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Low-temperature physics, or cryogenics, has fast returned to the forefront of technological 
advancement in recent years with the advent of the quantum computing processor. This 
experimental technology, which is still under development to discover a more stable out-
come, requires extremely low temperatures in order to function properly. 
 
The need for a noiseless environment is obvious in this case, since at the lowest tempera-
tures, even the slightest interference can throw off measurements wildly. Working with 
wiring and electronics, this thesis project aimed to make a cleaner current source for resis-
tive heaters which are used to control thermally isolating heat switches within the devices, 
and also to literally heat up the device after tests have been performed. A prototype was 
developed based on a simple clean current source topology found in a white paper, and 
modified to fit the needs of the specific application. 
 
After multiple iterations, debugging and reworking, the current source prototype was found 
to function as planned. LTSpice simulations done alongside the physical implementation 
agreed with breadboard circuit testing results, and a schematic and layout were created. 
The prototype printed circuit board is now ordered, and components will be hand soldered 
in place before further testing, and then will be tested again in the dilution refrigerators 
themselves. 
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1 Introduction 

 

Cryogenics was originally developed simply as a means to liquefy the permanent gas-

es, which are classified as gases that require temperatures from 174 down to 0 Kelvin 

(K) to enter a liquid phase. They are named as such because they were originally con-

sidered to be unchangeable, and so permanently in a gaseous state. The last gas to 

ever be liquefied was helium, which has the lowest boiling point of any known sub-

stance. Helium-4 was finally liquefied in 1908 at a temperature of 4.2 K, by Dutch phys-

icist Heike Kamerlingh Onnes. [1] 

 

 

Onnes later turned his attention to lowering the temperatures of other elements, mainly 

metals, in a quest for lower resistances. It was theorized at the time that all resistance 

in metals would disappear when they reached absolute zero, also known as 0 K. This 

would have proved very useful for electrical applications, had 0 K temperatures been 

possible, as resistance is literally a loss of electrical power as heat. What he discov-

ered, however, was that the electrical resistances in certain metals dropped quite sud-

denly at temperatures above the unattainable 0 K. The effect, known as superconduc-

tivity, proved to be invaluable in future applications such as particle acceleration and 

magnetic resonance imaging (MRI). [1] 

 

 

In today’s technological world, cryogenic research has applications in superconductivi-

ty, space technology, and even waste management, where rubbers or plastics are 

chilled to temperatures around 175 K and then crushed and ground into fine reusable 

granules. The newest arrival, quantum computing research, is still in its infancy, but 

quantum computational operations have been executed on small numbers of quantum 

bits (also known as qubits) already. Many governments as well as private companies 

continue to fund research of this technology, which would be far more powerful than 

conventional computing techniques. Quantum computing currently is only able to func-

tion at any useful capacity when it’s at extremely low temperatures, however, since 

qubits require temperature that is much lower than their characteristic energy. As the 

temperature drops, the functions of the processors become more and more stable and 

accurate, and so more feasible. [1; 2] 
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To perform proper research on these quantum devices, a clean noise free environment 

is essential. It’s exceedingly difficult to operate test equipment and perform actual 

measurement without electrical signals. The need for a clean current source for the 

cryostat heat-switches, which control movement of gases which thermally couple or 

decouple different temperature plates in the refrigerators, was born from this require-

ment, this being essential to a rapid cooling process achieving these low temperatures. 

 

The focus of the project was to simply create a new current source for the heater 

switches, which would produce less noise and efficiently provide the needed heating 

power to control the required functions. 

  

2 Theoretical Background of Current Source for Cryo-Systems 

 

 

This section will explain the general idea behind this project and its motivations, as well 

as how it should work. First a brief explanation is given for dilution refrigerators, to help 

give some understanding of where this project is coming from. The second section de-

scribes how the heaters are used in the dilution refrigerators. Noise concerns are ex-

plained to give an idea of why this project aimed to redesign the current supply. Finally, 

the current source itself is covered, including then the voltage regulator which powers 

it. Appendix figure 6 shows the internal system of one of the refrigerators where this 

project will be implemented. 

 

 

2.1 Dilution Refrigeration 

 

 

In recent history, before dilution refrigeration, there were no available forms of continu-

ous cooling to temperatures under ~3mK. Previous to this technology, the common 

method for reaching such low temperatures was to have a cold chamber submersed in 

a cryogen bath. The cryogens, liquid helium typically for very low temperatures, would 

be boiled off and essentially lost to achieve cooling. This system could become espe-

cially expensive when trying to reach any temperatures down to 1 K, because it re-
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quires a second pot of helium-4 isotope, which would also be eventually lost. Though 

some helium recycling systems were developed, they could never maintain any tem-

peratures below ~2 K. 

