

Lasse Malmberg

Development of a Client-Server Chat Application

Thesis

Kajaani University of Applied Sciences

Bachelor of Business Administration

Business Information Technology

2017

 OPINNÄYTETYÖ
 TIIVISTELMÄ

 Koulutusala Koulutusohjelma
Luonnontieteiden ala Tietojenkäsittely

 Tekijä(t)

Lasse Malmberg

 Työn nimi
Asiakas-Palvelin-Keskusteluohjelman Kehitys

vaihtoehtiset Vaihtoehtoiset ammattiopinnot Ohjaaja(t)

 Datacenter-ratkaisut Deepak K.C.

Toimeksiantaja

 Aika Sivumäärä ja liitteet

2017-05-04 45

 Opinnäytetyön tavoitteena oli kehittää yksinkertainen asiakas-palvelin-keskusteluohjelma. Opinnäytetyö keskittyy
pääasiassa ohjelman kehitysprosessiin ja siinä käytettyihin työkaluihin.

Ohjelman kehityksessä käytettiin C++-ohjelmointikieltä ja SDL-ohjelmistokehityskirjastoa. Kehitysympäristö
koostui enimmäkseen komentorivityökaluista.

Keskusteluohjelma saatiin kehitettyä työn aikana. Ohjelma on työpöytäapplikaatio, joka on testattu Windows 10 -
käyttöjärjestelmällä. Ohjelmaa hallitaan komennoilla. Ohjelma sisältää sekä asiakas- että palvelinominaisuudet
samassa suoritettavassa tiedostossa.

Lähdekoodi on luettavissa osoitteessa https://github.com/LasseMalmberg/chat. Säilytyspaikka sisältää Windows
10 -käyttöjärjestelmälle valmiiksi käännetyn version ohjelmasta.

Kieli Englanti

Asiasanat keskusteluohjelma, asiakas-palvelin, c++, sdl, ohjelmointi, ohjelmistokehitys

Säilytyspaikka Verkkokirjasto Theseus
 Kajaanin ammattikorkeakoulun kirjasto

https://github.com/LasseMalmberg/chat

 THESIS
ABSTRACT

School Degree Programme

Natural Sciences Business Information Technology

 Author(s)

Lasse Malmberg

 Title
Development of a Client-Server Chat Application

vaihtoehtiset Optional Professional Studies Instructor(s)
Datacenter solutions Deepak K.C.

Commissioned by

 Date Total Number of Pages and Appendices

2017-05-04 45

 The goal of the Bachelor’s thesis was to develop a simple client-server chat application. The focus was on the
development process and the underlying technologies that were utilized in the development of the chat application.

The chat application was developed with the C++ programming language and the SDL software development
library. The development environment consisted primarily of command-line operated tools.

The thesis resulted in a functional chat application. The program is a desktop application that has been tested on
the Windows 10 operating system. The program is controlled with commands. The same executable file includes
both client and server functionality.

The source code is available at https://github.com/LasseMalmberg/chat. The repository includes a precompiled
version of the program for the Windows 10 operating system.

Language of Thesis English

Keywords chat, client-server, c++, sdl, programming, software development

Deposited at Electronic library Theseus
 Library of Kajaani University of Applied Sciences

https://github.com/LasseMalmberg/chat

TABLE OF CONTENTS

1 INTRODUCTION 1

2 NETWORKS 2

2.1 The Internet 2

2.2 TCP/IP suite 3

2.2.1 Application layer 4

2.2.2 Transport layer 5

2.2.3 Network layer 5

2.2.4 Link layer 6

2.2.5 Physical layer 7

2.3 Application architectures 7

2.3.1 Client-server 7

2.3.2 Peer-to-peer 8

2.4 Sockets 9

2.4.1 TCP 11

2.4.2 UDP 11

2.5 NAT 12

3 TOOLS OF THE TRADE 16

3.1 Programming language 16

3.1.1 Considerations 16

3.1.2 C++ 17

3.2 Language processor 18

3.2.1 Compiler 19

3.2.2 GCC 19

3.3 Debugger 20

3.3.1 Debugging 20

3.3.2 GDB 21

3.4 Libraries 22

3.4.1 C++ standard library 22

3.4.2 SDL 23

3.5 Source code editor 23

3.6 Build automation tool 24

3.7 Version control system 25

3.8 Modeling language 26

4 CHAT APPLICATION 28

4.1 Planning 28

4.1.1 Overview 28

4.1.2 Requirements 29

4.1.3 User interface 30

4.2 Development environment 31

4.3 Coding conventions 32

4.4 Program structure 33

4.4.1 Engine 34

4.4.2 Application 36

4.5 Build system 38

4.6 Testing 38

4.7 Demonstration 39

4.8 Analysis 41

5 CONCLUSION 43

REFERENCES 44

LIST OF SYMBOLS

API Application Programming Interface

AWS Amazon Web Services

DHCP Dynamic Host Configuration Protocol

DLL Dynamic-Link Library

DNS Domain Name System

FTP File Transfer Protocol

GCC GNU Compiler Collection

GDB GNU Project Debugger

GNU GNU’s Not Unix

GUI Graphical User Interface

IDE Integrated Development Environment

IEEE Institute of Electrical and Electronics Engineers

IPv4 Internet Protocol Version 4

ISO International Organization for Standardization

ISP Internet Service Provider

MAC Media Access Control

MinGW Minimalist GNU for Windows

NAT Network Address Translation

NIC Network Interface Controller

P2P Peer-to-Peer

SDL Simple DirectMedia Layer

SMTP Simple Mail Transfer Protocol

STL Standard Template Library

STUN Simple Traversal of UDP through NAT

TCP Transmission Control Protocol

UDP User Datagram Protocol

UML Unified Modeling Language

VCS Version Control System

1

1 INTRODUCTION

The goal of the thesis was to develop a simple client-server chat application. The focus was

on the development process and the underlying technologies that were utilized in the

development of the chat application. A chat was chosen as the topic for the application

because it requires little domain-specific knowledge to understand. Thus, more time could be

spent on developing the software instead of trying to grasp what the problem is. A chat is also

very flexible in terms of scope; features could be added or removed easily.

The chat application was developed with the C++ programming language and the SDL

software development library. The development environment consisted primarily of

command-line operated tools.

Chapters two and three cover the preliminary theoretical knowledge that forms the basis for

the chat application. Chapter two introduces the most fundamental computer networking

concepts, while chapter three presents the tools that make up the toolkit of a software

developer. Chapter four describes all the facets of the chat application’s development process

in detail.

The project resulted in a functional client-server chat application. The program is a desktop

application that has been tested on the Windows 10 operating system. The application is

operated with commands. The same executable file includes both client and server

functionality.

The source code is available at https://github.com/LasseMalmberg/chat. The repository

includes a precompiled version of the program for the Windows 10 operating system.

https://github.com/LasseMalmberg/chat

2

2 NETWORKS

A network can be defined as a group of two or more computers that exchange data (Microsoft

Official Academic Course 2011, 2). Computer networking is a vast and complex subject area.

Networks play a major role in the development of a networked chat application. This chapter

covers the most fundamental and relevant networking concepts.

2.1 The Internet

The Internet is a computer network connecting hundreds of millions of computing devices

from all around the world. These devices are traditional desktop computers and servers, and

nontraditional end systems, such as gaming consoles, smartphones, and TVs. Devices

connected to the Internet are referred to as hosts or end systems. (Kurose & Ross 2012, 2.)

The Internet started as a four-node network in late 1969. It was originally known as

ARPANET, and developed by the United States Advanced Research Projects Agency. The

goal was to allow scientists working from different locations to have access to powerful remote

computers. Circuit switching was the first method used to transmit information. Circuit

switching created a consistent circuit by dedicating and connecting smaller circuits into a

longer path. Systems used the circuit to send information. Circuit switching provided a high-

quality service. It was limited in usability, because the dedicated circuits could only be used

for one purpose at a time. (Glazer & Madhav 2015, 16.)

