

Well-being reservation system

Martin Gana

Bachelor’s thesis
April 2017
School of Technology, Communication and Transport
Bachelor’s Degree Program in Information and Communications
Technology

Description

Author(s)

Gaňa, Martin
Type of publication

Bachelor’s thesis
Date

March 2017

Language of publication:
English

Number of pages

46
Permission for web publi-

cation: yes

Title
Well-being reservation system

Degree programme

Information and Communications Technology

Supervisor(s)

Salmikangas, Esa

Assigned by

Solteq Oyj

Abstract

Solteq is a company offering E-commerce services to its clients. IBM WebSphere Com-
merce is used in most of the projects. There was a need to use more modern technologies
so that Solteq could improve its competitiveness and efficiency.

Solteq provides wellbeing services to its employees, there are services such as massages or
ergonomics training. There was an existing system used for booking these services; how-
ever, it had to be removed because the system was not suitable anymore. The develop-
ment of the new reservation system helped to gain important knowledge about modern
cloud based technologies and best practices for the development of applications running
in the cloud.

The application consists of two main parts: the backend and the frontend. Both parts were
created using JavaScript programming language. The backend part was created using the
Node.js framework and the frontend part with the Angular.js framework. The backend and
the frontend communicate using the Rest API provided by the backend side. All data were
stored in NoSql database Cloudant provided by IBM Bluemix.

The new reservation system was created successfully. The system provides features for
creating new reservations, setting time schedules for different services and creating excep-
tions to these schedules. Users of the system are notified by email, which contains infor-
mation about the reservation and the event that can be added to a calendar.

The new system is already used by Solteq’s employees in Jyväskylä office. The most im-
portant features were implemented. The knowledge gained by creating the system was
used to create a small demo feature for a customer’s e-shop, which was the base for the
new wish-list feature that was successfully sold to the customer and is used in production.

Keywords/tags

Cloud, reservation system, JavaScript, IBM Bluemix

Miscellaneous

1

Contents

1 Introduction .. 5

1.1 Background .. 5

1.2 Motivation ... 5

2 Current reservation system .. 7

2.1 Removal of old reservation system ... 7

2.2 Massage service .. 7

2.3 Ergonomics training ... 8

3 Requirements elicitation .. 8

4 High level architecture ... 9

5 Tools & technologies .. 10

5.1 Node.js ... 10

5.2 Express.js ... 11

5.3 Angular.js ... 11

5.4 Babel .. 13

5.5 JsHint ... 14

5.6 Grunt.. 14

6 Cloud solutions ... 16

6.1 Advantages of cloud solutions .. 16

6.2 Platform as a service (PaaS) .. 17

6.3 Cloud Foundry ... 17

6.4 BOSH .. 18

6.5 IBM Bluemix .. 19

6.6 Docker.. 19

7 Implementation .. 20

2

7.1 Backend ... 20

7.2 Delivery pipeline .. 21

7.3 Data layer .. 25

7.4 Code Structure ... 26

7.5 Unit testing .. 29

7.6 Running the tests ... 30

7.7 Authentication ... 32

7.8 Frontend .. 33

8 New reservation system ... 36

9 Conclusion .. 40

9.1 Lessons learned ... 42

9.2 New reservation system .. 40

9.3 Proof of concept based on gained knowledge .. 41

9.4 Production feature .. 42

References .. 44

3

Figures

Figure 1 Client server architecture ... 10

Figure 2 Two-way data binding in Angular.js ... 12

Figure 3 Example of ES6 map function... 13

Figure 4 ES6 map function transpiled to ES5 ... 13

Figure 5 Grunt configuration of less task ... 15

Figure 6 Grunt configuration of watch task ... 15

Figure 7 Report from grunt task less .. 16

Figure 8 IBM Bluemix delivery pipeline .. 21

Figure 9 IBM Bluemix stage configuration ... 22

Figure 10 IBM Bluemix jobs configuration ... 23

Figure 11 IBM Bluemix deployment script ... 24

Figure 12 IBM Bluemix build artifact history.. 24

Figure 13 Backend login route ... 27

Figure 14 Backend - login controller .. 28

Figure 15 Backend - extended login controller .. 28

Figure 16 Grunt task for unit tests ... 30

Figure 17 Test report .. 31

Figure 18 Grunt watch unit tests.. 31

Figure 19 JWT Authentication .. 33

Figure 20 Frontend feedback factory ... 35

Figure 21 Solteq ADFS .. 36

Figure 22 App - first login ... 37

Figure 23 App - reservation confirmation .. 38

Figure 24 App - calendar .. 39

Figure 25 App - calendar with user’s reservations ... 39

Figure 26 App - setting the schedule.. 40

4

List of acronyms

CORS Cross Origin Resource Sharing

ADFS Active Directory Federation Services

API Application programming interface

CSS Cascading Style Sheets

ES6 ECMAScript 6

HTML HyperText Markup Language

HTTP HyperText Transfer Protocol

HTTPS HyperText Transfer Protocol Secure

IaaS Infrastructure as a Service

IDE Integrated Development Environment

JS JavaScript

JSON Java Script Object Notation

JWT JSON web token

MVC Model-View-Controller

NPM Node package manager

PaaS Platform as a Service

URL Uniform Resource Locator

5

1 Introduction

1.1 Background

Solteq is an IT-company offering e-commerce solutions. The current goal of the com-

pany is to push their development to modern, cloud based technologies, which can

improve the ability to deliver the product faster and make it more maintainable. It is

important to keep the products maintainable because maintenance generally lasts

much longer than the development phase. Being able to deliver high quality products

fast is critical for the business. It is the reason there is a need to improve the pro-

cesses for development and maintenance.

The research and experiments are needed to implement these new technologies into

the process. There is usually not enough time to explore different possibilities and

approaches when working on a complex customer project. The best candidate for

this purpose was an internal project, which was not critical for the business.

Solteq offers wellbeing services to its employees. Anybody can get a 30-minute long

massage session or 15-minute ergonomics training. Ergonomics training is a short

session held by a professional who helps to improve workplace quality by adjusting

table, chair, monitor and explaining the basic rules about resting eyes and muscles to

prevent health difficulties.

Employees could book a massage using the software IBM notes which was also used

for another purpose. User experience was poor and the design was outdated, there-

fore it was decided that IBM notes would not be used anymore.

