

Kirill Kuvshinov

Mobile solution for gas price collection

Based on data from a Finnish gas price website

Helsinki Metropolia University of Applied Sciences

Bachelor of science

Media engineering

Thesis

17 April 2017

 Abstract

Author
Title

Number of Pages
Date

Kirill Kuvshinov
Mobile solution for gas price collection

26 pages + 16 appendices
17 April 2017

Degree Bachelor of science

Degree Programme Media engineering

Specialisation option Android development, Java, PHP

Instructor(s) Aarne Klemetti, Researching Lecturer

This project claims to address the common problem of providing drivers with actual gas
prices. No app studied seems able to retrieve today’s gas data only and show them in a
user-friendly fashion. Some include earlier data, others rely on community feeds; still others
reveal prices only along chosen navigation routes. This paper offers no universal methods
to address all the challenges. It is rather an educational attempt to solve some of them from
a point of view of a student and a driver.

As the subject of this project, my own approach is described at length. Generally, it includes
two Android apps facilitating each other, and both contributing to own database. Thus, only
current fuel prices are shown if any, the popular locations' details are uploaded to own da-
tabase, and historical data kept for future reference. Navigating the driver to the nearest gas
station of choice used to be part of the project, yet recent improvements by Google Maps
may have invalidated the old certificate.

In addition, the mobile solution features own price updates management (auto or manual
mode) and exploits www.polttoaine.net as a solid price-quoting platform. As nothing resulted
from my own attempts to contact the platform admins on trainee cooperation, scraping and
parsing methods are used in this project (for educational purposes only). All trademarks
discussed in this paper are property of their respective owners.

Keywords
Gas price, fuel cost, price collection, Android, Java, PHP, da-
tabase, JSON, location manager, geolocation, GPS, driver
app, cron, Google Maps, API, certificate

Contents

1 Introduction 1

2 Theoretical and practical backgrounds 1

2.1 Brief introduction to some modern price-quoting apps and platforms 2

2.2 Significance of the topic 2

2.3 Own attempts to organise price collection locally 2

2.4 Country-specific use of price-quoting apps 3

Challenges vs favourable conditions 3

Defining Polttoaine as the tool to focus on 6

3 Building own apps and their analysis 7

3.1 Forming own methods to address gas price collection 7

User app 9

Admin app 13

3.2 Limitation of the project 15

The Google over-query limit (the User app) 15

The community approach (the User app) 16

Archive tables growing in volume (the Admin app) 16

4 Results 16

4.1 Overall performance of the two-app approach 17

4.2 Errors explained 22

5 Evaluation of the results 23

5.1 Efficiency of own methods 23

5.2 Benefits and drawbacks vs studied tools 24

6 Conclusion 25

References 26

Appendix 1. Challenges of OCR 28

Appendix 2. Retrieving country-specific fuel data 30

Appendix 3. Visual comparisons of test apps output 33

Appendix 4. Polttoaine's fuel display policy visualised 38

Appendix 5. User and Admin apps: use cases 40

1

1 Introduction

The collection of current fuel prices for a specific area has always been on the radar of

modern developers, no matter what programming language they use. These numerous

apps claim to provide up-to-date information1 coupled with navigation opportunities

and/or distance or fuel endurance calculations along chosen routes, etc. In the multitude

of choices, one runs the risk of getting lost because of the opportunities they offer.

Yet some of the apps studied and compared for this project seemed quite sophisticated

to meet the simple need of a driver lost somewhere, e.g. in Finland, and in need of a

reasonably priced refuel, and at a gas station as near as possible to his or her current

location. The driver either has to use different apps subsequently to figure out the loca-

tion and the way or rely on community-fed applications, e.g. Waze (described in 2.4),

which may have no recent updates for the occasion.

The following three major reasons accounted for choosing such a topic for the final year

project, namely (i) studying at Helsinki Metropolia UAS, (ii) owning a car in Finland and

(iii) having a wish to engage in building an app that would help tackle this simple emer-

gence above in a driver-friendly manner. Yielding any results from own research as such

seemed a justifiable return for the time and effort invested.

Thus, the project goal was to create a price-quoting app that would highlight up-to-date

prices only for the given position (identified with geolocation). This, later in the project,

saw reinforcement in the form of a second app to control data uploading to own data-

base. Therefore, the project scope grew up to two apps with different functions, thus

turning into a combined mobile solution. Hence the title of the project.

2 Theoretical and practical backgrounds

What follows is an extensive account of the pre-study that took place in 2016 and gave

shape to this project further into 2017.

1 The terms "information" and "data" are used here interchangeably despite their fine differences,
such as that the former is an organised form of the latter [1,188-189].

2

2.1 Brief introduction to some modern price-quoting apps and platforms

For this project, counterpart quoting tools were studied for similar functionality and user

interface features within January-April 2016. Understandably, by now, there may have

appeared quite a number of new apps, more driver-friendly and versatile; a quick obser-

vation of Google Play website [2] confirms this assumption. Therefore, this project claims

no serious competitiveness to these tools and only demonstrates own methods found

valuable and acquired knowledge to make a coded product by personal contribution.

Nonetheless, given this project limitation, the study included a series of short “road test-

ing” of the following mobile apps and platforms: GasVisor2, BenzinPrice3, Waze4, Google

Maps / Street View, and Polttoaine5 (as described in 2.4).

2.2 Significance of the topic

By the time this research started, Google had updated its Maps app so that it quoted fuel

prices at gas stations found along navigation routes; although that option was available

for US and Canada only [3;4;5]. That functionality might have seen a larger geographical

coverage than before by the time this thesis is available for review.

Still, given that Google must be daily improving its map-oriented tools in terms of fuel

prices, and given that more apps tend to appear on the market, the problem of quoting

the real prices “here and now” remains among the highlights of today.

2.3 Own attempts to organise price collection locally

The project originally consisted in personal collection of local fuel prices based on the

mentioned apps. The purpose of that practical pre-study was to make sure which app

featured better updatability in the context of the emergency case described in the Intro-

duction. That approach became the focus of this project after earlier price collection trials

had failed.

2 https://play.google.com/store/apps/details?id=com.ima.gasvisor
3 www.benzin-price.ru/price.php?region_id=78
4 https://play.google.com/store/apps/details?id=com.waze
5 www.polttoaine.net

http://gasvisor.com/en/
https://www.waze.com/

3

For brevity, those trials were semi-theoretic and saw quite different tools. E.g., hidden

positioning of hunter cameras in front of a gas station price stand or even thinking of

quadcopters with cameras to take pictures of the same. Obviously, financial considera-

tions intervened among other challenges, which included having to operate the flying

machines and structure their flights and control crews; or having to tell the prices on the

digital camera shots, with OCR (or optical character recognition6) offering to switch the

thesis topic. The OCR initiative never proved to be precise enough when used on colour

pictures taken at dawn or dusk, esp. with prices in light-red digits vs black background

(as shown in Appendix 1). All those trials combined invited to quite a different field of

study and scope, irrelevant to this paper and thus were excluded.