Packet switching replaced circuit switching. It removed the requirement of having to dedicate

a circuit to a single transmission. Packet switching divides transmissions into small chunks

called packets. The packets are sent through shared lines using a process called store and

forward. Nodes in the network are connected to other nodes using a line that can carry packets

between the nodes. A node can store incoming packets and forward the packets to another

node closer to the packets’ destination. Packet switching allows multiple transmissions to

happen at the same time, using the same lines. (Glazer & Madhav 2015, 16 - 17.)

Packet switching requires a formal protocol to define how data should be packaged into

packets and forwarded through the network. ARPANET used the 1822 protocol. ARPANET

3

grew over the years, and eventually became part of a larger network now known as the

Internet. The 1822 protocol and other protocols of the time evolved into the protocols that

now form the backbone of the Internet. The protocols form a collection known as the

TCP/IP suite. (Glazer & Madhav 2015, 16 - 17.)

2.2 TCP/IP suite

The TCP/IP suite consists of a tower of independent and abstracted layers. Each layer is

supported by a host of interchangeable protocols. (Glazer & Madhav 2015, 17 – 18.) The

Internet protocol stack is a model that explains the interactions of the layers used for Internet

communication. It consists of five layers: the physical layer, the link layer, the network layer,

the transport layer, and the application layer. (Kurose & Ross 2012, 50.) Figure 1 illustrates

the Internet protocol stack. The arrows depict the flow of data from the sending host to the

receiving host.

Figure 1. Internet protocol stack.

4

Each layer supports the layer above it and has its own purpose. All layers share six basic tasks.

On a sending host, layers accept data from a higher layer, package the data, and forward it to

the layer below. On a receiving host, layers accept data from a lower layer, unpackage the data,

and forward it to the layer above. (Glazer & Madhav 2015, 18.)

A layer’s definition does not specify how the layer should perform its tasks. All layers use

various protocols to perform their tasks. A layer can be thought of as an interface, and each

protocol or group of protocols as an implementation of the interface. (Glazer & Madhav 2015,

18 - 19.)

2.2.1 Application layer

The application layer starts the message creation process. FTP, SMTP, and Telnet are

examples of end-user protocols that work at this layer. (Microsoft Official Academic Course

2011, 32.) Many of the Internet’s fundamental protocols, such as DNS and DHCP, reside at

this layer (Glazer & Madhav 2015, 52).

The DHCP or dynamic host configuration protocol allows a host to automatically request

configuration information when it attaches to a network. The host broadcasts a

DHCPDISCOVER message when it connects to a network. DHCP servers that are part of

the network receive the message. If a DHCP server has an available IP address, it replies the

host with an offer. If the host accepts the offer, it responds to the server requesting the IP

address. If the offer is still available, the server responds to the host confirming the assignment

of IP the address. The server also sends the host other relevant network information, such as

the subnet mask. (Glazer & Madhav 2015, 52.)

The DNS or domain name system protocol enables the translation of domain and subdomain

names into IP addresses. Users do not need to remember the IP address of a website. They

can use its domain name. The domain name system translates the domain name into an IP

address. The host queries a name server, which stores mappings from domain names to IP

addresses. The name server responds to the client with the IP address matching the domain

name. Name servers form a hierarchy. Most name servers are only authoritative for a small

subset of the Internet’s domains and subdomains. Hosts and name servers typically cache the

results of queries. (Glazer & Madhav 2015, 52 – 53.)

5

2.2.2 Transport layer

The transport layer’s responsibility is to allow individual processes on distant hosts to

communicate. A host needs to know which process a received packet should be passed on to.

The transport layer uses ports to achieve this. A port represents a communication endpoint

on a host. Processes bind to ports. A port is identified by a 16-bit unsigned number.

Communication addressed to a port is forwarded to the process bound to that port. (Glazer

& Madhav 2015, 39 – 40.)

TCP and UDP are the most important transport layer protocols. UDP or the user datagram

protocol is a lightweight protocol. It wraps data and sends it from a port on one host to a port

on another host. UDP is unreliable. Data is not guaranteed to be delivered in order or at all.

TCP or the transmission control protocol is reliable. It creates a persistent connection between

two hosts. (Glazer & Madhav 2015, 41 - 42.)

Transport-layer protocols provide logical communication for processes running on different

hosts. The processes see the hosts running the processes as directly connected, even if the

hosts are distant. The logical communication provided by the transport layer allows remote

processes to exchange messages. The processes do not need to know anything about the

physical infrastructure used to transfer the messages. (Kurose & Ross 2012, 186.)

The transport layer converts application-layer messages into transport layer packets. The

packets are known as transport-layer segments. The transport layer breaks the application-

layer messages into smaller pieces. It adds a transport-layer header to each piece to form

segments. The transport layer passes the segments to the network layer. The network layer

encapsulates the segments within network layer packets. (Kurose & Ross 2012, 186.)

2.2.3 Network layer

The network layer provides host-to-host communication. Each host and router in a network

makes use of the network layer. The network layer uses forwarding and routing to transfer

packets from one host to another. A router forwards the packets it receives to the next router

on the path towards the packets’ destination. The network layer uses routing algorithms to

determine the path the packets should take. (Kurose & Ross 2012, 308.)

6

The network layer adds a logical address infrastructure on top of the link layer. This makes it

easy to replace host hardware and segregate groups of hosts into subnetworks. The logical

address infrastructure allows hosts using different link-layer protocols and different physical

media to communicate. (Glazer & Madhav 2015, 24.)

The internet protocol version 4 or IPv4 is the most common protocol used to implement the

features of the network layer. It has a logical addressing system, a subnet system, and a routing

system. The logical addressing system allows individual hosts to be named. The subnet system

is used for creating physical subnetworks from the logical subsections of the address space.

The routing system forwards data between subnets. IPv4 uses IP addresses to identify hosts.

An IPv4 IP address is a 32-bit number. It is typically displayed to humans as four 8-bit

numbers separated by periods. (Glazer & Madhav 2015, 24.)

The IP or Internet protocol service model is a best-effort delivery service. It does not

guarantee orderly delivery of segments, integrity of the data in the segments, or that the

segments are delivered at all. It is an unreliable service. One of the main responsibilities of the

UDP and TCP transport layer protocols is to extend the Internet protocol’s delivery service

between two end systems to a delivery service between two processes on the end systems.

(Kurose & Ross 2012, 190.)

2.2.4 Link layer

The link layer provides physically connected hosts a method of communication. It allows a

source host to package information and transmit it through the physical layer. The destination

host receives the package and extracts the information. The unit of transmission at the link

layer is a frame. (Glazer & Madhav 2015, 19.)

The link layer uses protocols that correspond to physical media. Twisted pair Cat 6 cables and

radio waves are examples of physical media. The 1000BASET Ethernet protocol corresponds

to twisted pair cables. Other protocols correspond to different physical media. (Glazer &

Madhav 2015, 20.)

Ethernet is a group of link layer protocols defined under IEEE 802.3. Varieties of Ethernet

exist for different physical media and different transmission speeds. Ethernet uses media

7

access control addresses or MAC addresses to identify hosts. Every network interface

controller or NIC that can connect to an Ethernet network has a theoretically unique MAC

address. A MAC address allows devices connected to the network to be identified at the link

layer. (Glazer & Madhav 2015, 21.)

2.2.5 Physical layer

The physical layer is responsible for providing a physical connection between networked

computers. A physical medium is necessary to transmit information. Twisted pair cables,

coaxial cables, fiber optic cables, phone lines, and radio waves are examples of physical media.