This decision was the opportunity for trying the new development processes, tech-

nologies and exploring the best practices which could be applied to business cases in

the future.

1.2 Motivation

The teams in Solteq are usually divided into two groups. The development team and

the support team. The development team usually implements new features and fixes

6

serious bugs. Their responsibility is the system architecture, and they also make ma-

jor decisions concerning the systems.

The support team takes care of customer requirements that are not concerning new

features, their responsibility is to investigate problems reported by customer. Most

of problems are usually fixed by the support team, if the problem is serious or the

solution is not obvious, then the problem is solved by the development team.

Companies want to maximize their income, they need to consider many factors to

achieve this. Software can often be created fast but development is the shortest part

of a product lifecycle. The maintenance of software takes generally much longer than

the development phase, which means that a product can fail in the long term if there

is not enough focus on the code quality. This factor is often underestimated.

Technical debt

The technical debt is a great metaphor developed by Ward Cunningham, to help to

think about this problem. In this metaphor, doing things the quick and dirty way sets

us up with a technical debt which is like a financial debt. Like a financial debt, the

technical debt incurs interest payments coming in the form of the extra effort that

must be done in the future development because of the quick and dirty design

choice. It can be chosen to pay the interest, or pay down the principal by refactoring

the quick and dirty design into a better design. Although it costs to pay down the

principal, there is gain by reduced interest payments in the future. (Technical Debt,

2016)

Importance of unit testing

Writing tests is good for many reasons. They help to discover potential problems

easier. Writing tests improves the code design, and therefore improves the main-

tainability. Creating the software with unit tests takes more time, however, it pays

off in the long run. Programmers feel more confident with a tested codebase. The

advantage is that it is much easier to change existing code because developers can

immediately see if new changes have any negative effect to existing codebase. There

is always a bigger risk that something breaks if the codebase is not covered with

7

tests. This can cause that developers do not refactor the code when it is needed and

maintainability gets more complicated and takes more time.

2 Current reservation system

2.1 Removal of old reservation system

IBM notes was used for making reservations. It was decided that it would not be used

in the company any longer. It was not used just for booking massages but also for

storing passwords. The reservation system is the last service used in IBM notes. Cre-

ating the reservation system was the last step in the process of removing the soft-

ware.

2.2 Massage service

To create a reservation, employees needs to be logged in to IBM notes. Then they

need to navigate to the interface for reservations. Already the first step is complicat-

ed and the reason for this is that IBM notes is not intended to be used as a reserva-

tion system.

Once users get to the interface for reservations, they can see a list of available ap-

pointment times set by the technical support, and the service provider has no control

over it. It means that the service provider must contact the technical support every

time there is a need to change the available massage times.

The timetable for massages is the same every week. Available times are listed, and

the user can select the any of those. This is good because the service provider does

not have to contact the technical support to create a new timetable for every week,

however, the service provider cannot set the time or date as disabled, which is a ma-

jor limitation. This feature could be very useful in case the service provider is on sick

leave or missing for any other reason. The only way to inform other employees is to

write a note to a specific date, however, employees are still able to create new res-

ervations.

8

Another limitation is that the reservations cannot be cancelled, which is a serious

problem because the only action an employee can do is to change the reservation

time. The reservation must be moved to the future instead of being cancelled. The

problem is that it is easy to forget about this kind of a reservation. It causes problems

for service providers because they must try to offer the available time to somebody

else if the employee does not come to the booked massage session. This is usually

done using skype or an email. The service provider needs to fill the free spot fast be-

cause the session lasts 30 minutes.

2.3 Ergonomics training

The current reservation system does not allow users to book an ergonomics training.

The functionality could be the same as for the massage service. The only difference

from the technical point of view is that a massage lasts 30 minutes and an ergonom-

ics training lasts 15 minutes. If the reservation system was general, it would be an

easy task to add another service with its own timetable and different duration.

3 Requirements elicitation

After the first meeting with the service provider in Jyväskylä office requirements

were defined. The most important and the most used functionality is the massage

booking feature. The goal is to help the service provider with managing ergonomics

trainings as well. The only difference between massage and ergonomics training are

the different duration and schedule for these services.

There was the decision to build both massage and ergonomics booking as the first

feature because it is the core of the system. There are only two kinds of users in this

system, service providers and regular employees.

Regular employees should be able to manage only their reservations, meaning they

can create a reservation only in their name and can cancel only their reservations.

There might be a case that one user would create too many reservations and other

employees would not be able to get any service. The service providers should have

an option to remove any reservation if this kind of situation happens.

9

There was the need to be able to identify a user to fulfill these requirements. It is

necessary to distinguish users depending on their role in the system, which means

there is a need for authentication and user authorization.

The project was also meant to be a demonstration of agile development using mod-

ern, cloud based technologies to gain a knowledge which can be used in different

project. Requirements for each phase were agreed upon and followed by the itera-

tion.

The plan was to start with implementing the most important features and less im-

portant features were to be added later if needed. The crucial part of the develop-

ment process was to get frequent feedback from users; therefore it was needed that

the product be delivered as fast as possible so the users could test the most up to

date version of the product.

In real business, customers need to know when the specific feature will be imple-

mented so they can make their business decisions depending on this estimation. The

customer needs to be provided with this information as accurately as possible, which

was the reason the tasks in the project needed to be managed and prioritized.

4 High level architecture

The application was designed to be maintainable and easily extensible so other plat-

form such as mobile application could be added later without serious effect to the

existing system.

The backend side deals with the business logic, data validation and data persistence.

The client side is mostly presentation layer for end users. The backend and frontend

are two separate applications, each of those can be maintained separately. The

communication between the backend and the frontend is done using REST API pro-

vided by the backend.

There are many advantages connected to this kind of architecture, the client side can

be changed without any need to change backend side, changes to client the applica-

tion do not require the server to be restarted.

10

There can be multiple client applications and each of those can be maintained by

another team so it is much easier to maintain the system if it consists of small pieces.

In Figure 1 there is an example of multiple clients using the Rest API provided by the

server.

Figure 1 Client server architecture

5 Tools & technologies

5.1 Node.js

Node.js is a JavaScript runtime built on Chrome's V8 JavaScript engine. Node.js uses

an event-driven, non-blocking I/O model that makes it lightweight and efficient.