2.4 Country-specific use of price-quoting apps

With these failures and a real life necessity to live outside of Finland within the period of

dealing with this project, Saint Petersburg became the testing ground for running the

apps and platform mentioned in 2.1. In addition, almost all Russian gas providers would

refrain from updating their prices regularly on their websites, if any, or prefer to display

average prices only (as evidenced in Appendix 2.1-2.3). On the other hand, it helped to

focus more on the apps at hand.

The main idea was to see how frequently all of them received price updates in order to

understand how to proceed with the project. The testing spanned sporadically within

January-April 2016, between mornings to night-time.

Challenges vs favourable conditions

Below follow short analyses of pros and cons of each candidate app.

Google Maps / Street View

Initially thought as an ideal data provider for the OCR technique mentioned above, it

turned out on the contrary. As per their declaration online (Appendix 3.1), the Google

6 Tesseract for PHP (https://github.com/tesseract-ocr) was tested in parallel just to find out that it
required more time and effort to introduce efficiently in this project.

4

Maps visual information may remain unchanged for 1-3 years. What also suggested dis-

continuation with this tool was that the option to see fuel costs along a chosen route in

the navigation mode was still unavailable in Russia. For these two reasons, this app left

the test row right from the start.

GasVisor / BenzinPrice

Since the first app here depends on the second platform's database (as mentioned at

http://www.benzin-price.ru/android_gasvisor.php under Возможности or “App’s capa-

bilities”), it made sense to combine them for analysis. Figure 1 shows three screenshots

when used in St Petersburg.

As a result, despite good station-related information, these driver crowdsourcing tools

were usually late with updates and kept posting earlier prices instead (Appendix 3.2). In

addition, GasVisor might at times display an empty screen or too outdated fuel prices

(one year ago) as seen in Figure 1. These were the reasons to exclude the two from the

research.

Figure 1. GasVisor at work

http://gasvisor.com/en/

5

Waze

When compared to its counterparts, this price-quoting app, although completely depend-

ent on the local driver community too, never exposed empty activities, and always

showed better updatability (as Figure 2 demonstrates, note the coloured tags on the right

of the interface). It displayed

outdated prices more sel-

dom too.

This app featured a dis-

tance calculator, key to the

comparison and the case

described in the Introduc-

tion. It promoted Waze to a

higher position in the com-

parison chart. Yet messing

today’s7 prices with earlier

ones spoiled the entire user

experience, with the lost

7 For the purpose of this project, "today" when used hereinafter in relation to fuel prices means
prices as retrieved/seen at request/web-site visit time.

Figure 2. Waze at work

https://www.waze.com/

6

driver case in mind. And when compared with the next candidate in the test row, it

demonstrated less regularity of updates.

Polttoaine

This "quoter" (as sampled by Figure 3)8, enjoyed the best

updatability for its target locations. The study screenshots

are given in Appendix 3.3. The data from these and a num-

ber of others were used to compare their overall updatability

with Russia-based locations, in the form of comparison ta-

bles (Appendix 3.4) to define which app had the best updat-

ability. Given the country specifics described above, Pol-

ttoaine proved to be the one.

Defining Polttoaine as the tool to focus on

Polttoaine's obvious strengths may be explained by one im-

portant difference it makes. This platform, or more precisely

their database, may have good community feeds, but pri-

marily, it appears to have stronger contributions from the local gas sellers interested in

promoting their prices (see their Info tab content9). Otherwise, how can one account for

such regular and stable updatability? Apart from its pros, Polttoaine has the following

minor cons too:

 While the app launches, the emergency-scenario driver described in the Intro-

duction, has to select his/her location manually, among the many ones hard-listed

in the app; the driver may be unaware of the location;

 The app offers earlier prices that may come topmost since they are 95E-or-

dered by default; therefore, the driver is offered sort of overabundance of data

[1,78], which is distractive;

 The app lives on officious ads (see the screen bottom of Figure 3).

These minor weaknesses were actually the launch pad for forming own attitude towards

how a better app should look. I.e. it would first help the case driver out with geolocation

8 https://play.google.com/store/apps/details?id=com.generum.polttoaine
9 Polttoaine.netin hintatiedot päivitetään autoilijoiden ja muiden asiasta kiinnostuneiden
ilmoittamien tietojen perusteella (www.polttoaine.net/index.php?cmd=info).

Figure 3. Polttoaine at work

7

and, second, spare him/her time for choosing a reasonable refuel by showing only to-

day's prices if any (with distances pre-calculated and ordered from the shortest in respect

to the stop location). That scope later grew larger as another app surfaced to help build

own database of fuel prices that might be valuable to market researchers if the project

was to live on.

3 Building own apps and their analysis

This chapter deals mainly with own methods crystallized by the long process that the

previous chapter detailed. It also describes how own apps were created to produce a

combined mobile solution for gas price collection.

3.1 Forming own methods to address gas price collection

More generally, although mock-ups were at times used (see below) on every piece of

paper at hand to get an idea how it would look, the main process that gave shape to the

apps was via the traditional trial and error approach while coding. Other thoughts in-

cluded how to make a difference, e.g. tackle the weaknesses identified in the previous

chapter.

The entire project was initially about creating a single app ("User app") that would quote

today's prices, if any, as displayed by Polttoaine. However, when tried for the first time

in 2016, the app had to connect to a Metro MySQL table and showed only pre-inserted

fake prices. The challenge was in populating that table with real Polttoaine's prices, so

that the app met the project goal.

Any server-side retrieval was out of the question because of such considerations as extra

load on the Metro server and its IP exposal. Exploiting proxies might be an option [1,148-

149], but that would rather be outside the project scope. Therefore, data had to be col-

lected from Polttoaine by the User app itself. That was the time when a greater part of

its Java code had to be revisited to make it:

 follow a valid URL as the location request dictated (e.g. http://www.polttoa-

ine.net/[location]);

 retrieve today's fuel prices if any;

 and list them to the worried driver from the emergency case.

8

DISCLAIMER: With all the Internet ethics and local law observance due,

scraping10 and parsing techniques applied to www.polttoaine.net under this

project were for educational purposes only, and with an intention to attempt

creation of a better non-commercial product, given the initial emergency

case for this project.

Own scrape-and-parse code (based on the jSoup Java library11) proved efficient in filter-

ing today's prices from Polttoaine. However, the earlier prices, if any, remained intact

and discarded, which looked very inefficient in terms of resource usage. It then sparked

another idea: in the same code run, why not upload the historical prices to own database

too?12 Before doing this, the app would check if the location had already been requested

today, thus eliminating the urge to upload same data every time a similar request was

made by other users.

Clearly enough, uploading today's prices too in the same code run, before today was

over, made no sense because more updates could appear on the webpage until midnight

(and squeeze out earlier prices at the bottom of the webpage as seen in Appendix 4).