(Glazer & Madhav 2015, 19.) The unit of transmission at the physical layer is a bit. Any

network element that you can touch is part of the physical layer. (Microsoft Official Academic

Course 2011, 32.)

2.3 Application architectures

An application architecture dictates how an application is structured over various end systems.

The application developer designs the application architecture. The predominant architectural

paradigms used in modern network applications are the client-server architecture and the peer-

to-peer (P2P) architecture. (Kurose & Ross 2012, 86.)

2.3.1 Client-server

A client-server architecture consists of an always-on host, called the server, which responds

to requests from many other hosts, called clients. The clients communicate through the server.

(Kurose & Ross 2012, 86.) Figure 2 shows an example of a client-server architecture, where

three clients (A – C) are connected to a server.

8

Figure 2. Client-server architecture.

The server usually has a static IP address, because it is more convenient for the clients. If the

IP address constantly changed, it would be difficult to connect to the server. The server may

be unable to handle all requests from clients with a single-server host. A more powerful virtual

server consisting of multiple hosts can be created to alleviate this problem. (Kurose & Ross

2012, 86.) A virtual server refers in this context to a server that consists of multiple hosts, but

appears as if it were just one.

2.3.2 Peer-to-peer

A peer-to-peer architecture has minimal or no reliance on dedicated servers. The hosts

communicate directly. A host that is part of a peer-to-peer architecture is called a peer. (Kurose

& Ross 2012, 86.) Figure 3 shows an example of a peer-to-peer architecture that consists of

four connected peers (A – D).

9

Figure 3. Peer-to-peer architecture.

A peer-to-peer architecture is self-scalable and cost effective. Self-scalability means that each

peer adds capacity to the system. It is cost effective, because no significant server

infrastructure is typically needed. Challenges that come with a peer-to-peer architecture

include security, incentives, and ISP friendliness. Peer-to-peer applications are highly

distributed and open in nature, which makes them hard to secure. They depend on the

bandwidth, storage, and computing resources of the users, which makes their design

problematic from an incentive standpoint. Most residential ISPs are asymmetrical in

bandwidth usage, which means that they can handle a lot more downstream than upstream

traffic. Peer-to-peer applications create lots of upstream traffic, putting considerable stress on

the ISPs. (Kurose & Ross 2012, 87 - 88.)

2.4 Sockets

Sockets are software interfaces through which a process sends messages into, and receives

messages from a network. A process is a program that is running within a host. A networked

application consists of pairs of processes that communicate by exchanging messages across a

10

network. Messages sent by one process must go through the network to get to another

process. The processes can be thought of as houses, and the sockets as their doors. (Kurose

& Ross 2012, 89.)

A socket functions as an interface between the application layer and the transport layer. It is

an API between the application and the network. Figure 4 illustrates this. The application

developer controls everything on the application-layer side of the socket. The transport-layer

side is more immutable. Choices on the transport-layer side are mostly limited to the transport

protocol and some parameters such as the maximum segment size. (Kurose & Ross 2012, 89

- 90.)

Figure 4. Location of sockets in relation to the Internet protocol stack.

The application developer selects the transport-layer protocol. The application is built using

the transport-layer services provided by the protocol. Two transport-layer protocols are

available when creating a networked application for the Internet: UDP and TCP. The

protocols have different sets of services. (Kurose & Ross 2012, 89 – 90, 93.)

11

2.4.1 TCP

TCP provides reliable data transfer. Data is delivered in the correct order and with no

duplicates. TCP includes a congestion-control mechanism, which throttles a sending process

when the network between the sender and receiver is congested. The mechanism also attempts

to distribute available network bandwidth evenly between each TCP connection. (Kurose &

Ross 2012, 94 - 95.)

TCP requires that the communicating hosts exchange transport-layer control information

before the flow of application-level messages can begin. This is called the handshaking

procedure. It alerts the hosts and allows them to prepare for incoming packets. A TCP

connection exists between the hosts’ sockets once the handshaking procedure has been

completed. The connection is full-duplex, which means that the processes can communicate

simultaneously over the same connection. (Kurose & Ross 2012, 94.)

TCP requires nontrivial connection state tracking at both ends of the connection. The

recipient must acknowledge received data. The sender must resend any unacknowledged data.

TCP requires a larger header than UDP because of the additional services it provides. (Glazer

& Madhav 2015, 42.)

2.4.2 UDP

UDP is a lightweight transport protocol that provides minimal services. It is connectionless.

UDP does not perform a handshaking procedure before the two processes begin to

communicate. UDP provides unreliable data transfer. Data sent into a UDP socket is not

guaranteed to reach its destination in the correct order or at all. UDP has no congestion-

control mechanism. (Kurose & Ross 2012, 95.) UDP is used when the loss of packets does

not matter, like when streaming media (Microsoft Official Academic Course 2011, 39).

12

2.5 NAT

Network address translation or NAT allows an entire subnet of hosts to be connected to the

Internet through a single shared public IP address. Every host communicating through the

Internet must have a uniquely assigned and publicly routable IP address. The number of public

IP addresses is limited. Certain IP address blocks have been reserved for use in private

networks. Private IP addresses are usable by anyone, but not unique or publicly routable. NAT

translates private IP addresses into public IP addresses, and vice versa. It allows hosts in

private networks to communicate through the Internet. (Glazer & Madhav 2015, 53 - 56.)

A router forwards packets towards their destination. A router has a private IP address in the

local network, and a public IP address in the Internet. Packets sent through the Internet by a

private network host go through a router. The router is located between the host’s private

network and the Internet. The router uses NAT to replace the private source IP address of

the packets with its own public IP address. The destination host that receives the packets takes

the source IP address of the received packets and writes it as the destination IP address of the

packets it sends back in response. The reply packets are destined to the public IP address of

the original host’s router. The packets are routable through the Internet, because their

destination IP address is public. If NAT had not been used, the reply packets would not be

routable. Their destination would be the private IP address of the original host. The router’s

NAT functionality maps the packets’ private source IP address, port number, and destination

IP address with a unique generated port number. The mapping is stored in a NAT table. The

router checks the NAT table when it receives a packet. It modifies the packet based on the

NAT table so that the packet is delivered to the correct host. (Glazer & Madhav 2015, 53 -

56.)

Figure 5 illustrates the NAT procedure. Host A is replying to host B. Router B’s NAT table

has an entry for the destination port used by host A, 3000. Both hosts are in private networks

and have private IP addresses. Both hosts have a router between their private network and

the Internet. Router A has the private IP address 192.168.0.1 and the public IP address

85.29.121.43. Router B has the private IP address 172.16.0.1 and the public IP address

89.31.130.24. The communicating processes within both hosts use the port number 100. The

port number is suffixed to the IP address with a colon, as in 192.168.0.2:100.

13

Figure 5. Router A adds an entry to its NAT table after receiving a packet from host A.

Host A sends a packet to Host B. The packet’s source is 192.168.0.2:100. The packet’s

destination is 89.31.130.24:3000. Router A receives the packet, and adds an entry to its NAT

table. It generates the unique external port number 2000. This number is mapped to the

packet’s source and destination information. Router A replaces the packet’ source information

with its own public IP address and the generated external port number. The packet’s new

source is 85.29.121.43:2000. The packet is forwarded to the Internet. Figure 6 shows the state

of the packet before and after going through router A.

Figure 6. State of the packet before and after going through router A.

Router B receives the packet. It searches its NAT table for the packet’s destination port

number, 3000. It finds a match. Router B’s NAT table is visible in figure 7.

14

Figure 7. Router B searches its NAT table after receiving the packet sent by host A.