 

Pulse tube refrigeration technology has made it possible to achieve low temperatures 

without losing helium-4 to evaporation. Two stage pulse tube refrigerators have 

reached temperatures below 2 K without the use of any cryogens. The basic configura-

tion is a metal cylinder with one open end and one closed off end. The open end pro-

vides low temperatures while the closed end accumulates the heat. Both are connected 

to their respective parts with heat exchangers. The tube works on a principle of gas 

compression within the tube which draws heat energy away from the open end of the 

tube and into the pressurized gas in the closed end. [3] 

 

 

Figure 1. Schematic diagram of the low-temperature part of a dilution refrigerator. 
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The dilution refrigerator equipped with pulse tube technology was the solution for ex-

treme cooling without the wasteful cryogen baths. They used the helium recycling sys-

tems to cool helium-4 and helium-3 to stable liquid state temperatures, then they com-

bined them in a mixing chamber in the lowest level of the cooling chamber. By combin-

ing the helium-3 into the helium-4, they produce a sort of distillation process by which 

the helium-3 sinks from a higher phase of a nearly 100% He-3 into the isotope mixture 

phase, consuming heat energy in the phase change process. This occurs due to prop-

erties of the two isotopes which cause them to want to reach an equilibrium state of 

about 6.6% He-3 and 93.4% He-4 in the mixed phase. Any percentage of He-3 above 

that is pushed out and rises, cooling the incoming He-3 until it reaches the still, from 

whence it is sent through the cycle of cooling stages until it enters the mixing chamber 

once again, as seen in figure 1. 

 

2.2 Project Concept 

 

 

In dilution refrigerators, there is often need to either thermally couple, or thermally iso-

late different stage plates from each other. For this reason, the heat switches are es-

sential to expedite both the cooling down and heating up of the refrigerator 

 

These switches are operated by absorbing thermally conductive gas when they’re 

cooled, effectively decoupling two surfaces from one another, or conversely by desorb-

ing the same gas and coupling the surfaces instead. The heat required to activate 

these switches is minute, and since the chambers are being cooled during normal op-

eration of the machines, the cooling is provided by the environment. The heat then 

needs to be provided, and small manganin coil heaters are used to do so. 

 

The heaters used are typically powered with DC current fed through phosphor-bronze 

wires which lower their resistance as they are cooled. In order to produce heat, howev-

er, there is a manganin twisted wire loop tightly coiled around a gold-plated copper 

bobbin. Manganin has the special property that its resistance stays relatively stable 

even at extremely cold temperatures. This means that even in the low temperatures 

present in the fridge, the resistive manganin coil will still heat up sufficiently to operate 

the heat switches when a current is passed through. 
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Since there are currently three different heat switch wire configurations (single, double, 

and quad), with each acting as resistors in parallel, the proposed current source has 

been designed with different current output options included in the design. Each current 

can be selected using a small dual in line (DIP) switch on the printed circuit board 

(PCB), which supply voltage over differing resistances to produce desired values. 

Those currents are fed from the external heater controls into the device through her-

metically sealed wire feedthroughs. That external heater control box is where the pro-

posed circuit will be implemented. 

 

 

2.3 Need for Low-Noise 

 

 

In the cooled, ultra-low energy environment inside the refrigerators, there is a need for 

minimal interference of any sort. The lowest portion of the cooling chamber is so cold 

that in orders of magnitude, it is comparable to the difference between temperatures on 

earth versus temperature in the middle of our star, the sun. It takes immense amounts 

of energy to achieve these extraordinarily low temperatures, but the smallest amounts 

of stray energy released into such an environment can quickly vitiate the cooling 

achieved. 

 

In addition to the low temperatures themselves being threatened by any sorts of stray 

radiation, the chambers are almost exclusively used to perform tests on materials or 

devices which are very sensitive to any sort of interference. The requirement for a su-

per low-temperature environment is generally because there is need for a lack of any 

sort of external energy intrusions, as these would confound the hypersensitive results 

of such analysis. 