Hence, the mobile solution at that stage needed a second app to check for the requested

locations' latest prices after 00:00.

Thus, all the locations, requested today and saved in own database (via the User app)

in the form of their historical prices, could now have their latest prices uploaded too. That

was how the "Admin app" came into play (more detailed in the subsection Admin app

below). It would use an alarm broadcast receiver to start a "late update" at given time

(via a time picker). Once in the database, the prices would never disappear like from

Polttoaine's website and might be accessed (possibly via the User app in the future), e.g.

by fuel market specialists or statistics researchers.

The programming tools used for the project (chronologically since 2015):

 Eclipse IDE for Java developers;

 Android development tools for Eclipse;

10 Arguably, it may be considered as simulation of the browser activity and is to become the only
future technique of getting raw data from the Web [6,4;6,165-167].
11 https://jsoup.org
12 Of course, with all legal issues in place, i.e. once installed and before the first launch, the app
should give a warning that the user agrees to share the information viewed for a specific location
or any similar message. - KK

9

 Eclipse for PHP developers;

 MAMP (to run servers locally);

 phpMyAdmin (on the Metro student server);

 Android Studio;

 PhpStorm;

 yEd UML tool (http://www.yWorks.com);

 NinjaMock (https://ninjamock.com).

The testing methods included the traditional single unit runs, which if successful were

integrated in the main code of the apps.

User app

With Appendix 5 showing this app’s capabilities UML scheme and activity flowchart, the

following is a use case that claims to match the emergency described in the Introduction.

1. The worried driver (User) is stationary in or near a Finnish city (hopefully covered by

Polttoaine’s database): the gas tank is (almost) empty. There is need for a refuel.

2. User may be very unfamiliar with the place and there is barely anyone to ask the way

to the nearest gas station, leave alone the prices.

3. User may wish to consider distance-vs-price options if given any. He or she either

Googles for any nearest gas station or launches the User app.

4. User has the location service checked. If disabled, the app prompts User to enable or

exit.

5. User has Internet connection checked. If disabled, the app prompts User to enable or

exit.

6. User has the position coordinates written to the shared preferences right on the spot.

The app takes some time to confirm User’s location. Although unaware of the place,

User can tell the city or municipality by the road signs. Reverse geocoding is used

(coordinates to an address). If wrong, rerun or exit (use another app?).

7. User taps OK, and if the location is among the ones hard-coded in app, User sees a

list of gas stations with today's prices only and other info starting from the nearest gas

station: station icon, address, bonuses/comments if any, fuel prices (e95, e98, Die-

sel), distance.

http://www.yworks.com/yfiles?utm_source=yed-3.17&utm_medium=banner&utm_content=about&utm_campaign=yEd-XMktg

10

8. If the location is being requested for the first time today, User has to agree to share

the information (s)he is going to see with the local driver community (such a dialog

may pop up at the very launch). User sends nothing if another driver has requested

the location today.

9. This way, the app saves the location's earlier prices to own database if they are absent

there.

10. User taps on an option to open Google Maps, which takes over with the navigation

(pending).

11. User closes the app when convenient.

12. Compared to Polttoaine's, this one makes a difference:

 data order-wise, no earlier prices shown (except in the future, they may be as

Figure 7 shows), options start with the nearest station, the drivers sees kms too;

 data updatability and persistence-wise, the app updates own database as

described in Appendix 5, and spares the driver's mobile data traffic if other drivers

have already requested the same location today or yesterday;

 usability-wise, no ads.

With the User app tentatively titled as GasGuide, mock-ups further detail how the UI was

originally conceived and imagined (loc service and Internet connectivity checks are

skipped for brevity):

Figure 4. Confirm loc Figure 5. Choose and tap Figure 6. Navigate (pending)

11

 As Figure 4 demonstrates, the user has three options when ge-

ocoding is over, i.e. either retry if wrong, quit the app or confirm

his/her location to carry on. The next step (Figure 5) is waiting for

available options to download and scrolling through them. The list

features fuel prices and other data just retrieved from Polttoaine, so

that they match the app header (directly under e95 and other types

of fuel, with the distance column finishing the row).

The data include gas station addresses, fuel bonuses and other

information the user may need. Each fuel brand has its icon to the

right if available. When the user makes a decision, a tap on the

choice leads to Google Maps (Figure 6).

As a location-aware app, this one had to follow the recommendations in the field, espe-

cially in terms of battery consumption [7]. For that reason, e.g. the LocationManager()

method used in the app was first tried on its own in a short series of unit tests, with

toasting and logging available with Android Studio that helped add a few adjustments to

provide for better fix correction and control over the requestLocationUpdates() known for

shortening battery life. The following code excerpt demonstrates the final version based

on the quoted resource.

@Override

public void onLocationChanged(Location location) {

 // run a loc fix accuracy/update check here before writing to shared prefs

 // using the source's recommendation to maintain a current best estimate

 final int TWO_MINUTES = 1000 * 60 * 2;

 String latitude, longitude, accuracy, timestamp, provider;

 // as read from shared prefs

 mSharedPref = mCntx.getSharedPreferences(SHARED_PREF_LOC_LAT_LNG,

 Context.MODE_PRIVATE);

 latitude = mSharedPref.getString("Lat", "");

 longitude = mSharedPref.getString("Lng", "");

 accuracy = mSharedPref.getString("Acc", "");

 timestamp = mSharedPref.getString("Ts", "");

 provider = mSharedPref.getString("By", "");

 if (!latitude.equals("") && !longitude.equals("") && !accuracy.equals("")

 && !timestamp.equals("") && !provider.equals("")) {

 // Check whether the new location fix is newer or older

 long timeDelta = location.getTime() - Long.parseLong(timestamp);

 boolean isSignificantlyNewer = timeDelta > TWO_MINUTES;

 boolean isSignificantlyOlder = timeDelta < -TWO_MINUTES;

 boolean isNewer = timeDelta > 0;

 // If it's been more than two minutes since the current location, use

the new location

 // because the user has likely moved

 if (isSignificantlyNewer) {

 // Toast.makeText(mCntx,

 // "Writing loc to SharedPrefs since it's significantly newer",

 // Toast.LENGTH_LONG).show();

Figure 7. No-today's-
prices case (pending)

12

 Log.d("Provider ", "Writing loc to SharedPrefs->significantly newer");

 writeLocToSharedPrefs(location);

 return; // we just write to shared prefs and quit the method

 } else if (isSignificantlyOlder) {

 return;

 }

 // otherwise

 // Check whether the new location fix is more or less accurate

 Float accuracyDelta = (location.getAccuracy() –

 Float.parseFloat(accuracy));

 boolean isLessAccurate = accuracyDelta > 0;

 boolean isMoreAccurate = accuracyDelta < 0;

 boolean isSignificantlyLessAccurate = accuracyDelta > 200;