(Node.js, 2016)

There was a decision to use Node.js for building the backend REST service. It is easy

to create prototypes quickly using the JavaScript. This decision also brings the ad-

vantage of using the same programming language for both the backend side and the

client side application. (Node.js, 2016)

Node.js uses the rich package manager called npm (node package manager). There

are many free, open sources packages available, which makes building systems much

https://developers.google.com/v8/

11

easier. Developers do not have to do the same work repeatedly, they just need to

install the package they need and configure it. (Node.js, 2016)

For example, the database is needed in almost every application, the developer

would just download the package for connecting the specific type of database, con-

figure it with the connection details and that is all the work needed.

This allows developers to focus more on the business logic of the application. JavaS-

cript makes it easy to manipulate with JSON, which is useful when building REST API.

5.2 Express.js

Express.js is a popular and so far, the most used Node.js framework for creating a

HTTP server, it provides a good quality documentation with variety of extensions

created by the open source community. Express.js provides a thin layer of fundamen-

tal web application features, without obscuring Node.js features. (Express.js, 2016)

5.3 Angular.js

AngularJS is a structural framework for dynamic web applications. Angular's data

binding and dependency injection eliminate much of the code the developer would

have to write otherwise.

Angular is not a single piece in the overall puzzle of building the client-side of a web

application. It handles all the DOM and AJAX glue code a developer once wrote by

hand and puts it in a well-defined structure. This makes Angular opinionated about

how a CRUD (Create, Read, Update, Delete) application should be built. But while it is

opinionated, it also tries to make sure that its opinion is just a starting point the de-

veloper can easily change. Angular comes with the following out-of-the-box. (About

Angular.js, 2016)

Everything that is needed to build a CRUD app in a cohesive set: Data-binding, basic

templating directives, form validation, routing, deep-linking, reusable components

and dependency injection.

12

Data binding

The data-binding in Angular application is the automatic synchronization of the data

between the model and view components. The way Angular implements data-

binding lets the developer treat the model as the “single source of truth” in the ap-

plication. The view is a projection of the model. When the model changes, the view

reflects the change, and vice versa.

In Figure 2 there is an illustration of two-way databinding in Angular.js starting from

a template.

Figure 2 Two-way data binding in Angular.js

The compilation step produces a live view. Any changes to the view are immediately

reflected in the model, and any changes in the model are propagated to the view.

The developer can think of the view simply as an instant projection of their model.

Because the view is just a projection of the model, the controller is completely sepa-

rated from the view and unaware of it. This makes testing easy because it is easy to

test the controller in isolation without the view and the related DOM/browser de-

pendency. (Databinding, 2016)

13

5.4 Babel

There are many browsers available and their implementation of JavaScript standards

is on different levels. It makes the web development more complicated because the

developer must do the extra work when checking the compatibility of used language

features with different browsers.

Sometimes it occurs that the same piece of code works in the latest versions of mod-

ern web browsers such as a Google Chrome but does not work in older browsers

such as Internet Explorer 9.

Babel partially solves this problem. It is a very popular tool, which takes the code

using the new features and rewrites the same code using the older features most of

the browser supports. This is very often used to translate new EcmaScript 6 (ES6) to

older EcmaScript 5 (ES5).

There is a snippet of code written using the ES6 in Figure 3 Example of ES6 map func-

tion. It is an example of ES6 map function. The arrow function was not available in

ES5.

Figure 3 Example of ES6 map function

The developer needs to command Babel to take the code as an input and make the

transformation. There is the output of the transformation made by Babel in Figure 4.

Code was transformed to ES5 syntax and can be run also in browsers without ES6

support.

Figure 4 ES6 map function transpiled to ES5

14

The reason the Babel is so popular amongst web developers is that it takes some of

their responsibility and they can focus more on creating software than on browser

compatibility issues.

5.5 JsHint

Developing the JavaScript applications can sometimes be tedious and the developer

can face a lot of unnecessary problems, it is mostly because JavaScript is not a

strongly typed language.

JsHint is a JavaScript linter. Linters are tools used to improve the code quality. They

help the developer to detect possible errors and potential problems. Linters also

check the predefined code formatting so every member of a team must follow the

same rules and result is a more consistent code base.

5.6 Grunt

Grunt is a JavaScript task runner used for the automation. This project uses it to run

the Babel for the code transformation from ES6 to ES5, to run the JsHint for checking

predefined rules for the code formatting and to run automated tests.

Grunt tasks are configured to run before every commit. If any of specified task fails,

commit fails also and the developer must fix code the before trying to make a com-

mit again. The result is the improved code quality because nobody can commit the

code if tests are failing or if there are any linter errors.

It is possible to create watcher tasks using the Grunt. A watcher task is a task which

observes some specified files and waits for a change. The task is started if any of ob-

served files changes. This project uses watcher tasks for transformation the sass syn-

tax to the CSS and for running tests so the developer does not have to start the tasks

manually.

There is an example of the watcher for compiling sass to CSS files in Figure 5. There is

a configuration of the task. The developer needs to provide source and destination

files. Source files contain sass source written using sass syntax which are then trans-

formed to CSS and are stored to destination folder.

15

Figure 5 Grunt configuration of less task

Figure 6 contains the setup for watcher tasks. For example the definition on line 35

means: ”Observe all files with extension .less in directory /public/app/assets/less

and if any of those files changes run the task less”.

Figure 6 Grunt configuration of watch task

In Figure 7, there is a report after running the task called less. The developer is pro-

vided the information on which files have changes.

16

Figure 7 Report from grunt task less

6 Cloud solutions

6.1 Advantages of cloud solutions

The goal is to be able to deliver the high-quality products fast, therefore there is a

need to focus on development, testing and deployment. Usually there are multiple

environments needed for the application and all of those need to be configured. An

extra effort needs to be put to managing and setting up these environments.

Many tasks connected to configuring the environments can be automated. There are

many cloud providers offering services that can be used to minimize the effort used

on managing the environments and hardware. These services can do automatic scal-

ing of the resources such as the database. There is no need to take care of the hard-

ware because it is also managed by cloud providers. There are also other useful tools

provided such as monitoring, so the developers can see if there are any problems

with the application. Error logs can be usually accessed without any problems.