Router B changes the packet’s destination to the information corresponding the port number

in the NAT table. The packet’s new destination is 172.16.0.2:100. The packet is successfully

routed to host B. Figure 8 shows the state of the packet before and after going through router

B.

Figure 8. State of the packet before and after going through router B.

If router B had not have had an entry for the packet’s destination port number, the packet

would have been discarded. Two hosts that are both behind NAT run into a problem when

they try to communicate. A connection cannot be initiated. The receiving host’s router does

not have an entry in its NAT table for the received packet’s destination port number and

source address. The packet is dropped. The first way to solve this problem is to have the

receiving host manually configure port forwarding on the router. Port forwarding allows a

port number to be associated with a host in the private network. Data destined to the port

15

number is forwarded to the corresponding host. The second way is to utilize STUN or simple

traversal of UDP through NAT. This requires the help of a third-party host. The third-party

host tells the hosts how to initiate the connection so that the correct entries are added in their

routers’ NAT tables. The hosts can communicate directly after the process is completed.

(Glazer & Madhav 2015, 57.)

16

3 TOOLS OF THE TRADE

The software development process requires the use of a variety of tools. This chapter

introduces the tools that are relevant to the practical part of the thesis. Each subchapter first

covers the tool in question from a general standpoint. The actual tool that was used to develop

the chat application is then introduced.

3.1 Programming language

A programming language is one of the first tools that must be decided on when starting the

development of a new application. A simplistic definition of a programming language is that

it is used to give instructions to a computer. This chapter describes general properties of

programming languages and the decision-making process that goes into the selection of a

programming language. The C++ programming language is then introduced.

3.1.1 Considerations

Programming languages provide widely different feature sets. What is the typing model? What

is the programming model? Is the language compiled or interpreted? What decision constructs

and core data structures does the language use? What unique features does the language

support? (Tate 2010, 18.)

The large number of programming languages can be contributed to a few factors. Computer

science is a young discipline, and better ways of doing things are constantly found. Many new

programming paradigms have come into existence over the past decades. Different

programming languages are good at different things. Many languages were even designed to

be used within specific problem domains. (Scott 2009, 7.)

Only a few dozen programming languages are widely used. The reason for this is multi-faceted.

Any problem can technically be solved with any programming language, but programming

languages vary in expressive power. A programming language’s features have a significant

impact on the programmer’s ability to write clear, concise, and maintainable code. Certain

17

programming languages are easier. Basic is easier to pick up than C++. A programming

language that can be easily implemented on many platforms will be more available and widely

adopted. A programming language requires an official international standard or a single

canonical implementation to be portable. Languages with open-source compilers or

interpreters have fared well. The C programming language is a prime example of this. It was

developed together with the original Unix operating system. Today, the leading open-source

operating system, Linux, is written in C. Certain programming languages owe their success to

excellent tools, or more specifically, compilers. Fortran has been around for ages, and

companies have put immense effort into creating efficient compilers for it. Sometimes the

forces behind a language’s success are not purely technical. C# is a programming language

that has arguably benefited considerably from the backing of Microsoft. (Scott 2009, 7 - 9.)

3.1.2 C++

Bjarne Stroustrup is the original developer and designer of the C++ programming language.

He defines the language in three ways:

1. “C++ is a general-purpose programming language with a bias toward systems

programming.”

2. “C++ is a general-purpose programming language providing a direct and efficient

model of hardware combined with facilities for defining lightweight abstractions.”

3. “C++ is a language for developing and using elegant and efficient abstractions.”

C++ does not specialize in any one application area. It is designed to support a wide variety

of uses. C++ is widely used in areas such as financial systems, game development, and

scientific computation. (Stroustrup 2013, 9.)

C++ supports the following programming styles most directly: procedural programming, data

abstraction, object-oriented programming, and generic programming. The goal is to support

effective use of a combination of the styles. Procedural programming focuses on processing

and the design of suitable data structures. Data abstraction focuses on the design of interfaces

and the hiding of implementation details. Object-oriented programming focuses on the

design, implementation, and use of class hierarchies. Generic programming focuses on the

18

design, implementation, and use of generic algorithms. C++ can be called class oriented.

(Stroustrup 2013, 11.)

C++ originates from the C programming language, and mostly retains C as a subset. The

primary difference between C and C++ is that C++ places more emphasis on types and

structure. C++ renders many techniques used in C programming unnecessary. (Stroustrup

2013, 14 – 15.)

C++ is a compiled language. A compiler processes a program’s source files and produces

object files. A linker combines the object files into an executable program. Figure 9 illustrates

the compilation process. The compilation process is more complex in practice, but the

explanation is sufficient for this section. (Stroustrup 2013, 38.)

Figure 9. Simplified view of the C++ compilation process.

C++ programs are created for a specific hardware and software combination. C++ programs

are not directly portable from one platform to another. The source code can be compiled on

another system to achieve portability. (Stroustrup 2013, 38.)

3.2 Language processor

A language processor converts an algorithm in a source language into an equal version in a

target language (Demiris 2012, 12). This chapter introduces the compiler, which is a type of

language processor. The chapter ends with an overview of the GNU Compiler Collection.

19

3.2.1 Compiler

A compiler reads a program in one language and translates it into an equivalent program in

another language. The original language is known as the source language, and the resulting

language as the target language. The compiler reports any errors in the source program that

are found during the translation process. If the target program is an executable machine-

language program, the user can call it to process inputs and produce outputs. (Aho, Lam, Sethi

& Ullman 2013, 1 - 2.)

A compiler is not the only program required to create an executable target program. A

preprocessor collects the source program from multiple modules stored in separate files. The

preprocessor also expands macros into source language statements. The modified source

program is fed to a compiler, which produces an assembly-language program as its output. An

assembler processes the assembly language and produces relocatable machine code. A linker

links together separate object and library files into the code that ends up being run on the

computer. Figure 10 shows the complete compilation process. (Aho et al. 2013, 3.)

Figure 10. Compilation system.

3.2.2 GCC

GCC or the GNU Compiler Collection is a collection of compilers for several major

programming languages. C, C++, and Objective-C are among the supported languages. The

20

name GCC originally stood for “GNU C Compiler”. GCC is also used to refer to the language-

independent part of GCC. The official meaning of GCC is “GNU Compiler Collection”,

which refers to the whole set of tools in general. (Stallman 2016, 3.)

The term “front end” refers to the part of a compiler that is specific to a given language. “Back

ends” generate machine code for different processors, and belong to the language-

independent component of GCC. The compiler specific to C++ is called G++, though it is

also correct to refer to it as GCC. All the compilers in GCC directly generate machine code.

GCC supports the original ISO C++ standard, and the 2011 and 2014 revisions. (Stallman

2016, 3, 6.)

GCC supports a wide variety of options that control its behavior. The “-c” option commands

GCC to not run the linker. Because the linker is not run, object files are generated as the

output. Some options work with all supported languages. Others are specific to a set of

languages. A list of all options can be found in the user manual. (Stallman 2016, 9.)

3.3 Debugger

A debugger is a tool used to track down, isolate, and remove defects from software. The

defects are called bugs. A debugger helps in understanding how a program works. A

programmer uses a debugger to follow the program’s flow of execution. The program can be

stopped at any point to inspect its state for correctness. (Rosenberg 1996, 1 – 2.) This chapter

examines debuggers and the debugging process. The chapter ends with an introduction to the

GDB debugger.

3.3.1 Debugging

A debugger is text-based or GUI-based. Many GUI-based debuggers are front-ends, and may

use the same underlying debugger. GUI-based debuggers are more convenient for tasks such

as setting breakpoints and stepping through code. A GUI-based debugger requires little or no

typing to operate. Text-based debuggers work well for debugging through a terminal or when

simultaneously debugging multiple programs. (Matloff & Salzman 2008, 5, 10 – 11.)