 

Since direct currents can be easily isolated by physically disconnecting wires, and the 

heaters are powered by DC, the problem is with stray alternating currents causing radio 

interference, inductive coupling, or capacitive coupling. Limiting noise in components 

and the circuit as a whole helps to minimize these undesirable effects in the environ-

ment. Even though the circuit in question will be located outside the dilution chambers, 

the signals running through the lines will transmit much of the stray interference origi-

nating from the current supply. 
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2.4 Precision Current Source 

 

 

Current sources are useful for a multitude of reasons. They provide a constant current 

over a load, even when the load resistance varies, to certain limitations, of course. 

Within those set limits, though, the steady current can be very advantageous in such 

applications as driving LEDs, where the colour temperature changes depending on the 

current. They can be used in battery charging applications, in multimeters to measure 

resistance, to bias a transistor, or in this case to power a resistive heater. [4] 

 

 

Figure 2. Difference amp and op amp form precision current source. [4]  

 

 

A precision current source can be built using an Op-Amp (Operational Amplifier), resis-

tors, and other discrete components. In the proposed current source, based on the 

AD8276 shown in figure 2, the output current can be calculated as follows: [4] 

 

 

𝐼𝑜 = 𝑉𝑟𝑒𝑓

𝑅𝑓2

𝑅𝑔2
+

𝑅𝑓1

𝑅𝑔1
∗

𝑅𝑓2

𝑅𝑔2

𝑅1 (1 +
𝑅𝑓2

𝑅𝑔2
) + 𝑅𝑙𝑜𝑎𝑑 (

𝑅𝑓2

𝑅𝑔2
−

𝑅𝑓1

𝑅𝑔1
)
 

(1) 

 

If the internal resistances are all equal, the equation can be reduced to: [4] 
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𝐼𝑜 =
𝑉𝑟𝑒𝑓

𝑅1
 

(2) 

 

The maximum output current is limited by the op amp input range, diff amp output 

range, and diff amp SENSE pin voltage range. The following three conditions must be 

met: [4] 

 

𝑉𝑙𝑜𝑎𝑑 =  𝐼 × 𝑅𝑙𝑜𝑎𝑑 Within op amp input range  (3) 

 
 
 

𝑉𝑜𝑢𝑡  =  𝐼 × (𝑅𝑙𝑜𝑎𝑑 + 𝑅1) Within SENSE pin voltage range = 2(–Vs) – 
0.2 V to 2(+Vs) – 3 V  (4) 

 
 
 
 𝐼 × (𝑅𝑙𝑜𝑎𝑑 + 𝑅1)  + 𝑉𝑏𝑒 Within AD8276 output voltage range = –Vs + 

0.2 V to +Vs – 0.2 V  (5) 

 

The SENSE pin can tolerate voltages almost twice as large as the supplies, so the 

second limitation will be very loose. [4] 

Many alternate configurations were offered which could accommodate such require-

ments as eliminating the need for the feedback amplifier, significantly lower cost at the 

expense of accuracy, or simplified circuits for low current applications. The original pre-

cise composition was chosen, however, because it was the best suited to the goals of 

the project, which was noise reduction and reliable current output in the desired range 

of 30 mA to 90 mA. 

The boost transistor needed to have a Vc (collector voltage) higher than the power 

supply voltage and Ic (collector current) higher than the chosen output current. The 

transistor MMBT2222 was selected from available parts in the workplace, and it held 

up in every step of design and testing. 
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2.5 Voltage Regulator 

 

 

To properly run the proposed a current source, a steady regulated voltage is required. 

The simple and low-cost LM317 was chosen originally as it was easily available. It held 

up to scrutiny throughout development, and is used in the final circuit version. 

 

 

Figure 3. Final hand-drawn schematic of single source with voltage regulator and MOSFET 
switch. 

 

The final single-source hand-drawn schematic can be seen in figure 3. The top portion, 

above the 9.2 V point, is the voltage regulator circuit, based around the LM317. This is 

a 3-terminal floating regulator. During operation, it develops and maintains a voltage of 

1.25 V between its output and adjustment terminals. It is shown in the drawing with 
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output on the middle terminal and adjust on the right because the physical package is 

implemented this way, despite all design schematics showing them reversed. 

 

 

Figure 4. The highlighted regulator circuit surrounded by blue here, but excluding the voltage 
divider made up of R6 and R7. 