 // Check if the old and new location are from the same mProvider

 boolean isFromSameProvider = isSameProvider(location.getProvider(),

 provider);

 // Determine location quality using a combination of timeliness and

 accuracy

 if (isMoreAccurate) {

 Log.d("Provider ", "Writing loc to SharedPrefs->more accurate: "

 + location.getAccuracy() + " vs " + accuracy);

 writeLocToSharedPrefs(location);

 } else if (isNewer && !isLessAccurate) {

 Log.d("Provider ", "Writing loc to SharedPrefs->newer&more

 accurate: " + location.getAccuracy() + " vs " + accuracy);

 writeLocToSharedPrefs(location);

 } else if (isNewer && !isSignificantlyLessAccurate &&

 isFromSameProvider) {

 Log.d("Provider ", "Writing loc to SharedPrefs->

 newer&!isSignificantlyLessAccurate&isFromSameProvider");

 writeLocToSharedPrefs(location);

 }

 } else {

 // i.e. the app just got installed => no shared prefs available, at

 least for lat/lng

 writeLocToSharedPrefs(location);

 }

}

private void writeLocToSharedPrefs(Location l) {

 // Toast.makeText(mCntx, "Saving loc",

 // Toast.LENGTH_SHORT).show();

 String lat = "" + l.getLatitude();

 String lng = "" + l.getLongitude();

 String acc = "" + l.getAccuracy();

 String ts = "" + l.getTime();

 String by = l.getProvider();

 mSharedPref = mCntx.getSharedPreferences(SHARED_PREF_LOC_LAT_LNG,

 Context.MODE_PRIVATE);

 SharedPreferences.Editor editor = mSharedPref.edit();

 editor.putString("Lat", lat);

 editor.putString("Lng", lng);

 editor.putString("Acc", acc);

 editor.putString("Ts", ts);

 editor.putString("By", by);

 editor.apply();

}

In line with the flowchart introduced in Appendix 5 for the User app, writing the coordi-

nates thus received from the device location tools (GPS, network or Wi-Fi or all com-

bined) to the shared preferences starts separately, under an async task [8]. This helps

13

keep the UI thread busy with other things in parallel (popping dialogues, toasting warn-

ings and prompts to the user, etc).

Similarly, other pieces of code, as recommended excerpts were first tried and tuned out-

side the main code of the app; then, if successful, they would be included in the app and

checked again for any runtime errors. At this stage, the entire app would be saved under

the next number version and so on, so that there always was an opportunity to roll back

to the previous stable version.

Admin app

The reason to create a second app as part of the combined mobile solution hereunder

was briefly introduced in the beginning of this chapter. Still, a sample use case is required

to give a detailed view of what this app can offer to an admin responsible for keeping an

eye on own database of fuel prices, provided that the User app does it regular job as the

popular locations identifier in the combined mobile solution scheme.

1. Admin knows that the User app has added more locations, requested today, to own

database. It means that their historical prices are already tabled in own database, but

their today’s prices are not, since this is the logic of the Uses app: “today is not over

yet, and more price updates may be appearing on Polttoaine’s webpage. Why save

them in the middle of today? Wait until it is over”, etc.

2. What will happen to them by the end of today? They will stay displayed on Polttoaine

well into tomorrow, just to be placed under or written over by more updates to come

(i.e. the three-day approach suggested in Appendix 4).

3. In order to upload the latest prices of today (of the locations requested today via the

User app), Admin either schedules an automatic upload (via a timed alarm trigger) or

waits till the end of the day, then uploads these locations’ latest prices manually.

4. The auto mode implements Wi-Fi (un)locking to save the battery.

5. UI-wise, Admin can check the next alarm time, i.e. when the auto mode is scheduled.

(If there is a dash instead, no alarm is set.)

6. Admin can use the default time picker to schedule/start an alarm (any time).

7. Admin has various options available:

 Simulate the User app, esp. when physically outside of Finland

 Cancel timed alarms

14

 See an activity report (auto/manual mode)

 Clear the report

8. Admin taps on "Manual" to activate the manual mode, where Admin can:

 See locations requested yesterday (if any)

 See requested two days ago (if any).

 Use either to update own database (JSON format, if data available) from the

device, the server being spared extra loads. The data are saved to the

shared preferences for persistency.

 See the previous session upload data (JSON format, in a scrollable window

at the screen bottom)

9. Admin taps back to return to the main activity (alarm-based, auto mode).

10. Admin closes the app when necessary.

If one evaluates the entire two-app approach, it can be seen that, database-wise, the

User app saves the locations requested today in a separate table, then after 00:00, a

server cron [9] moves them, say, to a yesterday locations table, in order to keep both the

former empty and ready for the new day, and the latter populated for roll-back cases (as

demonstrated in Figure 43, Appendix 5). The Admin app then steps in and checks on

the recent locations by the end of today, in that second table. Now that today is over, the

Admin app downloads each location’s details from Polttoaine and saves them as recent

prices to the respective tables in own database.

This way, one can be sure that no more today’s prices for these locations will appear as

they used to (see Appendix 4 for increments in today’s prices) on Polttoaine’s webpage

because today has gone, and tomorrow has come. And that way, one can be sure that

all popular locations’ prices stay in own database. That was the logic behind introducing

the Admin app to reinforce the mobile solution for gas price collection under this project.

In addition, yesterday's locations migrated from the first table are purged by a second

cron on the server and saved into a JSON file for the sake of item 7 above (being able

to upload from two days ago, should anything go wrong in the auto mode).

In conclusion to this theoretical part, a third cron would be necessary to purge own da-

tabase of outdated table content, whose duration would be up to the admin to decide on.

For the sake of this project, any locations with prices dating two weeks back or earlier,

are removed to ZZ_[location] archive tables; tackling their growth remains outside the

scope hereof.

15

As to the look and feel of the Admin app, the

mock-ups in Figures 8 and 9 demonstrate the

initial idea (two separate activities with various

options).

Designing the Admin app was in parallel with

developing database interactions based on the

tree-day approach highlighted in Appendix 4,

its upload functionality primarily borrowed from

the User app.

3.2 Limitation of the project

With the User app completed by February of 2016, and the Admin app surfacing in late

2016, developing them to stable versions has taken almost all the remainder of the time

stipulated for the 2017 spring graduation. Due to a part- and then full-time job with a

Russian company in St Petersburg, all Metropolia courses being completed, the greater

part of the project was carried out and tested in St Petersburg, rather than any major city

in Finland. It presupposes that some reverse geocoding limitations may also ensue in

the combined mobile solution scheme, given that, as experience has shown, Google may

at times choke on municipal areas of different countries, especially when there are many

subdivisions: the adrress.getLocality() vs the address.getSubAdminArea() [10].