There are many advantages using cloud services; however, there is also a downside

to that. Using these services for production application can be expensive so it is im-

portant to identify what services are worth to pay for. There were not many people

experienced with cloud services who could identify how the company can benefit

from using these services, therefore, the goal of this project is also to explore this

area.

17

6.2 Platform as a service (PaaS)

Platform as a service is a category of cloud computing services that provides

a platform allowing customers to develop, run, and manage applications without the

complexity of building and maintaining the infrastructure typically associated with

developing and launching an application. PaaS can be delivered in two ways. The first

one is a public cloud service from a provider, where the consumer controls software

deployment and configuration settings. The provider provides the networks, servers,

storage and other services to host the consumer's application. The second way PaaS

can be delivered is as a software installed in private data centers or public infrastruc-

ture as a service and managed by internal IT departments. PaaS is used to develop

web and mobile applications using components that are pre-configured and main-

tained by the service provider, including programming languages, application servers

and databases. (Platform as a service, 2017)

6.3 Cloud Foundry

Cloud foundry is an open source cloud computing platform as a service (PaaS) origi-

nally developed by VMware and currently owned by Pivotal Software - a joint ven-

ture by EMC, VMware and General Electric. Cloud Foundry was designed and devel-

oped by a small team from Google led by Derek Collison and was originally called

project B29. It is primarily written in Ruby and Go. (Cloud Foundry, 2017)

Cloud Foundry supports the full lifecycle, from initial development, through all test-

ing stages, to deployment. It is therefore well-suited to the continuous deliv-

ery strategy. Users have access to one or more spaces, which typically correspond to

a lifecycle stages. For example, an application ready for QA testing might

be pushed (deployed) to its project's QA space. Different users can be restricted to

different spaces with different access permissions in each of them. (Cloud Foundry,

2017)

When an application is deployed to Cloud Foundry, an image is created for it and

stored internally. The image is then deployed to a Warden container to run in. For

multiple instances, multiple images are started on multiple containers. This is where

BOSH comes in - Cloud Foundry's internal Controller uses BOSH to get the underlying

https://en.wikipedia.org/wiki/Cloud_computing#Service_models
https://en.wikipedia.org/wiki/Computing_platform
https://en.wikipedia.org/wiki/Cloud_computing
https://en.wikipedia.org/wiki/Platform_as_a_service
https://en.wikipedia.org/wiki/Pivotal_Software
https://en.wikipedia.org/wiki/EMC_Corporation
https://en.wikipedia.org/wiki/VMware
https://en.wikipedia.org/wiki/General_Electric
https://en.wikipedia.org/wiki/Google
https://en.wikipedia.org/wiki/Ruby_(programming_language)
https://en.wikipedia.org/wiki/Golang
https://en.wikipedia.org/wiki/Continuous_delivery
https://en.wikipedia.org/wiki/Continuous_delivery

18

infrastructure to spin up virtual machines to run the Warden containers on. When an

application is deleted, all its containers are destroyed and their resources are freed

for other applications to use. If the application instance crashes, its container is killed

and a new Warden container is started automatically. A container only runs one ap-

plication ensuring isolation, security and resilience. (Cloud Foundry, 2017)

A load-balancing router sits at the front of Cloud Foundry to route incoming requests

to the correct application - essentially to one of the containers where the application

is running.

Applications deployed to Cloud Foundry accesses external resources via Services. In a

PaaS environment, all external dependencies such as databases, messaging systems,

files systems and so on are Services. When an application is pushed to Cloud Foundry,

the services it should use also can be specified. Depending on the application lan-

guage, auto-configuration of services is possible - for example a Java application re-

quiring a MySQL database picks up the MySQL service on Cloud Foundry if it is the

only one defined in the current space.

6.4 BOSH

BOSH is a project that unifies release engineering, deployment, and lifecycle man-

agement of small and large-scale cloud software. BOSH can provision and deploy

software over hundreds of VMs. It also performs monitoring, failure recovery, and

software updates with zero-to-minimal downtime.

While BOSH was developed to deploy Cloud Foundry PaaS, it can also be used to de-

ploy almost any other software (Hadoop, for instance). BOSH is particularly well-

suited for large distributed systems. In addition, BOSH supports multiple Infrastruc-

ture as a Service (IaaS) providers like VMware vSphere, vCloud Director, Amazon

Web Services EC2, and OpenStack. There is a Cloud Provider Interface (CPI) that ena-

bles users to extend BOSH to support additional IaaS providers such as Google Com-

pute Engine and Apache CloudStack.

19

6.5 IBM Bluemix

There are several PaaS providers, for example Amazon Web Services, Windows Azure

Cloud Services, Heroku, IBM Bluemix and many more. There was a decision to use

IBM Bluemix because Solteq is IBM’s partner.

Bluemix supports wide range of programming languages and services, it also inte-

grates DevOps to build, run deploy and manage applications on the cloud. Bluemix is

based on cloud foundry, which is good for us since cloud foundry is open source. The

advantage is that PaaS provider can be changed to another cloud foundry based one

without unnecessary complications.

6.6 Docker

There are usually many developers working on the same project. There can be situa-

tions when the software works for one developer but does not work for another.

Developers usually use different operating systems and different development envi-

ronments. Their environments are not configured in a same way and it often hap-

pens they use different versions of software.

For example, one developer can use Node.js version 4.4.3 while another uses the

version 6.7.0 which can cause major problems since version 6.7.0 supports syntax

that version 4.4.3 does not. Plenty of time can be wasted trying to figure out what is

wrong with software while there is no real problem with software rather than with

its dependencies.

Another problem of a team development is the unnecessary work that needs to be

done every time a new developer joins the team. The first thing that needs to be

done by a new developer is usually to clone the project from git a repository and

then setting up all necessary services such as database, mail server or different ser-

vices. New developer must learn about the project infrastructure which is often not

so important to be able to work on small features.

Solving out these two problems can lead to saving some time for developers and

reducing the risk that the application will not behave the same way in test, staging or

production environment. These problems can be solved using Docker.

20

Docker is a tool designed to make it easier to create, deploy and run applications by

using containers. Containers allow a developer to package an application with all the

parts it needs, such as libraries and other dependencies, and ship it all out as one

package. By doing so, thanks to the container, the developer can rest assured that

the application will run on any other Linux machine regardless of any customized

settings that machine might have that could differ from the machine used for writing

and testing the code.