 

 

In figure 4 is illustrated the voltage regulator sub-circuit. The pin on the left, pin 3, is 

where the input voltage is supplied, from the battery or otherwise. The right pin, pin 4, 

is the output in this diagram. This is connected to the ground with a tantalum capacitor 

in order to improve transient response in the circuit, meaning that the voltage level will 

oscillate less before returning to a steady state after the input has changed or the load 

resistance has change. Pin 1 is the adjustment pin which controls the output of the 

regulator. Reference voltage at the terminal is converted to a programming current by 

the 240 Ω resistor, and this constant current flows through the 1380 Ω resistor to 

ground. The output voltage is calculated from this current as follows: 

 

 

𝑉𝑜𝑢𝑡  =  1.25𝑉 (
𝑅2

𝑅1
) + 𝐼𝑎𝑑𝑗(𝑅2) 

(6) 
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The adjustment terminal current represents an error term in the equation, and the 

LM317 was designed to control Iadj to less than 100 µA and keep it constant. To ac-

complish this, all the quiescent operating current, which is the baseline current drawn 

by the device when it’s not loaded, is fed back to the output terminal. This imposes the 

requirement for a minimum load current. If the load current drops below the minimum, 

the voltage will rise. [5] 

 

3 Design Process of the Low Noise Current Source 

 

 

This section will cover the process which eventually led to the final circuit design ex-

plained below. The first part of design was replicating a functioning current source with 

individual components and then the voltage regulator. Afterwards switching was added 

and then multiple iterations of the current supply. All design was done originally on pen 

and paper and then schematics were created with DipTrace software on a computer. 

 

 

3.1 Core Current Supply Circuit 

 

 

The basis for the current source to be used in the devices was the AD8276 described 

earlier in the theoretical background portion of this report. The circuit was recreated at 

first using spare parts around the workplace which conformed roughly to the specifica-

tions, and some of the circuit worked well with these components. Later, however, 

some others needed to be replaced with more accurate parts. 

 

The topology originally used the LM358, but in our configuration the difference amplifier 

was saturating and causing the voltage to hover some ~2 volts above the 0 V baseline 

when it was turned off, as well as inaccurate following and insufficient voltage outputs. 

The voltage was somewhat limited by a battery option which some customers request 

because they prefer to have no direct outside wiring leading into the room where they 

perform their testing. Though the battery is not the default option, the circuit would be 
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best designed to conform to the stricter limitations of the battery supply, as opposed to 

the directly wired supply. 

 

The battery voltage would vary from around 13 V down to 10.8 V, and the LM317 volt-

age regulator stabilized the output voltage into the main circuit at 9.2 V.  A rail-to-rail 

capable amplifier with a more stable architecture would be required to produce enough 

current from this voltage, to remedy the saturation issues, and to have higher accuracy 

in following the sense resistor to produce proper amperages. The LM6134 was ulti-

mately chosen as the most suitable component package, with 3 out of the 4 op-amps 

being utilized. 

 

 

3.2 MOSFET Controlled Switches and Multiple Current Supplies 

 

 

Once the core circuit was functioning as was necessary, a MOSFET (Metal-Oxide-

Semiconductor Field-Effect Transistor) switch was added to provide or cut input voltage 

into the difference amplifier’s positive input, effectively turning the current on or off. This 

voltage was regulated by a shunt diode to around ~3.3 V, and passed through a volt-

age following amplifier to reduce current leakage. Different sense resistor values were 

wired to the previously mentioned DIP switch to produce the differing currents needed. 

The main voltage regulator will be used to power the four identical precision current 

sources, each of which can be turned on or off by whichever sort of external switch, 

which provides voltage to the MOSFET gates. 

 

The prototype is able to power four separate heat switch wirings, each with different 

current, in the end. This satisfied the needs of the original goal and subsequent goal 

modifications during the design and development process.  
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Figure 5. Simple voltage regulation circuit with LM317 and 4 attached current source circuits. 

 

 

The schematic in figure 5 shows clearly how the ‘Switch’ terminals in the sub-circuit 

components labelled ‘Unit 1’ are wired to screw terminals in the J2 component at the 

top. These screw terminals can be connected to different external switching options, 

such as air pressure switches, which are used by some customers to avoid directly 

connecting the heaters to an external power source, and the noise or interference that 

may come with them. The voltage divider constituting of R6 and R7 is present to supply 

~5 V to the MOSFET switches, which is the optimal voltage to operate the gate. J1 is 

another screw terminal to be connected to the power source, whether battery or other-

wise, and an external ground, if necessary. There are test points, including a ground 

pad, as seen in figures 5 and 7, placed throughout the circuit to allow for easier debug-

ging once the prototype PCBs are delivered. U2, U4, U5, and U6 are custom pads de-

signed to fit connectors which are commonly used with the refrigerators in question. 
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Figure 6. Current supply circuit with MOSFET switch on left and sense resistor switches on 
bottom right. 