21

A debugger allows the programmer to perform four main operations: step through the source

code, inspect variables, set watchpoints, and move up and down the call stack. A program’s

execution can be paused at a specific line by inserting a breakpoint in the code. The program’s

execution can be continued one line at a time or until the next breakpoint is found. Variables

can be inspected for their values when the program is stopped. Watchpoints are a combination

of breakpoints and variable inspection. A variable can be marked with a watchpoint. If the

variable changes, the debugger will pause the program. Watchpoints can be set based on

conditional expressions. A function’s runtime information is stored in a stack frame when the

function is called. The function’s local variables, parameters, and the location from which the

function was called, are stored in the frame. A frame is created and pushed onto a stack for

every function that is called. The system maintains the stack. A function’s frame is popped off

the stack when the function exits. The programmer can traverse and inspect the frames in the

stack with a debugger. (Matloff & Salzman 2008, 14 – 18.)

3.3.2 GDB

GDB or the GNU Project Debugger is the most common debugging tool among Unix

programmers. GDB is a text-based debugger, but many GUI-based front-ends exist for it.

(Matloff & Salzman 2008, 3, 5.) GDB supports several programming languages, including C,

C++, and Objective-C (Pesch, Shebs & Stallman 2017, 195).

The program to be debugged must request debugging information when it is compiled. The

program cannot be debugged with GDB without the debugging information. GCC generates

the debugging information with the “-g” option. The debugging information contains the data

type of every variable and function. It also contains the correspondence between source line

numbers and memory addresses in the executable code. (Pesch et al. 2017, 25.)

Figure 11 shows a simple GDB debugging session. The “gdb” command invokes GDB. The

“file” commands sets chat as the program to be debugged. The “break” command inserts a

breakpoint at line 23 inside a file called “Scene.cpp”. The “run” command executes the

program. GDB pauses the program when the breakpoint is hit. Full names of the commands

have been used for added clarity. A command such as “break” could be substituted with “b”

to reduce typing.

22

Figure 11. Debugging with GDB.

3.4 Libraries

Libraries allow features and functionality created by other people to be used when developing

software. Many languages have their own standard libraries. A library must be linked to a

program to be usable. A library is either static or dynamic. The primary difference is that a

dynamic library is dynamically linked to the program by the operating system when the

program is run. A dynamic library can be shared by multiple programs. (Shaw 2015, 160.) The

C++ standard library and the SDL library are the most important libraries utilized in the

development of the chat application. Both are addressed in this chapter.

3.4.1 C++ standard library

The ISO C++ standard specifies a set of components that are shipped with every C++

implementation. This collection of functionality is known as the C++ standard library. Bar

performance, all implementations of the standard library must provide identical behavior. Use

of the standard library over custom implementations is highly recommended. The C++

standard library is more portable and the resulting code more maintainable. The C++ standard

23

library aims to function as a common basis for other libraries and applications. (Stroustrup

2013, 859 - 861.)

The standard library is massive. Its specification in the ISO C++ standard is 785 pages long.

It includes language features such as memory management and run-time type information,

concurrent programming facilities, nonprimitive foundational facilities such as I/O streams,

standard mathematical functions, random number generators, complex arithmetic, and regular

expressions. STL or the standard template library is a major component of the C++ standard

library. STL consists of iterators, containers, algorithms, and function objects. (Stroustrup

2013, 860, 885.)

3.4.2 SDL

SDL or the Simple DirectMedia Layer is a library that supports cross-platform development.

It provides low-level access to audio, keyboard, mouse, joystick, and graphics hardware. It is

used in projects such as emulators, games, and video playback software. SDL officially

supports the Windows, Mac OS X, Linux, iOS, and Android operating systems. SDL is written

in C and works natively with C++. Bindings are available for other languages such as C# and

Python. SDL is distributed under a license that allows it to be used freely in any software.

(SDL Wiki 2017.)

The chat application uses the SDL_ttf and SDL_net libraries in addition to the base SDL

library. SDL_ttf is a text rendering library. It allows the use of TrueType fonts in SDL

applications. SDL_net is a networking library. It makes network programming easier and more

portable than what would be possible with plain sockets. The API for both libraries is available

in their respective documentation files. (Atkins 2009a; Atkins 2009b.)

3.5 Source code editor

Editing source code is a core part of programming. A source code editor is the tool used to

edit source code. Source code editors can be divided in two categories: IDEs or integrated

development environments, and text editors. All IDEs include a text editor.

24

IDEs usually include a text editor, compiler, debugger, and a host of other tools. Visual Studio,

Eclipse, and Xcode are commonly used IDEs. Text editors focus on fewer tasks. It is strongly

recommended to use a text editor that supports programming related features, such as syntax

highlighting and automatic formatting. Notepad++, Emacs, Sublime Text, and Vim are

commonly used text editors. Text editors usually support additional features via plugins.

A source code editor is mostly a personal choice. Source code editors vary in platform support,

programming language support, general feature support, cost, popularity, activity of the

surrounding community, customizability, performance, resource usage, and learning curve. A

source code editor should be learned well enough to be able to work efficiently.

The Vim text editor was used to develop the chat application. Vim stands for “vi improved”,

because it is based on an earlier text editor called vi (Hannah, Lamb & Robbins 2008, 145).

Vim is almost universally available and highly customizable (Moolenaar 2017).

3.6 Build automation tool

A build refers to the process that assembles files and other assets into a software product. The

process may include compiling source files, packaging compiled files, producing installers, and

modifying databases. A build automation tool automates these steps. The build can then be

repeated at any time without direct human intervention. Build automation eliminates defects

that result from the variation often present in a manual build process. (Agile Alliance 2017.)

The GNU Make build automation tool was used to automate the chat application’s build

process. Make automatically figures out the parts of a program that need to be recompiled.

Invoking the Make utility causes it to run the commands required to recompile the files. The

Make utility can be used with any programming language. The only requirement is that the

language’s compiler is executable with a shell command. Make is not limited to programming

related files. It can be used to update any files from other files whenever the others change.

(McGrath, Smith & Stallman 2016, 1.)

A makefile must be written to use Make. A makefile describes relationships between files and

the commands that update the files. Make updates files based on the makefile database and

the time the files were last modified. Make can be invoked with additional command-line

25

arguments to control which files are updated and how. A makefile’s syntax can seem arcane,

but the basics are simple. The main component of a makefile is a “rule”. A rule consists of a

target, a prerequisite, and a recipe. A rule describes how and when its target should be updated.

The target is typically the name of the file that is generated, which is often an executable file

or an object file. The prerequisite is the file or files that the target depends on. If the

prerequisite file has changed, the target must be updated. The recipe consists of the commands

that are carried out in the case that the target must be updated. (McGrath et al. 2016, 1, 3.)

3.7 Version control system

A version control system or VCS keeps track of changes to files over time. Various operations

can be performed on the files that are tracked. A version control system can revert files or an

entire project back to an earlier state. It can compare changes that have been introduced over

time. It can also tell who last modified a certain file. (Chacon & Straub 2014, 27.)

A version control system is either local, centralized, or distributed. A local version control

system keeps track of changes on the local computer. A centralized version control system

stores all the versioned files on a single server. Multiple users can check out files from the

server and commit changes to the server. The main issue with a centralized version control

system is that the server represents a single point of failure. If the server goes down, nobody

can collaborate or save changes to their files during that time. Proper backups must be

maintained in case the server’s hard disks fail. A distributed version control system is more

reliable and flexible, because every client fully mirrors the repository. If a server dies, the

repository on any client can be used to restore it. (Chacon & Straub 2014, 27 - 30.)

