteor.methods({

 getChartData (query) {

 // Merge default query with custom

 const esOpts = _.assign(opts, query);

 // Execute search

 return client.search(esOpts).then(

 (res) => {

 const data = res.aggregations.logs_over_time.buckets;

 return parseDataForNvd(data);

 },

 (err) => { return new Meteor.Error(err); }

);

 },

 getEventTypes () {

 // Construct custom query

 const query = {

 body: {

 aggs: {

 types: {

 terms: {

 field: 'event',

 },

 },

 },

 },

 };

 // Merge default query with custom

 const esOpts = _.assign(opts, query);

 // Execute search

 return client.search(esOpts).then(

 (res) => { return res.aggregations.types.buckets; },

 (err) => { return new Meteor.Error(err); }

42

);

 },

 getTopics () {

 // Construct custom query

 const query = {

 body: {

 aggs: {

 topics: {

 terms: {

 field: 'topic',

 },

 },

 },

 },

 };

 // Merge default query with custom

 const esOpts = _.assign(opts, query);

 // Execute search

 return client.search(esOpts).then(

 (res) => { return res.aggregations.topics.buckets; },

 (err) => { return new Meteor.Error(err); }

);

 },

});

4. Client-side code (emq-analytics-dashboard)

// The full repository is available on github:

https://github.com/apinf/emq-analytics-dashboard

import { Meteor } from 'meteor/meteor';

import { Template } from 'meteor/templating';

import { FlowRouter } from 'meteor/kadira:flow-router';

import nvd3 from 'nvd3';

import d3 from 'd3';

import moment from 'moment';

import _ from 'lodash';

Template.dashboard.onCreated(function () {

 const instance = this;

 instance.opts = {

 body: {

 query: {

 bool: {

 must: [],

 },

 },

 aggs: {

 logs_over_time: {

 date_histogram: {

 field: 'timestamp',

 interval: '',

 format: 'dd-MM-yyyy',

 },

 },

43

 },

 },

 };

 instance.getChartData = (opts) => {

 return new Promise((resolve, reject) => {

 Meteor.call('getChartData', opts, (err, res) => {

 if (err) reject(err);

 resolve(res);

 });

 });

 };

 instance.render = (data) => {

 if (data) {

 nv.addGraph(() => {

 const chart = nv.models.lineWithFocusChart();

 const tickMultiFormat = d3.time.format.multi([

 ['%-d %b %y', (d) => { return d.getDate(); }],

 ['%b %-d', (d) => { return d.getMonth(); }],

 ['%Y', () => { return true; }],

]);

 chart.interpolate('basis');

 chart.xAxis

 .tickFormat((d) => { return tickMultiFormat(new Date(d)); })

 .axisLabel('Time');

 chart.x2Axis

 .tickFormat((d) => { return tickMultiFormat(new Date(d)); })

 .axisLabel('Overview chart');

 chart.yAxis

 .tickFormat(d3.format(',.2'))

 .axisLabel('Calls');

 chart.y2Axis

 .tickFormat(d3.format(',.2'));

 chart.margin({ left: 70, right: 40 });

 d3.select('#chart svg')

 .attr('height', 500)

 .datum(data)

 .transition()

 .duration(500)

 .call(chart);

 nv.utils.windowResize(chart.update);

 return chart;

 });

 }

 };

 instance.init = (opts) => {

 instance.getChartData(opts)

 .then((items) => {

 instance.render(items);

44

 })

 .catch((err) => { return console.error(err); });

 };

 instance.updateQuery = () => {

 const from = FlowRouter.getQueryParam('from') || moment().sub-

tract(1, 'month').format('YYYY-MM-DD');

 const to = FlowRouter.getQueryParam('to') || moment().for-

mat('YYYY-MM-DD');

 const granularity = FlowRouter.getQueryParam('granularity') ||

'day';

 const emqEvent = FlowRouter.getQueryParam('event') || '';

 const topic = FlowRouter.getQueryParam('topic') || '';

 const mustQuery = instance.opts.body.query.bool.must;

 // Find & remove "range" query object from array

 // so that we can update query with "fresh" rules

 const range = _.find(mustQuery, (obj) => { return typeof obj.range

!== 'undefined'; });

 if (range) {

 _.remove(mustQuery, _.find(mustQuery, (obj) => { return typeof

obj.range !== 'undefined'; }));

 }

 // Find & remove "match" query object from array

 // so that we can update query with "fresh" rules

 const match = _.find(mustQuery, (obj) => { return typeof obj.match

!== 'undefined'; });

 if (match) {

 _.remove(

 mustQuery,

 (q) => { return typeof q.match === 'object'; }

);

 }

 // Push "filter-by-event" query

 if (emqEvent) {

 mustQuery.push({ match: { event: emqEvent } });

 }

 // Push "filter-by-topic" query

 if (topic) {

 mustQuery.push({ match: { topic } });