 

The current supplying sub-circuits represented as components in figure 5 can be seen 

as independent schematics in figure 6. The ‘Pos Load’ and ‘Neg Load’ lead to the spe-

cial custom pads, power is supplied from the voltage regulator output, ground is con-

nected universally, and the switch connects to the screw terminals to be controlled ex-

ternally. The quad Op-amp package LM6134 is U3, with the power supply having simp-

ly that designation, and the individual amplifiers having dot plus number identifiers 1-4. 

You can see that the fourth amplifier is not yet in use in the circuit, and it may remain 

so, though it could potentially be useful in future iterations. 
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3.3 PCB Design 

 

 

The board layout was done multiple times to suit evolving needs for the size and spe-

cific components and connectors available. The external connections are still not con-

firmed at the time of writing, but the general configuration will not be greatly altered. 

One can see the layout on all four planes in figure 7. The four separate current supply 

circuits are clearly laid out side by side, and the regulator and screw terminal connec-

tions at the top. The ground pad is located in the bottom left of the whole board, and 

test points, not to be confused with the connection pads, are scattered around where 

ever they could fit.  

  

 

Figure 7. Board layout with Top (blue), Power plane (red), Ground plane (green), and Bottom 
(pink). 
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The board was designed to fit into a metal casing which conforms to other designs be-

ing implemented in company products. 7 cm x 7 cm was regarded to be small enough 

to fit and leave breathing room for any unanticipated differences. Using the DipTrace 

software, the components were laid in place one by one by hand. Ease of component 

soldering was taken into account, and so component designations (RefDes) will be 

printed on the board as close to their components as possible in the crowded top layer. 

The four duplicate circuits are also laid out independently from each other, and with as 

similar layout as possible for this reason. 

 

The capacitor C1 is placed as close as possible to the input pin for the regulator. This 

helps it function as efficiently as possible. The power plane and ground plane were 

added to reduce common impedance coupling in their respective paths, as well as to 

simplify routing. The top and bottom layers were filled with copper pour and connected 

to ground for increased effectiveness. 

 

The thermal component LM317 is connected with multiple vias, or holes with metal for 

conducting, to the power plane and a specially added heat dissipation plane on the 

bottom of the PCB. The 3D PCB layout design shown in figure 8 highlights the exposed 

pads where components will be soldered to the board. One can see that some pads 

are routed directly to the ground plane through vias, as well as to the copper pour on 

both top and bottom. 

 

The placement of the specially designed connector pads needed to be specific so the 

connectors themselves would feed through predetermined holes in the front plate of the 

casing. They’re equally spaced at about 28mm apart and equidistance from the sides, 

but oriented towards the bottom of the PCB. The screw terminals were required to be 

on the opposite, in this case top, end of the board so that wiring could easily be fed into 

the side of the metal casing. Screw holes at the outer corners of the board will be used 

to secure the board in the enclosure using M3 screws. 

 

Do to both board size constraints and height of the casing constraints, all components 

were surface mounted devices (SMD), if possible. Through holes were used for exter-

nal connectors such as the screw terminals and the connector pads mentioned, but 

otherwise unnecessary. Thusly the PCB could remain quite compact and fit easily ac-

cording to specifications. 
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Figure 8. 3-dimensional representation of the PCB which better reveals the pads, copper pours, 
and silk. 

 

 

The silk screen on the top of the circuit identifies all the components by RefDes num-

bering, outlines component and other package placements, and identifies the board 

designer and version. 

 

 

3.4 Component Selection 

 

 

Component selection was carried out initially mostly based on current stock availability 

in the company inventory. Cost was taken into consideration from beginning to end, but 

some components proved to be shoddy or noisy if too cheap. In the end a balance be-

tween price and quality was struck to maintain a cleanly and precisely operational de-

sign. Some components were confined to much stricter requirements and some func-
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tioned effectively within the lower price ranges. The bill of materials for the PCB can be 

seen in appendix figure 1. 

 

The operational amplifier was originally the LM358, after a mix-up with the LM393 at 

the start. The LM358 seemed to function correctly when testing began and the sense 

resistor was set to a larger value around ~200 Ω. However, when the resistance need-

ed to be lowered to increase current flow, the amplifier ran into multiple issues. Firstly, 

since it was not a rail-to-rail amplifier, it was unable to maintain currents high enough 

for some of the specifications based on the voltage provided to it. Secondly, the amps 

became saturated and could not return to 0V even when voltage to the difference amp 

was shut off at the MOSFET. The amplifier was upgraded to the LM6132 to deal with 

this, and later since 3 amps were required the LM6134 package, which contains 4 iden-

tical amplifiers. These amplifiers are a lot more expensive, but they function precisely in 

testing. They’re planned to be used in the final implementation of the device. 