In a way, Docker is a bit like a virtual machine. But unlike a virtual machine, rather

than creating a whole virtual operating system, Docker allows applications to use the

same Linux kernel as the system that they are running on, and only requires the ap-

plications be shipped with dependencies not already running on the host computer.

This gives a significant performance boost and reduces the size of the application.

And importantly, Docker is open source, which means that anyone can contribute to

Docker and extend it to meet their own needs if they need additional features that

are not available out of the box. (What is Docker, 2016)

7 Implementation

7.1 Backend

The backend consists of Node.js application running in IBM Bluemix, it exposes an

REST API, which is an endpoint for communication with frontend application. The

data is stored in NoSql database Cloudant, which is an IBM product based on

CouchDB. Cloudant is available as a service in IBM Bluemix, the database as a service

is used for a simple reason. There is no need to install, maintain or configure the da-

tabase, the application simply connects the database using provided credentials and

everything is ready.

The other benefit of using the database as a service is the automatic scalability.

Bluemix provides the DevOps tools Solteq is interested in, therefore it was decided to

try it out and build a delivery pipeline using the tools Bluemix provides.

21

7.2 Delivery pipeline

The delivery pipeline takes care of deploying application to two different environ-

ments in the cloud, and everything is automatic. Git is used as a version control in

this project, and there are three main branches mapped to specific environments in

the cloud.

The test branch maps to the test environment and the master branch maps to the

production environment. Each environment is a different application in the Cloud

Foundry, the advantage of this approach is that we can have different versions of

application running in different environments.

Deployment is possible in two different ways, however, both use Cloud Foundry. The

first option is to use Cloud foundry command line interface. Another, a more conven-

ient way is to build the delivery pipeline in Bluemix.

The reservation system deployment pipeline is presented in Figure 8. The reader can

notice that there is no development environment because development is done lo-

cally and there is no need to run the code in the cloud.

Figure 8 IBM Bluemix delivery pipeline

The first step in the workflow is to create changes to code in the development

branch, changes are committed to the development branch after. It is important that

the code in the version control is as good quality as possible, therefore there is a

grunt task for running the tests and the linter before every commit.

The changes can be pushed to the remote branch so it is available for the rest of the

team. The next step of the delivery process is to deploy the changes to the test envi-

ronment, it is done so the test branch is merged to the test branch.

22

At that point, there is no manual work needed anymore, IBM Bluemix takes care

about the rest and takes the newest code from the remote test branch and builds

new version of application, which is then deployed to the test environment.

Figure 9 illustrates the definition of the task called Build test. There is the input type

field, which is set to SCM Repository, there is also the Git url and Branch specified.

The last option is the Stage trigger. These options mean that Bluemix will wait for any

change to the test branch in the git repository and start the deployment process if

there is any new code.

Figure 9 IBM Bluemix stage configuration

Another tool available in the deployment pipeline is the possibility to set jobs, which

are triggered during build phase. The Build Test stage installs all dependencies speci-

fied in the package.json file, it is done using the npm install command. It downloads

and installs all the specified dependencies. The npm test task runs after, it is used to

test the installed application in case there is any problem which occurred during the

23

installation process. The last command is the grunt babel, which translates the syntax

of ES6 the ES5 syntax.

There is a definition of jobs shown in Figure 10. The build stage is successful when all

specified tasks are successful. Job works like pre-commit hook in development envi-

ronment. If any job fails, the build fails also.

Figure 10 IBM Bluemix jobs configuration

The result of a successful build is the build artifact, which is also input for the next

stage in the deployment process. The name of the next stage is Deploy test. The arti-

fact is deployed in this stage, the application is immediately available after the suc-

cessful deployment. There is the deploy script available in Bluemix console. It can be

customized in case there are some special steps that need to be done in the deploy-

ment process.

24

In Figure 11 there is a command needed for the application deployment. The com-

mand can be modified and extended. The illustration contains just the bare minimum

needed to work.

Figure 11 IBM Bluemix deployment script

There might be the situations that the application does not work properly after the

deployment even if the build stage passed without any problems. Usually there is a

need for high availability of the application and the downtime should be minimal.

Bluemix stores the built artifacts and provides their history. The history of build arti-

facts is shown in Figure 12. This is a powerful feature allowing the developer to roll

back to the last working artifact and minimalize downtime of the application.

Figure 12 IBM Bluemix build artifact history

At this point, the new version of the application is running in the test environment.

This environment is used for testing purposes so the testers are notified and devel-

opers can continue implementing the new features or fixing bugs found by testers.

25

The newest version of the application can be deployed to the production environ-

ment after the testing is done and all necessary fixes are implemented. The deploy-

ment to the production environment is triggered the same way the test deployment

is. The test branch is merged to the master branch, Bluemix is then notified that

there is a new code in the master branch and the production deployment process is

started.

The pipeline for the deployment to the production environment is almost the same

as the pipeline for the deployment to the test environment. The only difference is

that there is no need to run tests now because the test and the production environ-

ments are the same and the application already works properly in the test environ-

ment.

7.3 Data layer

The data layer was designed in a way that it is easy to change the database service if

needed. There are no direct calls to the database service, framework Waterline is

used instead. Waterline is an ORM (object-relational mapping) with a support for

many relational and non-relational databases, it provides an easy way to change the

database type if needed.

The main motivation to abstract the communication to the database was that

Cloudant database is offered only in Bluemix, and there might be problems in case of

migration to another cloud provider if needed.

Cloudant is a NoSql database, it is schemaless, and therefore allows that it is possible

to insert any valid document without a specified schema, the advantage of no sche-

ma being that the data do not have to be structured in the same way, and therefore

it is much easier to extend the data if needed, even without any change to the

backend code, however, in practice it is often needed to define the data structure for

stored object so the data is consistent. (Cloudant, 2017)

The reservation system needs to store information about users who create reserva-

tions. There is a need to have their emails, which is internally used as a user identifi-

er, also name is important so the service provider knows who has made a booking.

The phone number is also stored in the database; however, it is not required. The

26

database also stores all the necessary information about timetables for reservation.

The plan was that the service would be used in multiple offices so it was needed to

design the database in a way that there can be different timetables for different of-

fices. There is also a possibility to add exceptions to these timetables, which are also

stored in the database.