 }

 // Push "filter-by-range" query

 mustQuery.push({

 range: {

 timestamp: {

 gte: from,

 lte: to,

 format: 'yyyy-MM-dd',

 },

 },

 });

 instance.opts.body.query.bool.must = mustQuery;

 instance.opts.body.aggs.logs_over_time.date_histogram.interval =

granularity;

 };

45

});

Template.dashboard.onRendered(function () {

 const instance = this;

 instance.autorun(() => {

 instance.updateQuery();

 instance.init(instance.opts);

 });

});

5. Erlang code for a plugin (emqttd_plugin_apinf)

// The full repository is available on github:

https://github.com/apinf/emq-plugin-apinf/

-module(emq_plugin_apinf).

-include_lib("emqttd/include/emqttd.hrl").

-export([load/1, unload/0]).

%% Hooks functions

-export([on_client_connected/3, on_client_disconnected/3]).

-export([on_client_subscribe/4, on_client_unsubscribe/4]).

-export([on_session_created/3, on_session_subscribed/4, on_session_un-

subscribed/4, on_session_terminated/4]).

-export([on_message_publish/2, on_message_delivered/4, on_mes-

sage_acked/4]).

write_to_es(Log) ->

 esio:start(),

 % TODO: Move ES host URL to config file

 {ok, Sock} = esio:socket("http://192.168.43.171:9200/"),

 Id = uuid:to_string(uuid:uuid1()),

 esio:put(Sock, "urn:es:mqt:analytics:" ++ Id, Log),

 esio:close(Sock).

% --- Custom functions

%% Called when the plugin application start

load(Env) ->

 emqttd:hook('client.connected', fun ?MODULE:on_client_connected/3,

[Env]),

 emqttd:hook('client.disconnected', fun ?MODULE:on_client_discon-

nected/3, [Env]),

 emqttd:hook('client.subscribe', fun ?MODULE:on_client_subscribe/4,

[Env]),

 emqttd:hook('client.unsubscribe', fun ?MODULE:on_client_unsub-

scribe/4, [Env]),

 emqttd:hook('session.created', fun ?MODULE:on_session_created/3,

[Env]),

 emqttd:hook('session.subscribed', fun ?MODULE:on_session_sub-

scribed/4, [Env]),

46

 emqttd:hook('session.unsubscribed', fun ?MODULE:on_session_unsub-

scribed/4, [Env]),

 emqttd:hook('session.terminated', fun ?MODULE:on_session_termi-

nated/4, [Env]),

 emqttd:hook('message.publish', fun ?MODULE:on_message_publish/2,

[Env]),

 emqttd:hook('message.delivered', fun ?MODULE:on_message_deliv-

ered/4, [Env]),

 emqttd:hook('message.acked', fun ?MODULE:on_message_acked/4,

[Env]).

on_client_connected(ConnAck, Client = #mqtt_client{client_id = Clien-

tId}, _Env) ->

 io:format("client ~s connected, connack: ~w~n", [ClientId, Con-

nAck]),

 Log = #{

 type => <<"on_client_connected">>,

 date => erlang:localtime()

 },

 write_to_es(Log),

 {ok, Client}.

on_client_disconnected(Reason, _Client = #mqtt_client{client_id = Cli-

entId}, _Env) ->

 io:format("client ~s disconnected, reason: ~w~n", [ClientId, Rea-

son]),

 Log = #{

 type => <<"on_client_disconnected">>,

 date => erlang:localtime()

 },

 write_to_es(Log),

 ok.

on_client_subscribe(ClientId, Username, TopicTable, _Env) ->

 io:format("client(~s/~s) will subscribe: ~p~n", [Username, Clien-

tId, TopicTable]),

 Log = #{

 type => <<"on_client_subscribe">>,

 date => erlang:localtime(),

 username => Username,

 topic_table => TopicTable

 },

 write_to_es(Log),

 {ok, TopicTable}.

on_client_unsubscribe(ClientId, Username, TopicTable, _Env) ->

 io:format("client(~s/~s) unsubscribe ~p~n", [ClientId, Username,

TopicTable]),

 Log = #{

 type => <<"on_client_unsubscribe">>,

 date => erlang:localtime(),

 username => Username,

 topic_table => TopicTable

 },

 write_to_es(Log),

 {ok, TopicTable}.

on_session_created(ClientId, Username, _Env) ->

 Log = #{

 type => <<"on_session_created">>,

 date => erlang:localtime(),

47

 username => Username

 },

 write_to_es(Log),

 io:format("session(~s/~s) created.", [ClientId, Username]).

on_session_subscribed(ClientId, Username, {Topic, Opts}, _Env) ->

 io:format("session(~s/~s) subscribed: ~p~n", [Username, ClientId,

{Topic, Opts}]),

 Log = #{

 type => <<"on_session_subscribed">>,

 date => erlang:localtime(),

 username => Username,

 topic_and_opts => #{

 topic => Topic,

 opts => Opts

 }

 },

 write_to_es(Log),

 {ok, {Topic, Opts}}.