The Google over-query limit (the User app)

At the time of experimenting with the Google Maps API for distance calculations for this

project, only 50 requests per second were allowed for no-licence uses. Presently, the

quota may have changed; still the same limit is in force [11]. For this reason, the User

app has to force delays in calculating distances between the available gas stations' and

the user's addresses.

Figure 9. Update from
SharedPrefs (1 or 2)

Figure 8. Set alarm
(auto mode)

16

As tests show, if there are up to 50 locations to process in this regard, and if the calcu-

lations are limited to two distances per second, there is usually only 1% of failures. How-

ever, in this case the app takes much time in listing the results (the distances are integral

to the UI). Moreover, for five distance calculations per second, the malfunction is diverse,

e.g. 29 : 19, 14 : 34 or 19 : 29 (i.e. go vs no-go results); yet the time spent is noticeably

shorter.

A major recent problem that may have related to the same, is the User app's inability to

activate its former Google Maps part, which may be due to certificate alterations in the

provider's policy.

The community approach (the User app)

Despite feeding on Polttoaine's data, the User app would perform better if it allowed for

driver community input. For the time being, the app's UI has no feature as such.

On the other hand, the User app is indeed dependent on the local community requests.

I.e. the more frequently drivers ask for today's prices, the more up-to-date is own data-

base.

Archive tables growing in volume (the Admin app)

As the tabled data in own database become two-week old, they are removed into their

respective archive tables, named ZZ_[location], by a server cron programmed to fulfil

this on a regular basis. It helps to keep actual information within limits, so that requests

are served faster; still the ZZ tables may become overpopulated with time. So far, the

mobile solution under this project has no means to tackle this problem.

4 Results

With the project limitations taken into account, the combined mobile solution does almost

everything as it should, except for the former navigation. It definitely needs more atten-

tion if it is to claim to become a remote competitor of its counterpart app from Polttoaine.

17

4.1 Overall performance of the two-app approach

In order to demonstrate how this approach works in real life, following are mobile screen-

shots of both the apps in action, in the same order as mocked up in the previous chapter.

For the database approach, more screenshots are added after those of the apps.

User app

If the app's mock-ups are compared to the actual look and feel (Figures 10, 11), there

seems to be only colour, the pending no-today's (Figure 13) and Google Maps scenarios

that differentiate them. Still, most of the functionality declared is in place, except the

Google Maps case (detailed in 4.2). For easier comparison of the User app vs its Pol-

ttoaine's counterpart, one of the latter's screen shots is added, too (as shown in Figure

12).

Figure 8. Confirm loc Figure 9 (two). Choose and tap Figure 10. Polttoaine's app

As Figure 10 confirms, the test location was St Petersburg, yet

to simulate a Finnish location, Oulu was chosen and hard-coded

into the User app to see the actual prices come into light. And

both the apps showed first 1:2 and then 2:3 options (see Figures

11, 12 and 14) in favour of the Polttoaine's app.

Figure 11. No-today's-
prices case (pending)

18

Figure 14 demonstrates also that data re-

trieved almost at the same time by the two

apps, may be slightly different (compare the

official Polttoaine webpage with the output of

both the apps; as well as note the different dis-

tance values).

Tapping on either option offered by the Use

app (Figure 14) failed to open the Google

Maps activity for unknown reasons so far.

Finally, before the usual run of the code was

altered for Oulu, the no-today's prices mod-

elled option (Figure 13) was obviously han-

dled correctly, since this location was not

among the Finnish ones, hence no data for it.

Admin app

Similarly, the other app belonging to the combined mobile solution is visualised below.

Its provisional title is jSouper DailyUpdateLauncher; it was named so after a library with

a resembling name (footnoted in 3.1) was experimented with and lay as the foundation.

Manual mode examples (auto mode excluded for brevity except its report) include:

Figure 15. Set alarm
(auto mode)

Figure 16 (three). Update from SharedPrefs (1)
and reporting option available too

Figure 12. Own app's input appears
to match the webpage

19

As Figures 15 and 16 demonstrate, the update

process was via the manual mode, after the

data had been saved to the shared preferences

of the device. The uploading was toasted and

duly reported as it should be (Figures 16, 17).

Note the minor difference in the way the auto

and manual modes showed their reports sepa-

rators ("|" for auto vs "--" for manual).

Database

Since these two apps are integral to the com-

bined mobile solution for gas price collection, its overall performance will be incomplete

without demonstrating the back-end process, i.e. what happens in the database. The

following figures are meant to give an idea in this regard.

If the way the previous screenshots appear is viewed in chronological sequence, it can

be noted that:

1. The test user is in Oulu requesting fuel prices for today via the User app. It then

sends that information to the database; since it shows that it is uploading data,

the location is being requested for the first time. It means that Oulu should appear

in the today's locations table (as Figure 18 shows).

Figure 17 (two). Reporting options (auto "|" vs
manual "--"). Note the battery saving technique

used in the auto mode (Wi-Fi (un)locking).

Figure 18. Oulu is in the
requested_today table

Figure 19. Oulu data (official)

20

2. All but today's (16.04) prices from Oulu (Figure 19) are supposed to have been

uploaded to own Oulu's table in the database. Figure 20 confirms it.

3. Moreover, the Admin app revealed the locations requested yesterday (15.04)

were Espoo, Vantaa, Lohja, Äänekoski, and Mikkeli (Figure 16). It means that

their data should be in their respective tables of own database (see the thesis

last page figure too). This presumption is con-

firmed by Figure 21.

4. Given that a manual upload of their prices

was attempted (as indicated in Figures 16, 17), all

of them except today's (16.04) should be in the

respective tables of the database. For brevity,

only the first three locations vs their Polttoaine's

counterparts are shown in Figures 22-24.

Figure 20. Oulu data (retrieved into own database)

Figure 21. Locations requested yesterday
are store in a separate table

21

For space and brevity, no cron job screenshots are furnished for this paper.

Figure 22. Espoo handled

Figure 23. Vantaa processed

Figure 24. Lohja inserted too

22

4.2 Errors explained

Unfortunately, the major problem of the combined mobile solution is the sudden malfunc-

tion of the Google Maps activity as shown in Figure 25. Own approaches to address this

error included online searches, yet so far no valid solution has been found, except rede-

signing the entire activity and test-run it from scratch.

Among other problems en-

countered in this project

was the formation of valid

links to reach a target loca-

tion. E.g. http://www.

polttoaine.net/Espoo were

easily followed by the code,

whereas such as

http://www.polttoaine.net/

/Keha_%20III%20(E18), i.e.

Kehä III (E18), or

http://www.polttoaine.net/Pyha_ja_rvi (i.e. Pyhäjärvi) were not.