The term document is used for record stored in the database. Cloudant stores docu-

ments in the JSON format so it is easy to use in JavaScript and no extra transfor-

mation is needed.

7.4 Code Structure

It is important to design a good structure so the code is easily testable, the code

should be also easily readable so the maintenance does not require much time and

developers can understand it without further knowledge.

It is possible to improve the code structure by implanting unit tests. The unit testing

helps to improve the code structure because it forces the developer to write the

code with as little dependencies as possible because it is tedious to test dependent

code. The code without dependencies is much more reliable because it is possible to

make a change to specific unit without affecting the other code.

The main components of the code architecture models, controllers and routes. All of

those are custom node modules which are composed to achieve a specific functional-

ity.

Route modules are used to define which controller action should be used for the

specific route. The data is extracted from the request, it is validated and passed to

the controller. It is also possible to do the extracting and validation in controllers but

the unwanted dependency of controller on request is removed this way. Route mod-

ules are also responsible for sending the response based on result of the operation.

In the beginning the extracting the data from request and the data validation was

done in the controller but it was too complicated to write unit tests for controllers,

because developers had to create fake requests but it was extra work which was re-

moved simply by redesigning the code.

27

Figure 13 contains a snippet of code from a route module. There is a handler for re-

quests to the login url.

Figure 13 Backend login route

There is a code snippet of the user-route in Figure 13. The backend exposes the API

endpoint for login. The login data is extracted from the request, then it is checked if

the email and password were provided by the user.

The error response is sent if the email or password is missing, in another way it is

passed to the controller’s login function. The implementation of the login functionali-

ty is hidden, the response is handled after UsersController is done.

Controllers communicate with libraries and the data layer. Their job is to combine

available services and resources to achieve the expected result. As a result of sepa-

rating the route and the controller there is a much cleaner code. UsersController

combines Auth service, Users data layer and returns the authentication token if login

was successful or exception if anything went wrong.

A login function is illustrated in Figure 14. It is easy to understand what is happening

even without knowing anything about the implementation. The first step is to au-

thenticate against Solteq’s AD authentication service, after the successful authentica-

28

tion it is checked if the user has already a profile created. If there is no profile found

the profile is stored to the database, after that the token is generated and returned

to the route module which called the login function.

Figure 14 Backend - login controller

Figure 15 shows an example of extending the login function by logging the infor-

mation about the user during the login process. Only one line of a code was added to

extend the functionality.

Figure 15 Backend - extended login controller

29

7.5 Unit testing

The unit testing is very important to achieve the goal of clean and maintainable code.

It is important to write readable tests, so it can be used like a form of documentation

later. New developers do not have to find out how existing code works to use it. They

can find understandable examples in tests.

Modules and functions should be small, doing only one thing and doing it well. The

benefit of this approach is not just a cleaner code but also a bigger reusability of

small components.

The system is fully written in the JavaScript; therefore testing was done using the

JavaScript. There are many JavaScript testing frameworks, however, it was decided to

use Mocha, mostly because of available extensions and a good documentation.

Mocha is a JavaScript framework running in Node.js as well as in browser. Tests run

sequentially, allowing for the flexible and accurate reporting, while mapping un-

caught exceptions to the correct test cases. Mocha provides also a way to test the

asynchronous code. The expected result is compared to the actual result. This pro-

cess is called an assertion. (Mocha.js, 2017)

An assertion is a Boolean expression at a specific point in a program which will be

true unless there is a bug in the program. A test assertion is defined as an expression,

which encapsulates some testable logic specified about a target under test. (Asser-

tion testing, 2016)

There are many popular assertion libraries like assert.js, expect.js, should.js, Chai and

others.

The Chai was used since it has many extensions available as node modules and can

be installed using npm. Promises are widely used in both, backend and frontend ap-

plication, therefore there is a need to be able to test them. Chai has many extensions

which designed for specified use case. One of those is a module called chai-as-

promised, it is an extension designed for testing the promises. (Chai as promised,

2017)

30

Mocha provides hooks. A hook is some logic, typically a function or a few statements,

which is executed when the associated event happens. Mocha has hooks that are

executed in different parts of test suites—before the whole suite, before each test,

and so on. In addition to before and beforeEach hooks, there are after,

and afterEach hooks. They can be used to clean up the testing setup, such as data-

base data. (Mocha.js, 2016)

7.6 Starting tests

The test cases are executed using a grunt task, grunt-mocha module is used for this

purpose. The advantage of this approach is that the test task can be run by other

grunt tasks.

Figure 16 shows a configuration of the grunt task called “mochaTest”. The results of

the tests are saved into the results.txt file. The key src is the source path for the files

containing the test cases. Any JavaScript file found in the test/unit/ directory is exe-

cuted in this example.

Figure 16 Grunt task for unit tests

The task for running the tests is executed by running the single command. The devel-

oper gets results of tests immediately after running the command. Figure 17 contains

a report for all the test cases and their results. The execution time is available at the

end of the report.

31

Figure 17 Test report

It is not very comfortable if developers must run the task every time they make any

change to the code. Grunt watch task can be used as a solution for this problem. The

developer needs to define the files which will be observed.

If any of specified files changes, then the defined task will be executed. It is much

more comfortable in comparison to running tests manually. Figure 18 shows a com-

mand for starting the task for observing files.

Figure 18 Grunt watch unit tests

32

7.7 Authentication

There are two types of users, the employee and the service provider. These types of

users do not have the same permissions in the system. Employee can only create and

manage their own reservations; however, service providers can manage any reserva-

tion and view some extra information such as notes taken during the massage or

ergonomics session. Regular employees are not allowed to view this kind of infor-

mation; therefore, the system needs to be able to distinguish who the logged in user

is.

The backend application does not keep any user specific state, also known as a ses-

sion. All the communication with the frontend application is done using REST API

calls, therefore the information about the user must be sent with every request. This

information is stored in an Authorization header and is known as token.

A user logs in using the frontend application which sends an email and a password to

the backend application. The backend application then checks if the email is valid and

exists in the database, it also validates if the password is correct. If both the email

and the password are correct the server generates a token based on the information

about the user, such as his email, user id and role. This token is then returned to the

frontend application and set to each request as an Authorization header. This way

the server can determine which user is making the call and decide if the user has

permission to perform the operation.

Figure 19 illustrates the flow of requests in communication which uses JWT authori-

zation tokens.