Git was used as the version control system for the chat application. The finished project is

hosted in GitHub. Git is a distributed version control system that was developed for the

development of the Linux kernel. It is fast, efficient with large projects, and provides a great

branching system for non-linear development. (Chacon & Straub 2014, 31.) GitHub is a

popular host for Git repositories. It supports issue tracking, code reviews, and many other

features. (Chacon & Straub 2014, 195.)

26

3.8 Modeling language

A modeling language is used in the design of software. A modeling language depicts the

elements that make up a program at a higher-level of abstraction than a programming

language. (Fowler 2003, 1.)

UML or the unified modeling language is a collection of graphical notations that help in

designing and describing software systems. It is particularly useful for software systems that

use the object-oriented programming style. UML has existed since 1997 and its standard is

controlled by the Object Management Group. (Fowler 2003, 1.)

UML is used to sketch or to blueprint a software system. Sketching is selective, informal, and

dynamic. Sketching is useful when the focus is on communication and not on completeness.

Blueprinting is about completeness. Blueprinting shows every detail of a system so that it can

be easily implemented or understood. A system is either forward engineered or reverse

engineered. Forward engineering draws a UML diagram before any code is written. Reverse

engineering draws a UML diagram from existing code. (Fowler 2003, 2.)

UML consists of many types of diagrams: class diagrams, sequence diagrams, object diagrams,

package diagrams, deployment diagrams, and many others (Fowler 2003, xxvii). Class

diagrams are the type relevant to the thesis. A class diagram describes a system’s classes and

their relationships. (Fowler 2003, 35).

Figure 12 shows the UML notation used in the practical part of the thesis. A rectangle

represents a class. Class A is associated with class B. Association is denoted with a line with

no arrows. The asterisk next to class B indicates that class A is associated with any number of

class B instances. This is called the association’s multiplicity. Multiplicity is marked with a

number placed at either or both ends of the line. The default multiplicity is 1. A multiplicity

of 1 is explicitly stated when it is of importance. Class D inherits from class C. An empty

arrow denotes generalization. Generalization refers to inheritance in a programming context.

Class C is an abstract class. An abstract class can’t be used to instantiate objects. The name of

an abstract class is italicized. (Fowler 2003, 35, 37 – 38, 41, 45, 69).

27

Figure 12. UML notation: association, multiplicity, and generalization.

28

4 CHAT APPLICATION

This chapter covers the chat application’s development. The planning subchapter gives an

overview of the application, describes the application’s requirements, and shows the

application’s user interface. The development environment is briefly discussed, followed by a

look at the coding conventions used in the source code. The finished program’s structure and

implementation is thoroughly examined. The program’s build system and testing procedures

are explored. The finished program’s usage is demonstrated. The chapter ends with an analysis

of the project.

4.1 Planning

The program was developed in a relatively free-form manner. The program’s structure and

functionality were planned informally. The plan originally included a more formal approach

to scheduling and task management. This proved out to be unnecessary overhead for such a

small single-person project.

4.1.1 Overview

The program uses the client-server application architecture. The program can operate as a

client or a server. Client and server functionality are included in the same executable file. The

program is operated with commands that are issued through the same input box that is used

to type messages. The program has a simple single-view user interface, that consists of a chat

window and an input box. Additional information is displayed in the application window’s

title bar. A client can send messages. The server forwards the messages it receives to other

connected clients.

29

4.1.2 Requirements

Requirements are the features that a program should provide. Functional requirements are

things the application should do. Nonfunctional requirements describe the application’s

behavior or constraints, such as performance, reliability, and security characteristics. (Stephens

2015, 54, 63.) An example of a functional requirement is “Allow the user to clear the chat

window.” An example of a nonfunctional requirement is “The server must handle the load of

up to 50 client connections.”

The chat application’s requirements were selected with the goal of having a reasonable project

both in scope and in difficulty. The requirements fall mostly to the functional category.

Because the application has no significant nonfunctional requirements, all requirements have

been combined into a single category.

The requirements are as follows:

1. Allow the user to control the application by issuing commands. The following

commands are supported: connect, disconnect, host, shutdown, clear, quit, and help.

Commands are prefixed with a forward slash, as in “/connect”.

2. Allow the user to connect to a server and to disconnect from a server. To connect, an

IP address, a port number, and a username must be specified. A client can only be

connected to a single server at a time.

• /connect IP PORT USERNAME

• /disconnect

3. Allow the user to send messages and have the server relay those messages to all other

users connected to the same server. Message length is limited to a single line.

4. Display the following information in the title bar of the application window: the

application’s name, the username selected by the user, the IP address of the server

connected to, and whether the program is currently hosting a server.

5. Provide built-in help and instructions. Provide a help message for every individual

command.

30

• /help COMMAND

6. Have the application support at least the Windows 10 operating system.

7. Allow the user to clear the chat window.

• /clear

8. Provide support for the English alphabet, lower- and uppercase characters, numbers,

and the most common special characters, such as period, comma, exclamation mark,

and question mark. The forward slash character must also be supported, as it is used

to issue commands.

9. Allow the user to quit the application.

• /quit

10. Have the server broadcast notifications to all users connected to the server whenever

another user joins or leaves the server.

11. Allow the user to host a server. Allow the user to stop hosting the server. The program

should be able to connect to itself as a client if it is hosting a server.

• /host PORT

• /shutdown

4.1.3 User interface

Figure 13 shows the application’s user interface. It consists of a title bar, a chat window, and

an input box. The title bar displays general information such as the IP address of the server

currently joined to. The input box is used to type messages and issue commands. The chat

window displays messages. New messages are inserted at the bottom of the chat window.

Messages flow towards the top of the chat window. A message is prefixed with the username

of the client that sent the message. Automatically broadcasted messages are prefixed with a

hash sign instead of a username.

31

Figure 13. The chat application’s user interface.

The user interface has no buttons or other interactive elements. The input box automatically

accepts text input when the application window is focused. The input box has a blinking

cursor to indicate that it is accepting input. The title bar is part of the standard application

window. The user interface uses a monospaced font. Each character in a monospaced font

occupies the same amount of horizontal space. This helps in specifying the maximum length

of a message, because the program limits the length of a message to a single line. If the

characters varied in width, a message consisting of certain letters could cross the edge of the

chat window.

4.2 Development environment

The development environment and its full stack of tools consists of C++, SDL, Vim, GCC,

GDB, GNU Make, Git, and GitHub. The MinGW or Minimalist GNU for Windows

environment was also used. Chapter three described the tools in more detail. Figure 14 shows

a screen capture of the development environment. The environment consists of a terminal

and a customized Vim text editor placed side-by-side. The rest of the tools are used from the

terminal. The tools and technologies were selected due to personal interest.

32

Figure 14. The development environment.

4.3 Coding conventions

The source code follows certain conventions to keep it as readable as possible. The most

important conventions concern the naming of variables, functions, and classes. The goal is to

format everything uniformly. This includes elements such as names, spaces, indents,

comments, and parentheses and brackets.

Figure 15 shows a made-up class header file that illustrates some of the conventions used in

the code. The header file begins with include guards. Other header files are included in the

following order: C++ standard library headers, SDL headers, engine headers, and application

headers. Headers are sorted alphabetically within their individual categories. Namespace

directives are placed after the include directives. Functions and classes follow the PascalCase

or upper camel case naming practice, where the first letter of each word in a name is

capitalized. Variable names follow the lower camel case practice, where the first letter of each

word in a name is capitalized, excluding the first word. Member variables and functions are

placed in the following order: constructor, destructor, other functions, getters, setters, and

variables. The protected and private sections follow the same order. These rules do not cover

every situation. Other conventions can be deduced by reading the source code.

33

Figure 15. Coding conventions used in the source code.