Own methods were introduced to overcome the latter. More specifically, for umlauts and

the space substitution in the links:

String legacy_coder(String location) {

 // forming again the ugly url string

 StringBuilder sb = new StringBuilder("");

 for (int index = 0; index < location.length(); index++) {

 char aChar = location.charAt(index);

 String s = "";

 if (aChar == 'ä') {

 aChar = Character.MIN_VALUE;

 s = "a_";

 }

 if (aChar == 'Ä') {

 aChar = Character.MIN_VALUE;

 s = "A_";

 }

 if (aChar == 'ö') {

 aChar = Character.MIN_VALUE;

 s = "o_";

 }

 if (aChar == 'Ö') {

 aChar = Character.MIN_VALUE;

 s = "O_";

 }

 s += aChar;

 sb.append(s);

 }

 return sb.toString().replaceAll("\\p{C}", "");

}

Figure 25. Unhandled error in calling the Google Maps activity
within the User app

23

…

this.keyword = keyword.replaceAll(" ", "%20").trim();

…

After running these, links to the Polttoaine's 150-location webpage were followed by the

code and opened gates to their html code without any problem.

5 Evaluation of the results

What follows is an attempted objective evaluation of the performance of own combined

mobile solution for gas price collection, including comparisons with Polttoaine's app.

Overall, but for the single major drawback represented by the Google Maps activity mal-

function, the solution works, provided the local drivers use it and agree to share the in-

formation they get from Polttoaine.

5.1 Efficiency of own methods

Despite the need for further code rearrangement and more effective methods, own mo-

bile approach has shown that:

1. The test locations are recognised correctly, which is much help to the worried

driver case described in the Introduction.

2. Gas station options, though limited by the Google over-query limit (chapter 3.2),

are true to those displayed on the gas prices provider's website.

3. Own database gets populated with only most requested location's data and can

be developed further to give access to interested parties.

4. Own database uploading can be handled by an admin in either the auto or man-

ual mode, with reporting and toasting available.

5. No ads are shown in the process (no distraction/disturbance).

6. Failures include the map activity and the pending no-today's prices case, thus

historical prices are unavailable at present. In addition, no own app's tools have

been designed to counter the archive tables overpopulation mentioned in chapter

3.2.

Next subsection deals with the key feature comparison to the Polttoaine app to see ben-

efits and drawbacks of own approach.

24

5.2 Benefits and drawbacks vs studied tools

Although claiming no rivalry with the counterpart app, own apps offer the following pros

and cons when compared with the Polttoaine app (in the same order as 5.1 above):

1. Unlike the comparison app, own one recognises current location.

2. Polttoaine's app may at times deviate from its cousin webpage, whereas own app

scrapes them as they are (see Figure 14).

3. No official ways are known to access the Polttoaine database historical prices,

whereas own database features a fair collection of them, provided local drivers

are motivated to use the mobile solution from now on.

4. Unlike the comparison app, own one offers some database update management

tools.

5. Own apps do not feed on ads.

6. Drawbacks include no own app's option to use local driver community input (un-

like Polttoaine's app that has it); no navigation to the gas station chosen (Polttoa-

ine has it too); no tools to counter the archive tables' growth in own database; the

tables there are numerous, unrelated, and with repeated structures.

As a major side note, back to Figure 14, the distances calculated by both the apps do

differ. Therefore, this distance was resized on the Google Maps webpage to show the

following:

Comparing the results reveals

that own app's length is closer

to the resized one in both

cases. This speaks for one

major benefit in favour of the

User app.

With these finishing this sub-

section, it can be concluded

that keeping the comparison in mind will help both parties in improving their apps in future

and implementing better usability scenarios.

Figure 26. Deviation in distance calculations by the two apps

25

6 Conclusion

In conclusion, it should suffice to state that the initial emergency pictured in the In-

troduction, with the worried driver, unaware of the location (s)he is at and with an emp-

tying gas tank, may have received a new solution in the form of the two apps and data-

base detailed in this project. Although for the time being, the Google Maps activity lacks

operation readiness, the system seems to qualify generally to proceed with further de-

velopment as a promising, possibly, more driver-friendly tool.

As for the Admin app, its tasks may as well be server-run, yet the mobile solution in

question seems to provide for more tangible control over the process right on the go.

It goes without delving into much detail that the system will depend on the local

driver community too, since it is their location requests that are the prime mover for this

project, and the latter was not meant to scrape and parse all the locations Polttoaine

covers daily. That would seem to offer another topic for a thesis of a web security or anti-

bot student.

The Google over-query, as a limitation for this project, may be surpassed by fine-

tuning the process milliseconds suitable for the occasion. On the other hand, the emer-

gency driver from the Introduction may feel frustrated at having to list through multiple

options if there are so many as 20 or 50, and may as well be content with choosing

among just 5-8 stations instead.

The combined mobile solution for gas price collection introduced in this project could

be more efficient if the following requirements were met:

 The Google Maps activity is back and operational;

 The over-query limit is curbed via caching or other means;

 The single geolocation mode is reinforced by a manual input alternative,

should the driver ignore the need for position recognition;

 The show-earlier prices case is introduced and tested for whether it is actu-

ally necessary;

 The archive tables' growth is checked by a fourth cron that stores outdated

information in JSON-formatted files;

 The repeated structure of the database tables is substituted by more effi-

cient tools in order to save space and time and eliminate the need for ar-

chiving.

26

Further study may be recommended to build on the project by introducing non-MySQL

methods too. Additionally, other collection methods than getting updates from gas pro-

viders or driver communities, as described in Appendix 1, may encourage the continua-

tion of this project.

References

1 Chauhan S, Panda N.K. Hacking Web Intelligence. Open Source Intelligence and
Web Reconnaissance Concepts and Techniques. Waltham, MA: Syngress
(Elsevier); 2015.

2 Google. Google Play [online].
URL: https://play.google.com/store/search?q=fuel%20prices%20app&c=apps.
Accessed 12 April 2017.

3 Dhanrajani A. Google Maps making stressful times easier [online]. 2015.
URL: https://maps.googleblog.com/2015/10/google-maps-making-stressful-
times.html.
Accessed 12 April 2017.

4 Alvarez E. Google Maps for iOS displays gas prices along your route [online].
2015.
URL: https://www.engadget.com/2015/12/14/google-maps-ios-gas-prices.
Accessed 12 April 2017.

5 Kriel C. Google Maps for iOS catches up to Android, gains offline navigation,
up-to-date gas prices, and more [onlime]. 2015.
URL: http://siliconangle.com/blog/2015/12/15/google-maps-for-ios-catches-up-
to-android-gains-offline-navigation-up-to-date-gas-prices-and-more.
Accessed 12 April 2017.

6 Turland M. php|architect’s Guide to Web Scraping with PHP. Toronto, ON M3H

1B7: Marco Tabini & Associates, Inc., 2010

7 Google. Developers. Location Strategies [online].
URL: https://developer.android.com/guide/topics/location/strategies.html.
Accessed 17 December 2016.

8 Google. Developers. AsyncTask [online].
URL: https://developer.android.com/reference/android/os/AsyncTask.html.
Accessed 15 February 2016).