33

Figure 19 JWT Authentication

It is important to point out that all calls to API need to be done using the HTTPS pro-

tocol because of security issues.

HTTPS is a protocol for secure communication over a computer network, which is

widely used on the internet. It consists of communication over HTTP (Hypertext

Transfer Protocol) within a connection encrypted by TLS (Transport Layer Security).

(HTTPS, 2016)

It is easy to steal the token when requests are sent using the HTTP protocol because

it is not encrypted. A possible attacker can sniff the network and see all requests

sent within the network, the attacker can explore the request and read the token

sent in the Authorization header of the request. Then the attacker can use the token

and pretend to be a logged user with a full access to the account. The server cannot

notice that the token was stolen.

7.8 Frontend

It is important to provide simple user interface so the application is easy to use, user

experience is also very important. The frontend part was designed by a designer,

34

which is also the user experience professional. The first step for designing the user

interface was to identify who the users are. There was a meeting with service pro-

vider, designer and programmers to identify service provider’s needs for the system.

A part of the discussion was to identify problems using the older system and to pro-

pose new ideas to improve the system. The designer then created personas and user

stories for them. This technique is helpful for designing the system in a way that it is

comfortable to use for people of different ages and with different skills. Some users

might prefer using the system via the mobile phone, however, other people might

prefer the website. The designer then created the interface with the design using the

Photoshop and provided the design for different screens to programmers.

This way the programmers did not have to struggle with creating the design by them-

selves, they could focus on implementing the functionality and design style the user

interface following the screens provided by the designer.

The frontend part was built using the Angular.js framework. The bootstrap CSS

framework was used for styling the application. The frontend is responsible for pre-

senting the data available using the API. It communicates with the backend using

HTTP requests. The important part of the frontend application is to provide the feed-

back for user’s action, it is important to notify the user if the operation was success-

ful or not. The toastr.js library was used for notifying messages. User is for example

notified after the reservation was successfully created.

There are many kinds of notifications in the system so it makes a sense to create a

component which takes care of notifications and can be used anywhere. The plugin

for notifications can be changed in the future so it would not be a good idea to call

the toastr.js library directly, wrapper was created instead. The technology for provid-

ing the feedback can be changed in one place without affecting the rest of the code.

The wrapper utility provides functions success, info and error, it is shown in Figure

20:

35

Figure 20 Frontend feedback factory

The programmer can specify what the notifications look like by using the specific

function. Every function creates a window with a specific style. A success notification

is green, info notification blue and an error notification red. All styles can be adjusted

using CSS.

Single page applications

Single page applications use client side rendering; they load all templates once and

store them in memory, which means less stress for the server. The communication

with the backend application is usually done using REST API. The advantage of this

approach is smaller traffic (especially useful for mobile internet connections). The

application looks more interactive because of fast responses

Single page applications usually provide a rich user experience. Everything looks

smooth and the responses are fast. The difference between a single page application

and multipage application is that single page applications do not reload sources. Mul-

36

tipage applications reload sources on every redirect, which means that whenever a

user navigates through a site, requests are sent to a server and usually also all HTML

content is rendered by a server.

8 New reservation system

The new reservation system provides a simple way to create and manage reserva-

tions: it is easier to use than IBM Notes and has a more user-friendly interface. The

advantage to IBM Notes is that the new reservation is a single purpose application

instead of being focused on many different tasks. The new system does not have so

many features but that is the advantage because the new system does one thing and

does it well.

Users must log in using the company’s ADFS authentication. They are redirected to

the page where they are asked to enter their company user name and password. If

both the email and the password are correct users are redirected back to the reser-

vation system.

Figure 21 shows a screenshot of the site for ADFS login in. Users are asked to select

the website they want to be logged in.

Figure 21 Solteq ADFS

37

Users are redirected to the reservation system after the successful login. The system

asks users for basic information after the first login. It is needed by service providers.

The first and the last name are prefilled so users can just edit the name if they want

to. This is done by splitting the email address of the user. Every Solteq’s employee

has an email address in a form of firstname.lastname@solteq.com, therefore it is

easy to provide this kind of feature.

In Figure 22 there is a popup with prefilled name of the user displayed after the first

login. The required fields are marked with an asterisk. User cannot create a reserva-

tion if any of required information is missing, instead they are asked again to fill it.

Figure 22 App - first login

Figure 23 illustrates the reservation confirmation. There is a link “Fill the profile”

which navigates to the same page as the page shown in Figure 22. It is easier to use

because users do not have to look for a place where to set their profile information.

mailto:firstname.lastname@solteq.com

38

Figure 23 App - reservation confirmation

After providing all the necessary information users are finally able to create a reser-

vation. They can navigate through the calendar using the box containing the button

“today” and arrow buttons. Users are not able to navigate to the past. The actual

date is distinguished by a different color than the rest of days; it is a small but an im-

portant improvement. It is shown in Figure 24 in the Thursday column label.

The white cells with plus sign are used to create new reservations. The occupied

times are blue and contain the name of the employee who made the reservation.

The gray cells are not available, and the green cells represent reservations made by

the logged user. There is a legend under the calendar if any of users does not under-

stand what a specific cell means.

A user can switch between the massage calendar and the ergonomics calendar by

clicking the tab with specific service in the left top corner. The content of the calen-

dar is changed based on the selected service. Figure 24 illustrates the most important

part of the user interface, the calendar.

39

Figure 24 App - calendar

Users can see all their reservations right under the menu, and it is also possible to

cancel the reservation there simply by clicking the red trash on the reservation the

user wants to remove. It is illustrated in Figure 25.

Figure 25 App - calendar with user’s reservations

40

The service provider can set the schedule. The interface for setting the schedule is

shown in Figure 26. It looks like a calendar and each cell has a button in it. A user can

simply toggle between the enable and the disable options. This feature is available

only for service providers, none of regular employees has access to it.

Figure 26 App - setting the schedule

Sometimes there is a need for adding an exception to the regular schedule, for ex-

ample when the service provider is on a sick leave. The “Add exception” feature was

implemented for this purpose. The service provider can select the date and specific

service. All times for the date are disabled by default. If the service provider is out of

the office just for several hours he can set the available time. It is very flexible and

allows service provider to set exception for the specific time on the specific date.