 

The bipolar junction transistor was not to be subjected to high stresses, so a transistor 

available in inventory was chosen. The MMBT2222 NPN general purpose silicon tran-

sistor is quite generic and low cost impact. It showed no signs of failure in any of the 

testing, and so it will remain in the final circuit design. 

 

The next major component was the LM317 linear voltage regulator. This is cost-

effective but quite efficient and reliable in our application. Though a more expensive 

regulator could have possible squeezed a few more tenths of a volt from the battery 

supply, it didn’t seem necessary. After adjusting the output of the regulator from 8.9 V 

to 9.2 V using slightly adjusted resistor values, every part of the circuit managed to 

function effectively. 

 

Giving the difference amp the proper input voltage to create the selected current across 

the load was the next task. To modify the main regulator’s voltage output to an appro-

priately lower voltage was accomplished with the LM4040 precision micropower shunt 

voltage reference. This component comes with several options for fixed reverse break-

down voltages, of which 4.096 was chosen. The component behaved exactly as it 

should, and so no upgrades were necessary. 

 

To control the on off functions, a simple MOSFET could be used before the shunt ref-

erence to connect or disconnect it from the supply network, thus controlling voltage to 
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the difference amplifier input. The STN4NF20 N-Channel low gate charge power 

MOSFET was chosen, and like the regulator and shunt reference, it worked as planned 

and was kept into the final design stage. 

 

External connections in the form of screw terminals were chosen to be as low profile as 

possible and cost-effective, but durable. The Phoenix Contact EMC 1,5/ 8-G-3,81 con-

formed best to requirements, and has been ordered for implementation in the final de-

sign. Appendix figures 2 through 4 show a later update to the PCB design to accom-

modate new connectors. 

 

A selection switch with a fairly low profile needed to be selected to choose between the 

sense resistor path options. The C & K Components TDP04H0SBD1 DIP / SIP Switch 

with 4 relays was used despite only needing 3. The fourth relay could possibly be im-

plemented in later versions if more current levels are added. 

 

The capacitors in most of the circuit are identical 100 nF ceramic capacitors. Price and 

availability led to the choice of Kemet multilayer SMD 0603 package capacitors. As far 

as any evidence shows, they have no functional deficiencies, and they are the final 

choice. Originally the capacitors used were indeterminate spares from inventory, but 

likely quite the same as the final orders. The one different capacitor, the tantalum 1µF 

capacitor, was used because of recommendation in the regulator datasheet. One large 

version was used on the breadboard from inventory initially, but the in the final version 

a 0603-package version from AVX was ordered. 

 

Resistors are the final and most numerous components on the board. To try and keep 

noise low in the overall circuit, all resistors were chosen as thin-film or metal-film. Most 

resistors were quite reasonably priced, but a few had higher prices due to unusual val-

ues, or in the case of the 10 KΩ resistors, higher quality. The 10 KΩ resistors are cur-

rently listed as Panasonic metal film 150 V 0603 package, but they may be changed for 

price considerations before final production. 
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4 Testing of System by Simulation and Physical Tests 

 

 

This section will cover both the physical testing and the testing performed on LTSpice 

simulation software. All simulation testing was carried out on a laptop computer at the 

company. Testing for the voltage and current were also testing at the workplace, but 

using power supply, signal generator, and oscilloscope. The final noise testing was 

carried out at Metropolia’s Albertinkatu campus using the network analysers available 

to students there. 

 

 

4.1 LTSpice Testing 

 

 

The LTSpice free-to-download software was used alongside the physical prototype to 

perform some preliminary testing with presumably fewer random variables. 

 

 

Figure 9. LTSpice schematic created for preliminary testing. 

 

 

The simulation circuit shown in figure 9 used AD8031 op-amps as a substitute for the 

LM6134, which was not available for the program. They functioned quite the same in 

simulation as the others did in the prototype breadboard circuit. Since there was no 
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way to implement an external switch in the simulation, a pulse was generated at V2 to 

the MOSFET gate, which should switch the current source on and off, generating the 

desired currents to the load. 

 

 

4.1.1 DC Voltage and Current 

 

 

Testing was done on the LTSpice circuit to determine whether it would reliably produce 

the desired currents and voltages in at key nodes and across the load. 

 

 

Figure 10. LTSpice simulation test measurements. 