9 Linux. crontab(5) - Linux man page [online].
URL: https://linux.die.net/man/5/crontab.
Accessed 16 April 2017.

10 StackOverflow. Android geocoder reverse location - reliable way to get the city?
[online].
URL: http://stackoverflow.com/questions/21921460/android-geocoder-reverse-

27

location-reliable-way-to-get-the-city.
Accessed 5 January 2017.

11 Google. Google Maps API. Premium Plan Usage Rates and Limits [online].
URL: https://developers.google.com/maps/premium/usage-limits.
Accessed 16 April 2017.

Appendix 1

28

Appendix 1. Challenges of OCR

The images on this page originate from Google Street View, own photo camera, and own

dashcam respectively to the order they appear here, unnumbered. When trying to rec-

ognise these via the mentioned Tesseract-PHP script, the results were discouraging,

since the colour digits were never read correctly.

Own attempts to change these colour images into black and white gave no positive re-

sults: when taking pictures, one had to make sure the price tag was ideally centred. That,

however, never helped even after treatment by various methods (as self-explanatory

Figures 27-31 demonstrate).

Appendix 1

29

Unlike colour images, BW screenshots, as simple as

black text vs white background (Figure 32), were read

without any problem. Those attempts clearly ex-

plained, carrying on with two separate topics would

take more time than allocated for writing one thesis.

Figure 32. A .doc file screen shot was
read like "e95 21.34e98 33.45"

Figure 27. Cropped Figure 28. Cropped, negated Figure 29. Cropped, negated,
greyscale (CNG)

Figure 30. CNG+lit+contrasted Figure 31. CNG+lit

Appendix 2

30

Appendix 2. Retrieving country-specific fuel data

1. For this item, see below a screenshot of a website specialised in quoting only

average fuel prices in St Petersburg. The text in fine print underneath the title

(Gas prices in St Petersburg) reads that their hard-working bots are daily busy

collecting fuel data from various gas stations of the city. Not every station is ready

to provide this information, so today's major choices are the following. And only

two options follow.

2. Next image demonstrates that prices shown are for evaluation only and subject

to change by gas stations:

Appendix 2

31

3. An excerpt from a correspondence history between me and a local Neste sta-

tion (translated by me):

From: DS Spb <ds.spb@neste.com>

Subject: Re: prices available at your website

Date: 8 February 2016 at 10:09:25 GMT+3

To: Kirill Kuvshinov <Kirill.Kuvshinov@metropolia.fi>

Good morning Kirill,

If you are interested in our gas station prices, the site cannot provide this information.

You may want to visit any of our stations individually to learn about current price.

Fuel delivery can be calculated by a special calculator if you pls follow this link.

http://www.nesteoil.ru/ru/content/calculator

7 February 2016, 19:05 Kirill Kuvshinov <Kirill.Kuvshinov@metropolia.fi>

wrote:

Good evening,

Kindly advise where I can see fuel prices on your website.

Best regards,

Kirill

--

Best regards,

Corporate sales office

Neste Saint Petersburg, OOO

+7 (812) 703 06 15

ds.spb@neste.com

www.neste.ru

4. However, some local gas providers do have their prices published (see the ex-

cerpt below from Lukoil).

http://www.nesteoil.ru/ru/content/calculator
mailto:Kirill.Kuvshinov@metropolia.fi
mailto:ds.spb@neste.com
http://www.neste.ru/
http://www.neste.ru/

Appendix 2

32

Compare the screenshot date and time with the price lists available at request time to

see they are outdated as of 7 February 2016.

Appendix 3

33

Appendix 3. Visual comparisons of test apps output

1. Google Maps image policy allows for 1-3 years of “stale” imagery.

Indeed, a 2016 shot below reveals that the image capture occurred a year ago (see the

right bottom part vs the right top one).

Appendix 3

34

2. Moscow and Nizhniy Novgorod reinforced St Petersburg as test locations to see

their overall updatability. BenzinPrice seldom showed actual prices at request

time. Find below, in the three subsequent images, examples for St Petersburg

(digits 78 in the link), Nizhniy Novgorod (52), and Moscow (77), these numbers

representing the traffic police area codes. With the shooting dates and time com-

pared to the tabled data, chronological gaps become apparent. More

(screen)shots are available on request.

Appendix 3

35

3. Unlike the other candidate tools, Polttoaine usually showed updates already in

the morning (see Helsinki and Espoo as the most updated locations in Finland,

in the two images below).

Appendix 3

36

Compare the screenshot date and time of 2016 in the upper right-hand corner with the

tabled data. Only morning shots are used to show already the difference vs other apps

and tools. More screenshots for the period of January-April 2016 are available on re-

quest.

(Rest of space left blank intentionally)

Appendix 3

37

4. As the research continued, it became obvious that the tabled results (exampled

in the two tables below) confirmed the idea that Polttoaine was the most updated

app among the other candidates. Note the digits under the parts of the day; they

explain how frequent the updates were during the observation day.

Clearly enough, the tables suggest that

Polttoaine revealed better regularity of up-

dates within the pre-study period.