4.4 Program structure

The program is written “from scratch” with the help of the SDL library. The starting point

doesn’t even include an empty application window. Everything starting from the main loop

to object management and text rendering had to be implemented. The codebase is divided in

two parts. The first part is an engine, which contains general functionality not specific to the

chat application. The second part contains the application specific code, which implements

the features unique to the chat application.

34

4.4.1 Engine

The application has a custom engine. The engine implements many necessary features such as

input handling, text rendering, and scene and object management. Figure 16 shows a UML

diagram of the engine’s structure. The UML diagrams that depict the source code are reverse-

engineered sketches. Their purpose is to communicate the high-level structure of the program.

Implementation details are viewable in the source code. The introductory chapter provides a

link to the source code.

Figure 16. UML diagram of the engine’s structure.

Application is an abstract class that serves as a container for the whole application. It initializes

SDL. The application class is associated with a single scene and a single graphics object. The

program’s main loop is implemented in the application class. The main loop keeps the

program running. The application class draws and updates the scene, and polls for user input.

35

The graphics class creates the application window and a renderer. The renderer’s main task is

to draw objects. The renderer is set to restrict the program’s frame rate to the refresh rate of

the computer monitor. Every drawable object requires access to an instance of the graphics

class. The application, scene, and object classes all have a draw and an update function. The

graphics object is passed as an argument to the draw function, which propagates access to the

object through the system.

Scene is an abstract class that serves as a container for objects. The scene class draws and

updates the objects on every iteration of the main loop. A scene can be thought of as a single

level in a game or a view in a more traditional application. The chat application has just a single

scene.

Object is an abstract class that functions as the base class for most of the concrete classes in

the application code. The object class contains a draw and an update function, and a single

transform object. Transform is a simple class with two member variables: position and scale.

The position and scale variables’ type is vector2. The vector2 class represents a two-

dimensional vector.

Text object is a concrete class that inherits from the object class. The text object class holds

and draws a piece of text; a string. The string is transformed into a texture, which is drawn on

the screen.

Asset manager is a static class that loads font files and transforms strings into textures. The

chat program uses a single font, which is loaded when the program is launched. The class

combines a string and a font file into an SDL surface. The surface is transformed into an SDL

texture, which is drawn on the screen. The texture must be recreated every time the rendered

text changes.

Input is a static class that keeps track of which keys are held down. Other classes query the

input class for this information. The input class’ state is updated every frame. The

implementation allows only a single key to be recognized as being held down per frame. The

shift key is updated separately to enable upper case and special characters.

Global is a header file that contains global variables, macros, and type definitions. Global

variables are limited to the width and height of the application window. The macros

36

implement functionality such as safe deletion of objects, printing of error messages with line

numbers, and checking SDL function calls for errors.

4.4.2 Application

The application code consists of the code specific to the chat’s functionality. Figure 17 shows

a UML diagram of the application code’s structure. The three classes at the top of the diagram

are part of the engine. The rest of the classes belong to the application code. The client, server,

chat window, edit box, and title bar classes inherit from the object class.

Figure 17. UML diagram of the application code’s structure.

The chat class is a formality. It has little added functionality over its base class. The only extra

task it takes care of is instantiating the application’s single scene. The point is to make a

distinction between the engine and the code specific to the application.

The default scene class is a type of scene. It is the only scene in the program. It instantiates all

the objects that make up the scene, and adds them to its internal container. One instance of

37

each of the following classes is added: client, server, chat window, edit box, title bar, and

command parser.

The client class allows the program to connect to and disconnect from a server. It polls for

incoming data and sends messages to the server. Incoming data is parsed and added to the

chat window as messages. The client opens a TCP socket when it connects to a server. The

socket is added to a socket set. The socket set is queried for activity when polling for incoming

data. The client notifies other clients with an automatic broadcasted message when it connects

to or disconnects from the server.

The server class keeps track of client connections. It forwards messages received from one

client to all other connected clients. The server polls for connection requests and incoming

data from clients. The TCP connection class represents a connection. The server is associated

with 1 or more TCP connection instances. The server always maintains one unconnected

instance, which is used when the server polls for connection requests.

The chat window class holds and displays messages. The messages are instances of the text

object class. The chat window class has functions for clearing the chat window and adding a

new message. Clearing the chat window removes all messages. The chat window is simply a

rectangle with visible edges and a transparent center.

The edit box class implements a field that accepts text input. It uses the input class to

determine which keys are held down, and edits its internal text string accordingly. Pressing the

enter key causes the text to be sent to an instance of the command parser class. The command

parser class parses the text and evaluates whether it is a message or a command. A message is

added to the chat window and sent to the server. A command is further processed by

extracting the command and its arguments from the text. The appropriate functions are called

to execute the command.

The title bar class’ responsibility is to update the application window’s title bar. Other classes

call the title bar class’ functions to update its information. The title bar displays the

application’s name, connection status, hosting status, and the user’s username. If the program

is connected to a server, the server’s IP address and port number are displayed. If the program

is hosting a server, the port number to which the server accepts connections is displayed.

38

4.5 Build system

The program’s build process is automated with GNU Make. The Make utility must still be

manually executed, but the detailed instructions do not have to be repeated. A makefile

contains the logic required to carry out the build. The makefile is available in the source code

repository. The makefile is not optimized or sophisticated. If a new file is added to the project,

its name must be manually inserted in the makefile. Object files and the executable file are

generated in the project’s root directory, instead of separate folders.

The makefile has three rules: all, clean, and run. The “all” rule recompiles the files that need

to be regenerated in case changes have been introduced. The “clean” rule removes all object

files and the executable file. If the “clean” rule is run first, the “all” rule will recompile the

whole project. The “run” rule executes the program. The Make utility can be invoked with

any combination of rules. The command “make clean all run” would remove all generated

files, recompile the project, and run the program. The makefile specifies the compiler to be

used, the compiler’s options, the name of the generated program, and the required libraries

and their locations.

4.6 Testing

The application’s functionality was verified locally on the development computer as features

were implemented. The application’s network functionality was tested between three separate

computers: a desktop computer and a laptop in the same private network, and a virtual

machine running in the AWS cloud service. The only scenario where things did not work was

when the virtual machine tried to connect to a server running in the private network. A

connection could not be established because the computer hosting the server was behind

NAT in a private network. Chapter 2.5 describes this problem. A connection could be formed

once port forwarding had been configured in the network’s router.

The command system validates user input successfully. An error message is added to the chat

window indicating the problem in case invalid input is received. The program freezes for

around 20 seconds if the connect command receives valid input, but a connection can’t be

initiated. The function provided by SDL_net that opens a TCP connection does not have a

39

timeout parameter. A possible workaround would involve probing the existence of the remote

server with a UDP packet. The TCP connection would be opened if a response is received

within a certain time frame. The port parameter of the host and connect commands is

successfully parsed, even if the port number is suffixed with letters. This behavior is accidental,

but does not cause problems.

The application window is scalable in size. Scaling the window has the side effect of reducing

the font’s sharpness. The effect is more pronounced when reducing the window’s size. The

chat window’s and edit box’s edges disappear or are not fully rendered with certain window

dimensions. The scaling functionality is the default behavior provided by SDL. The topic

should be explored more to address the problems.

All testing was performed manually. This is not optimal. Automation would have greatly

improved the speed and reliability of the testing. Debugging and troubleshooting a networked

program is particularly tedious and error-prone. At least two instances of the program must

be launched. Certain problems may only manifest under very specific conditions, such as when

connecting or disconnecting multiple instances of the program in a particular way.

The program was not analyzed with a memory profiler. The program’s memory usage

remained stable after hours of use based on the Windows task manager. The program should

not have any substantial memory leaks. Functions have been optimized where possible to not

contain blatantly inefficient solutions.