 

 

The measurement results from the LTSpice simulation can be seen in figure 10. The 

red line is the output voltage from the voltage regulator to the current source circuit, 

blue is the current at the load resistor, and the green line is the voltage at the MOSFET 

gate, shown to compare with the other two to determine response. You can see that 

the response in this circuit is flawless, though the physical model wasn’t quite so per-

fect. The current output is also at the desired level for the heater load, which in this 

case was 90mA. The voltage from the regulator dips when the circuit is turned on, but 

the amount is negligible and it doesn’t affect performance of the supply at all. The 

LTSpice simulations were successful and in agreement with the prototype, once it had 

been debugged and modified. 
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4.1.2 Noise 

 

 

The LTSpice model was modified a bit at first to try to find the most accurate noise test-

ing configuration. Though the AD8031 op amps used in the earlier simulations per-

formed well as substitutes for the LM6134 behaviour regarding current output, they 

were discovered to be unacceptably noisy, producing nearly a full volt of noise below 

100 Hertz. A spice model of the LM6132 (a two-pack version of the LM6134) obtained 

from the web was imported into the program to get more accurate results. 

 

 

Figure 11. Updated LTSpice circuit with LM6132 op amps. 

 

Figure 11 shows how the switch side of the circuit was cut off for simplicity and the 

more accurate op amps replaced the substitute AD8031. The noise test on the new 

circuit showed spectacular noise performance, around 2-3 nanovolts, as shown in fig-

ure 12. 
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Figure 12. LTSpice noise measurement at output. 

 

Despite not having proper spectrum analysis available for the real prototype, the results 

from the simulation seem to suggest project goals were likely achieved. 

 

4.2 Prototype Testing 

 

 

The prototype was tested repeatedly throughout the building of the breadboard circuit, 

and will be tested further after the completed printed PCB has arrived and components 

are soldered. The first tests done were to see that a constant voltage could be main-

tained to drive the current source circuitry. Once a stable voltage was achieved, the 

current source itself was tested for amplitude stability and response, which is where the 

most extensive testing was performed. There was a lot of debugging involved and 

component changes to finally get the desired results. Finally, noise measurements 

were carried out to determine whether the properly functioning architecture would in-

deed have reduced noise output as compared with the previous heater current supply. 

 

 

4.2.1 Voltage Supply 

 

The supplied voltage was originally calculated with a battery voltage range from ~13 V 

down to 10.25 V, and supplying a voltage of 8.96V to the rest of the circuit. The system 

performed as expected after a few resistor tweaks, and a steady voltage was main-
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tained. Afterwards, however, the 8.96 V was deemed insufficient, and the battery range 

was reconsidered. 13 V down to 10.8 V would supply 9.2 volts continually, so the resis-

tors were adjusted and tested again. Tests agreed with assumed values, and so this 

configuration was kept into the final design. 

 

 

4.2.2 Current Output 

 

 

Testing of the current output was carried out in the workplace where the circuit was 

designed and produced. The current output was one of the most important functions of 

the entire project, so it was tested extensively from the beginning to the current portion 

of implementation. Early testing showed that the amplifier was not responding to input 

at all, but it was discovered that the voltage to be input was in fact wired incorrectly. 

After correcting this issue, the device began to respond, but response was inadequate. 

Resistor values were re-evaluated, and eventually a secondary voltage follower was 

added before the difference amplifier input to attempt to mitigate saturation. Tests 

however demonstrated a need for a superior quality amplifier, because at lower sense 

resistor values the circuit could not fully turn off. Ultimately, with the improved compo-

nents, tests did show the circuit was able to output appropriate currents with all resistor 

values, and able to drop to baseline effectively when turned off. 
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Figure 13. Oscilloscope measurement with input to op amp terminal in yellow and load voltage 
in green. This measurement is with the sense resistor removed. 

 

Figure 13 shows that with the sense resistance left open, almost no voltage reaches 

the load, and no signal is transmitted whatsoever. In figure 14 the sense resistor is set 

at 15 Ω, and the load is left open. This produces nearly maximum voltage of about 8.8 

V across the load, but of course, no current flows in this case. These tests were carried 

out simply to make sure there were no shorts or other issues with the circuit. 

 

 

Figure 14. No load resistor, or open load. Voltage was quite high at 8.8 V. 