Date City Morning Midday vs day Evening/night Time

30.1.16 Espoo 1 39 11:50; 21:23.

30.1.16 Helsinki 1 13 11:52; 21:22.

31.1.16 Espoo 13 14 15:36; 23:23.

31.1.16 Helsinki 20 24 15:38; 23:22.

1.2.16 Helsinki 15 23:07.

1.2.16 Espoo 15 23:08.

2.2.16 Helsinki 7 11 12:43; 21:07.

2.2.16 Espoo 2 15 12:43; 21:07.

3.2.16 Helsinki 0 29 15:49; 21:33.

3.2.16 Espoo 1 17 15:49; 21:34.

4.2.16 Espoo 2 7 18 09:54; 16:08; 23:36.

4.2.16 Helsinki 7 12 22 09:53; 16:08; 23:36.

7.4.16 Espoo 4 8

7.4.16 Helsinki 5 11

9.4.16 Espoo 0 43

9.4.16 Helsinki 0 7

10.4.16 Espoo 0 14

10.4.16 Helsinki 0 19

11.4.16 Espoo 4 4 12

11.4.16 Helsinki 8 9 20

12.4.16 Espoo 1 1 vs 2 15 10:42; 12:04 15:11; 22:24.

12.4.16 Helsinki 1 3 vs 3 7 10:43; 12:05 15:24; 22:28.

13.4.16 Espoo 0 3 15 09:10; 13:30; 21:05.

13.4.16 Helsinki 0 1 5 09:12; 13:32; 21:07.

14.4.16 Espoo 2 2 14 09:59; 12:01; 21:13.

14.4.16 Helsinki 1 3 10 09:59; 12:03; 21:15.

15.4.16 Espoo 0 9 18 07:30; 14:03; 21:26.

15.4.16 Helsinki 0 2 8 07:31; 14:01;

16.4.16 Espoo 0 27 30 11:17; 16:19; 21:25.

16.4.16 Helsinki 0 0 11:18; 16:20; 21:26.

17.4.16 Espoo 11 12 19 08:59; 12:04; 22:38.

17.4.16 Helsinki 2 6 17 09:00; 12:05; 22:39.

18.4.16 Espoo 6 vs 6 12 12:47 14:49; 22:35.

18.4.16 Helsinki 5 vs 5 17 12:48 14:48; 22:36.

19.4.16 Espoo 3 4 09:25; 13:03

19.4.16 Helsinki 0 0 09:26; 13:04

Date City Morning Midday vs day Evening/night Time

30.1.16 Moscow 0 0 11:59; 21:15.

30.1.16 N.Novgorod 0 0 12:01; 21:16.

30.1.16 St.Pete 0 0 0 11:59; 21:14.

31.1.16 Moscow 0 8 15:00; 23:18.

31.1.16 N.Novgorod 0 0 15:00; 23:19.

31.1.16 St.Pete 0 0 14:58; 23:17.

1.2.16 Moscow 2 23:01.

1.2.16 N.Novgorod 0 23:02.

1.2.16 St.Pete 1 23:00.

2.2.16 Moscow 0 7 12:35; 21:03.

2.2.16 N.Novgorod 0 0 12:37; 21:04.

2.2.16 St.Pete 0 1 12:36; 21:04.

3.2.16 Moscow 16 16 15:45; 21:29.

3.2.16 N.Novgorod 13 13 15:46; 21:30.

3.2.16 St.Pete 1 1 15:46; 21:31.

4.2.16 Moscow 0 77 80 09:48; 16:02; 23:38.

4.2.16 N.Novgorod 0 0 1 09:49; 16:05; 23:38.

4.2.16 St.Pete 0 1 1 09:50; 16:06; 23:39.

7.4.16 Moscow 1

7.4.16 N.Novgorod 0

7.4.16 St.Pete 2

9.4.16 Moscow 1

9.4.16 N.Novgorod 0

9.4.16 St.Pete 0

10.4.16 Moscow 0 0 5

10.4.16 N.Novgorod 0 0 0

10.4.16 St.Pete 0 0 0

11.4.16 Moscow 0 0 0

11.4.16 N.Novgorod 0 0 0

11.4.16 St.Pete 0 0 0

12.4.16 Moscow 1 1 vs 2 2 10:48; 12:11 15:28; 22:22.

12.4.16 N.Novgorod 0 0 vs 0 0 10:50; 12:12 15:30; 22:23.

12.4.16 St.Pete 0 2 vs 2 2 10:46; 12:07 15:25; 22:20.

13.4.16 Moscow 0 71 71 09:14; 13:27; 21:10.

13.4.16 N.Novgorod 0 0 2 09:15; 13:25; 21:10.

13.4.16 St.Pete 0 0 vs 3 25 09:13; 13:29 13:38; 21:08.

14.4.16 Moscow 0 0 16 09:03; 12:05 ; 21:11.

14.4.16 N.Novgorod 0 0 0 09:04; 12:07; 21:12.

14.4.16 St.Pete 0 11 + 1 by Waze + 2 by Waze 09:03; 12:04; 21:10 21:47(Waze)

15.4.16 Moscow 0 0 0 07:27; 14:04; 21:29.

15.4.16 N.Novgorod 0 0 0 07:30; 14:05; 21:30.

15.4.16 St.Pete 0 2 2 07:26; 14:04; 21:29.

16.4.16 Moscow 0 0 0 11:15; 16: 22; 21:28.

16.4.16 N.Novgorod 0 0 0 11:16; 16:23; 21:29.

16.4.16 St.Pete 0 +2 by Waze ditto ditto 11:12 11:28; 16:21 16:34(Waze); 21:27.

17.4.16 Moscow 1 1 8 08:56; 12:06; 22:43.

17.4.16 N.Novgorod 0 0 0 08:56; 12:07; 22:47.

17.4.16 St.Pete 0 +2 by Waze0 +2 by Waze0 +3 by Waze 08:57 09:09; 12:06 12:16; 22:41 22:54(Waze).

18.4.16 Moscow 0 vs 0 19 12:45 14:51; 22:33.

18.4.16 N.Novgorod 0 vs 0 0 12:46 14:53; 22:34.

18.4.16 St.Pete 0 +3 by Waze 1 12:44 12:59; 14:50 14:57; 22:31 no Waze for home.

19.4.16 Moscow 0 0 09:23; 13:02

19.4.16 N.Novgorod 0 0 09:24; 13:02

19.4.16 St.Pete 0 0 09:22; 13:00

Appendix 5

38

Appendix 4. Polttoaine's fuel display policy visualised

According to their policy, or their Info tab, "Hintatiedot pysyvät näkyvillä 5 vuorokautta

ilman uutta päivitystä" (link given in 2.4's footnotes), the website quotes prices for the

last 5 days. When displayed on a single page, historical data tend to disappear as up-

dates arrive. In order to see clearly how they work, a series of Espoo screenshots13 follow

to show the process chronologically, within a sample two-day span limit:

Figure 33. A random day (this Feb 22-23), midday Figure 34. Same day's evening

Figure 35. This Feb 23 afternoon Figure 36. Same day's 17:30 (local time)

13 As taken from http://www.polttoaine.net/Espoo.

Appendix 5

39

Usually, the page has a limited number of lines. As updates appear on top of the list

(blue-, green- and orange-bordered rectangles in Figures 33-38), the previous prices

tend to disappear. In addition, it may also occur that all of today’s prices take up the

entirety of the page, thus leaving no space for historical data.

Figure 37. This Feb 23's 22:59 Figure 38. This Feb 24's 16:30 (10 updates)

(remains the same at 04:00, 05:00, 08:00 Feb 24)

Other observations include that:

 Usually, today’s, yesterday’s and, at times, earlier prices fill up the entire page;

 30-min or hourly updates may start at 07:00 or halt for a part of the day.

With these observations, came the understanding that the usual price span was between

today, yesterday and earlier prices, which later formed the three-day approach for own

database structure. For the implementation details, refer to the Admin app subsection of

3.1.

Appendix 5

40

Appendix 5. User and Admin apps: use cases

User app

A simplified UML scheme and a flowchart representation of the User app in action are

shown in Figures 39,40.

Figure 39. Flowchart of User
app in action

Figure 40. Use case UMLed
(User app)

Appendix 5

41

Admin app

Similarly, a simple UML scheme and a flowchart representation of the Admin app in

action are given in Figures 41,42.

Figure 41. Flowchart of Admin app in action

Figure 42. Use case UMLed (Admin app)

Appendix 5

42

The Admin app is related to own database, so it is important to show its structure to

understand the simple interactions there (see Figure 43 below).

END OF DOCUMENT

Figure 43. Simple, unrelated DB scheme of the project,
with the three-day approach in mind