4.7 Demonstration

The final product is a functional client-server chat application that implements the

functionality specified in the requirements. This chapter demonstrates the program’s

functionality in practice.

Figure 18 shows a screen capture of the finished program. The program displays general help

information when it is launched. The help information lists the supported commands, the

generic format of commands, and how to get help for specific commands. The program is

not connected nor hosting a server. Messages can be typed and sent, but they are only

displayed locally. Automatic messages sent by the program are prefixed with a hash sign.

40

Figure 18. Screen capture of the finished client-server chat application.

The program connects to a server with the connect command. Figure 19 shows an example

of the command being run. The command is successfully executed and the program connects

to a server. Other clients are notified of the new client’s connection and username. The server

displays the connected client’s IP address and port number locally.

Figure 19. Running the connect command.

The application window’s title bar is updated to reflect the change in connection status. Figure

20 shows a close-up of the application window’s title bar before and after connecting to the

server. The lowest title bar displays the server’s status.

41

Figure 20. State of the client’s title bar before and after connecting, and the server’s title bar.

The help command can be used to display help information for specific commands. Running

the command “/help connect” displays the message in Figure 21. The help command lists the

connect command’s functionality and format. It also shows an example of running the

command and any other relevant information, such as the command’s abbreviation.

Figure 21. Help information for the connect command.

4.8 Analysis

The project is overall successful. The chat application supports the planned functionality.

Some key features that are expected of a chat application, such as a scroll bar, were left out.

The project should have been planned more carefully.

The source code’s quality is acceptable. It adheres to the specified coding conventions with

good consistency. The style of C++ used is a little outdated. Many modern features such as

smart pointers are not utilized. C++ best practices such as const correctness are not

consistently followed. Some sections of the code are not as clear as they could be. Substantial

parts of the code would have to be restructured to make improvements. The code remains as

it is due to time constraints. The code contains some literal values that should be moved into

variables, such as the text and background color values.

Messages, commands, and object references are systems that should be rewritten. Messages

sent by the program and not the user are scattered all over the code. Making changes to their

format is difficult and time consuming. Commands could be abstracted out as their own class

42

or classes, which would contain the parsing, messages, and other functionality related to a

command. Message formatting should be moved to a single location. References to objects

within a scene are passed as arguments through constructors. This is manageable for a

program as simple as this, but a total mess for anything larger. Objects in a scene should be

searchable.

A myriad of features could be implemented in a chat application. The most important ones

that were left out are a scroll bar, channels, and full keyboard and localization support. The

program’s message history is limited to 17 messages. A scroll bar would allow the user to

browse through the full message history. Every message is sent to every user connected to a

server. Channels would allow the user to connect to a smaller group within the server. Access

could be restricted with passwords. The input box supports a limited set of characters. It is

easy to add support for additional special characters. It is harder to add support for characters

that are not part of the English alphabet.

The program can be distributed in a folder with the required DLLs and font files, and it will

run. Installers and distribution are topics that were not considered. Compilation was not

attempted on platforms other than Windows.

43

5 CONCLUSION

The goal of the thesis was to develop a client-server chat application. The goal was met. The

final product is a functional client-server chat application that successfully implements the

features laid out in the requirements. The thesis gives a decent example of a small software

development project. The application itself has no planned use outside of the thesis.

The underlying theory and tools were introduced successfully. The development process was

described in a reasonably detailed manner. The program’s high-level structure and

functionality were explained and illustrated with diagrams. The program was tested and

contains no obvious or substantial flaws. The program’s basic functionality was demonstrated.

The development process and the program’s structure should have been planned more

carefully. Some features were not implemented optimally. Planning was difficult in part

because of the concurrent writing of the thesis paper.

The source code is acceptable in quality. The source code’s strong points and shortcomings

were analyzed. The coding conventions used in the source code were explored. The project’s

source code repository has been made available as part of the thesis.

The application’s future development remains a question. Parts of the code will be used in

other projects. The project repository will not be altered, because the thesis paper depends on

its current state. Any future development will happen in another repository.

44

REFERENCES

Agile Alliance. (2017). Automated Build. Retrieved 2017-04-09 from

https://www.agilealliance.org/glossary/automated-build/.

Aho, A., Lam, M., Sethi, R. & Ullman, J. (2013). Compilers: Principles, Techniques, and Tools.

England: Pearson Education Limited.

Atkins, J. (2009a). SDL_net. Retrieved 2017-04-07 from

https://www.libsdl.org/projects/SDL_net/docs/SDL_net.pdf.

Atkins, J. (2009b). SDL_ttf. Retrieved 2017-04-07 from

https://www.libsdl.org/projects/SDL_ttf/docs/SDL_ttf.pdf.

Chacon, S. & Straub, B. (2014). Pro Git (2nd Edition). Apress.

Demiris, Y. (2012). Language Processors (E2.15) Lecture 1: Introduction and Overview.

(Imperial College London). Retrieved 2017-04-26 from

http://www.iis.ee.ic.ac.uk/yiannis/lp/LPLecture1bw.pdf.

Fowler, M. (2003). UML Distilled: A Brief Guide to the Standard Object Modeling Language

(3rd Edition). USA: Addison-Wesley.

Glazer, J. & Madhav, S. (2015). Multiplayer Game Programming: Architecting Networked

Games. USA: Addison-Wesley.

Hannah, E., Lamb, L. & Robbins, A. (2008). Learning the vi and Vim Editors (7th Edition).

California, USA: O’Reilly Media.

Kurose, J. & Ross, K. (2012). Computer Networking: A Top-Down Approach (6th Edition).

USA: Pearson.

Matloff, N. & Salzman, P. (2008). The Art of Debugging with GDB, DDD, and Eclipse. USA:

No Starch Press.

McGrath, R., Smith, P. & Stallman, R. (2016). GNU Make: A Program for Directing

Recompilation (GNU Make Version 4.2). Boston, USA: Free Software Foundation.

https://www.agilealliance.org/glossary/automated-build/
https://www.libsdl.org/projects/SDL_net/docs/SDL_net.pdf
https://www.libsdl.org/projects/SDL_ttf/docs/SDL_ttf.pdf
http://www.iis.ee.ic.ac.uk/yiannis/lp/LPLecture1bw.pdf

45

Microsoft Official Academic Course. (2011). Networking Fundamentals, Exam 98 - 366. USA:

Wiley.

Moolenaar, B. (2017). Vim - the ubiquitous text editor. Retrieved 2017-04-26 from

http://www.vim.org/.

Pesch, R., Shebs, S. & Stallman, R. (2017). Debugging with GDB: The GNU Source-Level

Debugger (10th Edition, for GDB version 7.12.50.20170405-git). Boston, USA: Free Software

Foundation.

Rosenberg, J. (1996). How Debuggers Work: Algorithms, Data Structures, and Architecture.

USA: Wiley.

Scott, M. (2009). Programming Language Pragmatics (3rd Edition). USA: Morgan Kaufmann.

SDL Wiki. (2017) Introduction to SDL 2.0. Retrieved 2017-04-07 from

http://wiki.libsdl.org/Introduction.

Shaw, Z. (2015). Learn C the Hard Way: Practical Exercises on the Computational Subjects

You Keep Avoiding (Like C). USA: Addison-Wesley.

Stallman, R. (2016). Using the GNU Compiler Collection (for GCC Version 6.3.0). Boston,

USA: GNU Press.

Stephens, R. (2015). Beginning Software Engineering. Indiana, USA: Wiley.

Stroustrup, B. (2013). The C++ Programming Language (4th Edition). USA: Addison-Wesley.

Tate, B. (2010). Seven Languages in Seven Weeks: A Pragmatic Guide to Learning

Programming Languages. USA: Pragmatic Programmers.

http://www.vim.org/
http://wiki.libsdl.org/Introduction