 

After checking that the circuit behaved as expected with the load and sense resistanc-

es, testing proceeded to finding the desired currents across the three heater load con-

figurations. The load voltage shown in green in figure 15 held steady at 4.2 V and re-

sponded cleanly to input signals. The voltage produced the correct amperage across 

the 140 Ω load resistance, at 30 mA. This can be simply attained using Ohm’s law: 

 

𝐼 =
𝑉

𝑅
      or     

4.2𝑉

140Ω
= 30𝑚𝐴 

(7) 
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Figure 15. Voltage across 140 Ω load producing 30 mA current. 

 

The next target current was 60 mA across 4 parallel heaters equalling about 90 Ω. You 

can see that the voltage level of 5.4 V in figure 16 coincides quite precisely with this 

expectation. This was achieved by adjusting the sense resistor value from the lower 10 

Ω used in with the 140 Ω load. The value used for the 90 Ω double heater load was 

instead a 15 Ω sense resistor. The final sense resistor value was 35 Ω for the 50 Ω 

quad heater load. 

 

Figure 16. Voltage across 90 Ω load which produced the 60 mA current. 
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The final value needed was 90 mA across a load value of 50 Ω for 6 heaters in parallel. 

Again, the circuit performed well and produced the proper 4.48 volts over the load to 

give acceptable amperage, as seen in figure 17. 

 

 

Figure 17. Voltage across 50 Ω load producing the final 90 mA required. 

 

 

 

Earlier testing was carried out at many points during the design phase. The results 

were used to modify sense resistors and other components to finally reach the desira-

ble results seen in the figures 11-15. Since the circuit was updated along the way, 

however, there was no time to backtrack and obtain the earlier results again for display 

in this report. The final testing demonstrates satisfactory circuit performance. 

 

 

 

5 Conclusions on the Project 

 

 

This project was carried out during the spring of 2017 for Bluefors Cryogenics compa-

ny. The work time allocated for the project was generally around 6 or less hours a 
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week, during work hours. Other time was spent researching or writing at home, or 

sometimes testing at the Metropolia campus. The project managed to progress nearly 

to the completion of the product being designed, though further prototype verification 

will be required. 

 

The handmade prototyping phase was completed, however, and the main desired 

characteristics were demonstrated to be satisfactory. The circuit appears to be stable 

and reliable. Voltages were measured to be correct where needed, and the most im-

portant current output was as required. 

 

The goal of the project was mainly to produce a circuit design which would ultimately 

be used to efficiently and precisely power the heat-switches in the dilution refrigerator. 

Since the prototype already fulfils the requirements, it’s reasonable to assume that any 

further issues with prototyping will be minimal. In the opinion of the author, this project 

has succeeded in providing what was asked. 

 

Further debugging and testing will be carried out with the actual refrigerators, even 

after the final year project has been returned. The project has been a success in help-

ing to improve techniques in design, research, time management, and meeting cus-

tomer demands. 
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Additional Figures and Tables 

 

Appendix Table 1. Bill of Materials. 

RefDes Value Digikey Farnell Quantity 
C1, C3, C4, C5, C6, 
C7 100n 

 
1414028 21 

C2 1u 
 

2408419 1 

D2 
  

1468840 4 

J1 
  

3041359 1 

J2 
  

3704634 1 

Q3 
  

1459098 4 

Q4 
  

2629750 4 

R1 240 
 

1670168 1 

R2 1330 
 

1809846 1 
R3, R4, R5, R18, 
R19, R20, R21, 
R22, R23 

   

36 

R6 82 
 

1577592 1 

R7 100 
 

1577593 1 
R8, R9, R10, R25, 
R26, R27, R28 10k RG16N10.0KWTR-ND 1717692 28 

R11 49.9 
 

1809605 1 

R24 1k 
 

1577605 4 

R29 6810 
 

2094645 4 

R30 3740 
 

1809791 4 

R31 4750 
 

2094611 4 

R32 2100 
 

2094535 4 

S2 
  

2435180 4 
TP1, TP2, TP3, TP4, 
TP5 

   

17 

U1 
  

1564300 1 

U2, U4, U5, U6 
   

4 

U3 
 

LM6134BIMX/NOPBCT-
ND 9490027 4 

U18 gnd 36-5016CT-ND 
 

1 
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Appendix Figure 1. Bottom side of the updated PCB layout. 
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Appendix Figure 2. Ground plane of the updated PCB layout. 
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Appendix Figure 3. Power plane of the updated PCB layout. 
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Appendix Figure 4. Top side of the updated PCB layout. 
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Appendix Figure 5. Bluefors LD Dilution Refrigeration System. Copied from Bluefors Standard 
Range Models URL: http://bluefors.com/index.php/ld-series 