9 Conclusion

9.1 New reservation system

The application consists of two main user interfaces. The first one is for the service

provider. It is possible to set the available times for different services there. It also

41

allows a service provider to see the list of all reservations and who made these reser-

vations. A service provider can write notes for each session and access these notes

later in a form of history. It helps to keep track of an employee’s progress when there

are some health conditions the service provider helps with. A service provider can

also easily set times or dates when it is not possible to have a massage or an ergo-

nomics training, which was not possible in the old system.

The second user interface is used by regular employees interested in booking a mas-

sage or an ergonomics training. They have access to the calendar and can see all

available times for a specific service. They can reserve a service and after that they

receive a confirmation email with an event attached. The event can be easily added

to their personal or work calendar.

The new reservation system is already used by Solteq’s employees in Jyväskylä office.

It has fully replaced the old reservation system. The most important features are im-

plemented and there is a possibility that application will be used also in Tampere,

Helsinki offices in Finland and Wroclaw office in Poland.

9.2 Proof of concept based on gained knowledge

The knowledge gained by developing the reservation system was used in the devel-

opment of the proof of concept of a different way to extend the features of bigger

systems, specifically a customer’s e-shop. There were discussions about a feature

which would allow users to select the color of the product they are interested in and

the application finds all the products with the similar color.

The light version of this feature was created and added to the e-shop as a demo for a

customer. Users can upload an image which is then displayed on the website, after

which they select a color from the image and the application will find all similar col-

ors available in the store. The algorithm used for finding the similar color is not im-

portant in this case. The important part is how the feature was added to the e-shop.

The host website (e-shop) contains a script for loading an external JavaScript applica-

tion; this application is then executed and loads the HTML content from external

resources. The HTML content is then injected to a container which is a part of the e-

shop, which allows developers to change the feature functionality without any effect

42

on the rest of the system. The release of updates is easier because the feature is de-

veloped and maintained independently.

9.3 Production feature

The customer requested the wish-list feature for the customer’s e-shop; the goal was

to provide a user with the possibility to save the product on the list so it can be

bought later. Another use case for the feature is the list of regularly bought items. A

user can create the list and set the quantity for each item. The content of the list can

be added to a shopping cart, which is more comfortable than looking for each item

every time.

IBM WebSphere Commerce provides the wish list feature; however, there was an

assumption that feature would be extended in the future and it would be impossible

or at least very complicated to implement other requirements in the wish list feature

provided by WebSphere Commerce.

The wish-list feature was not business critical and the estimation was that it would

be cheaper than implementing the feature using the WebSphere Commerce so it was

decided to build the feature the similar way the proof of concept was. The wish list

feature is standalone application which is injected to the e-shop. It has its own code-

base and database. It is also easier to maintain and provide an update and fixes be-

cause of the size of the application. The wish-list feature is in production use.

9.4 Lessons learned

The goal of the thesis was to create a new application which would replace the old

reservation system. The application was supposed to be created using new technolo-

gies not yet widely used in Solteq. The secondary goal was to explore these technol-

ogies and gather some knowledge about the pros and cons of the used technologies

which can then be used in different projects.

As a web-developer I gained both technical skills and soft skills. I had an opportunity

to gather requirements from the users of the system, some of these users were non-

technical people and it was challenging to transform their expectations to software.

43

The most important skill I learned is software testing. The codebase is widely covered

by unit tests. There was also a situation when an automated end to end tests was

needed. I learned the importance of refactoring, it is necessary to refactor existing

code to keep the codebase maintainable. Refactoring and testing is the essential part

of software development although there are many projects with no lack of unit tests

which makes refactoring almost impossible which can result in big maintenance

problems.

I was expected to write a documentation for the application to make it easy for an-

other developer to get started with developing quickly. The documentation contains

also instructions on how to deploy the application to different environments.

Another important skill I improved was the system architecture and Rest API design.

At the beginning, I was the only developer working on the project so I made most of

the architecture decisions.

44

References

About Angular.js. Page on Angular.js Docs. Accessed 04.11.2016. Retreived from
https://docs.angularjs.org/guide/introduction

Assertion Testing. Page on Tutorialspoint. Accessed 09.04.2016. Retrieved from
http://www.tutorialspoint.com/software_testing_dictionary/assertion_testing.htm

Chai as promised. Page on Github.com. Accessed 24.04.2017. Retreived from
https://github.com/domenic/chai-as-promised

Cloudant. Page on Cloudant.com. Accessed 09.02.2017. Retreived from
https://docs.cloudant.com/

Cloud Foundry. Page on Wikipedia. Accessed 21.04.2017. Retreived from
https://en.wikipedia.org/wiki/Cloud_Foundry

Databinding. Page on Angular.js Documentation. Accessed 13.04.2016. Retrieved
from https://docs.angularjs.org/guide/databinding

Express.js. Page on Expressjs.com. Accessed 03.12.2016. Retreived from
https://expressjs.com/

HTTPS. Page on Wikipedia. Accessed 03.12.2016. Retrieved from
https://en.wikipedia.org/wiki/HTTPS

Mocha.js. Page on Mocha official website. Accessed 09.04.2016. Retrieved from
https://mochajs.org/

Node.js. Page on Nodejs official website. Accessed 15.04.2016. Retrieved from
https://nodejs.org/

Platform as a service. Page on Wikipedia. Accessed 24.04.2017. Retreived from
https://en.wikipedia.org/wiki/Platform_as_a_service

Technical Debt. Page on martinfowler.com. Accessed 04.11.2016. Retrieved from
https://martinfowler.com/bliki/TechnicalDebt.html

What is docker. Page on Opensource.com. Accessed 05.09.2016. Retreived from
https://opensource.com/resources/what-docker

https://docs.angularjs.org/guide/introduction
http://www.tutorialspoint.com/software_testing_dictionary/assertion_testing.htm
https://github.com/domenic/chai-as-promised
https://docs.cloudant.com/
https://en.wikipedia.org/wiki/Cloud_Foundry
https://docs.angularjs.org/guide/databinding
https://expressjs.com/
https://en.wikipedia.org/wiki/HTTPS
https://mochajs.org/
https://nodejs.org/en/about/
https://en.wikipedia.org/wiki/Platform_as_a_service
https://martinfowler.com/bliki/TechnicalDebt.html
https://opensource.com/resources/what-docker