on_session_unsubscribed(ClientId, Username, {Topic, Opts}, _Env) ->

 io:format("session(~s/~s) unsubscribed: ~p~n", [Username, Clien-

tId, {Topic, Opts}]),

 Log = #{

 type => <<"on_session_unsubscribed">>,

 date => erlang:localtime(),

 username => Username,

 topic_and_opts => #{

 topic => Topic,

 opts => Opts

 }

 },

 write_to_es(Log),

 ok.

on_session_terminated(ClientId, Username, Reason, _Env) ->

 io:format("session(~s/~s) terminated: ~p.", [ClientId, Username,

Reason]),

 Log = #{

 type => <<"on_session_terminated">>,

 date => erlang:localtime(),

 username => Username,

 reason => Reason

 },

 write_to_es(Log).

%% transform message and return

on_message_publish(Message = #mqtt_message{topic = <<"$SYS/", _/bi-

nary>>}, _Env) ->

 {ok, Message};

on_message_publish(Message, _Env) ->

 io:format("publish ~s~n", [emqttd_message:format(Message)]),

 #mqtt_message{

 from = {_, UsernameFrom},

 qos = Qos,

 retain = Retain,

 dup = Dup,

 topic = Topic

 } = Message,

 Log = #{

48

 type => <<"on_message_publish">>,

 date => erlang:localtime(),

 message => #{

 from => UsernameFrom,

 qos => Qos,

 retain => Retain,

 topic => Topic,

 dup => Dup

 }

 },

 write_to_es(Log),

 {ok, Message}.

on_message_delivered(ClientId, Username, Message, _Env) ->

 io:format("delivered to client(~s/~s): ~s~n", [Username, ClientId,

emqttd_message:format(Message)]),

 #mqtt_message{

 from = {_, UsernameFrom},

 qos = Qos,

 retain = Retain,

 dup = Dup,

 topic = Topic

 } = Message,

 Log = #{

 type => <<"on_message_delivered">>,

 date => erlang:localtime(),

 username => Username,

 message => #{

 from => UsernameFrom,

 qos => Qos,

 retain => Retain,

 topic => Topic,

 dup => Dup

 }

 },

 write_to_es(Log),

 {ok, Message}.

on_message_acked(ClientId, Username, Message, _Env) ->

 io:format("client(~s/~s) acked: ~s~n", [Username, ClientId,

emqttd_message:format(Message)]),

 #mqtt_message{

 from = {_, UsernameFrom},

 qos = Qos,

 retain = Retain,

 dup = Dup,

 topic = Topic

 } = Message,

 Log = #{

 type => <<"on_message_acked">>,

 date => erlang:localtime(),

 username => Username,

 message => #{

 from => UsernameFrom,

 qos => Qos,

 retain => Retain,

 topic => Topic,

 dup => Dup

 }

 },

 write_to_es(Log),

49

 {ok, Message}.

%% Called when the plugin application stop

unload() ->

 emqttd:unhook('client.connected', fun ?MODULE:on_client_con-

nected/3),

 emqttd:unhook('client.disconnected', fun ?MODULE:on_client_discon-

nected/3),

 emqttd:unhook('client.subscribe', fun ?MODULE:on_client_sub-

scribe/4),

 emqttd:unhook('client.unsubscribe', fun ?MODULE:on_client_unsub-

scribe/4),

 emqttd:unhook('session.subscribed', fun ?MODULE:on_session_sub-

scribed/4),

 emqttd:unhook('session.unsubscribed', fun ?MODULE:on_session_un-

subscribed/4),

 emqttd:unhook('message.publish', fun ?MODULE:on_message_pub-

lish/2),

 emqttd:unhook('message.delivered', fun ?MODULE:on_message_deliv-

ered/4),

 emqttd:unhook('message.acked', fun ?MODULE:on_message_acked/4).

6. Request/Aggregation benchmarks

Items count Days amount Server → ES(ms) ES search exec (ms)

13003 66 92 4

13003 66 75 6

13003 66 49 5

13003 66 25 3

13003 66 22 3

13003 66 24 3

13003 66 22 3

13003 66 28 2

13003 66 49 6

Average 42.8888888888889 3.88888888888889

20626 66 53 7

20626 66 32 2

20626 66 20 2

20626 66 27 6

20626 66 23 3

20626 66 45 5

20626 66 26 3

20626 66 23 2

20626 66 29 4

20626 66 22 3

Average 30 3.7

50009 66 65 2

50009 66 33 2

50009 66 28 2

50009 66 23 2

50009 66 22 2

50009 66 22 2

50009 66 24 4

50009 66 21 3

50009 66 26 2

50

50009 66 24 2

Average 28.8 2.3

