jamk.fi

Version Control System

Designing and Implementing Server Infrastructure

Riku Ojala

Bachelor’s thesis

December 2016

Technology, Communication and Transport
Degree Programme in Software Engineering

Jyvaskylan ammattikorkeakoulu
JAMK University of Applied Sciences

jamk.fi

Author(s) Type of publication Date
Ojala, Riku Bachelor’s thesis 09.12.2016
Language of publication:
English
Number of pages Permission for web
53 publication: x

Title of publication
\Version Control System
Designing and Implementing Server Infrastructure

Degree programme
Software Engineering

Supervisor(s)
Marko Rintamaki

IAssigned by
Senop Oy, Optronics, Lievestuore

IAbstract

Senop Oy Optronics R&D software development team had an outdated VSC server. Senop
Oy assigned to set up and configure a server with VCS and supporting services for software
development purposes.

The objective was to design and implement an improved server environment according to
the requirement specification. The design included the server architecture, network
topology, used software services and configuration of the services. First the basic setup for
the server was done. On top of the basic setup, one VM was installed with a more advanced
configuration of the services. The server, NAS server and developer PC’s were connected to
a switch allowing a network connection between them. The server and supporting services
were implemented and tested according to the specification.

As a result, all the devices and services were set up according to the requirement
specification. The server set up supports the software development work and the important
data of the server is backed up in NAS server. Senop Oy R&D team were pleased with the
server setup and it influenced the software development in the R&D team positively. The
project started a continuous development process of server environment and software
development methods.

Using VM’s it is possible to create technically difficult and advanced setups without
interfering with the current server environment. Using VM's allows to develop the server
environment in stages and it can be tested outside the server environment. However, VM’s
tend to use plenty of system resources which may result in problems later. Alternatively to
'VM'’s one may use application containers to optimize system resources.

Keywords/tags (subjects)
Linux, Server, Version Control System, Virtualization

Miscellaneous

ja-ka f.l Kuvailulehti

Tekija(t) Julkaisu laji Paivamaara
Ojala, Riku Opinnaytetyd, AMK 09.12.2016
Julkaisun kieli:
English
Number of pages \Verkkojulkaisulupa
53 myodnnetty: X
Tyon nimi

\Version Control System
Designing and Implementing Server Infrastructure

Tutkinto-ohjelma
Ohjelmistotekniikan koulutusohjelma

Tyon ohjaaja(t)
Marko Rintamaki

[Toimeksiantaja(t)
Senop Oy, Optroniikka, Lievestuore

Tiivistelma

Senop Oy optroniikka T&K-ryhman ohjelmistokehittdjien VCS-palvelin oli vanhentunut.
Senop Oy:n toimeksiantona oli rakentaa ja konfiguroida palvelin VCS-toiminnolla ja
ohjelmistokehitysta tukevilla palveluilla.

Tavoitteena oli suunnitella ja toteuttaa paranneltu palvelinymparistd vaatimusmaarittelyn
mukaisesti. Suunnitteluun kuului palvelinarkkitehtuuri, verkkotopologia, kdytettavat
ohjelmistopalvelut seka niiden konfigurointi. Ensin tehtiin palvelimen perusasennus.
Perusasennuksen paalle asennettin yksi virtuaalikone, joka sisalsi edistyksellisemman
ohjelmistopalveluiden konfiguraation. Palvelin, verkkolevypalvelin ja ohjelmistokehitt3jien
koneet yhdistettiin kytkimeen, joka mahdollisti verkkoyhteyden laitteiden valila.
Palvelinymparisto testattiin, jotta se vastaa vaatimusmaarittelya.

Lopputuloksena palvelinymparisto vastasi vaatimusmaarittelya. Palvelinymparisto tukee
ohjelmistokehitysty6ta ja palvelimen tarkeat tiedot on varmuuskopioitu NAS palvelimelle.
Toimeksiantaja oli tyytyavainen palvelinasennukseen, ja silla oli positiivinen vaikutus
ohjelmistokehitykseen T&K-ryhmassa. Projekti kdynnisti jatkuvan palvelinympériston ja
ohjelmistokehityksen kaytanteiden kehitysprosessin.

Virtuaalikoneita kayttamalla on mahdollista saavuttaa teknisesti haastavia ja edistyksellisisa
ratkaisuja ilman, ettad nykyinen palvelinymparist6 hairiintyy. Virtuaalikoneiden kaytto
mahdollistaa palvelinympariston kehityksen vaiheittain ja niiden testauksen
palvelinympariston ulkopuolella. Virtuaalikoneet kuitenkin kayttavat paljon jarjestelman
resursseja, mika voi tuottaa ongelman myohemmassa vaiheessa. Vaihtoehtoisesti
virtuaalikoneiden sijasta voisi kdyttaa sovelluskontteja jarjestelmaresurssien optimoimiseksi.

/Avainsanat (asiasanat)
Linux, palvelin, versiohallinta, virtualisointi

Muut tiedot

Content
1 Background and objectives of thesis...........ccoeieeiiiiiiiiiiiiiiiiiiiiirrccccceeee 5
1 YT o Vo] o IOV 2NN 5
1.2 Thesis background and assignment...............ooevviiviieiiiiiiieiiiieeeeeeeeeeeee e, 5
1.3 ThesisS ODJECHIVES.uuuuec s 6
1.4 Technical rEQUIrEMENTES.....uuiiiiiiiiieetiieecieeeee e ee e e e e eeeeees 6
2 Research method............ccooiiiiiiiiiiiiiiiiiietieceec e aseee e 7
2.1 Research Approach and DeSigN...........ccooiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeee e 7
2.2 Data Collection and ANalYSiS.......ccoovvvriuuiiiiiiiiiiiiiiieeeeeeeeeeereee e 8
3 Theoretical backgroUnd.............eeeeeeeeeeereiiiiiiiiiiiieececceeeeeecrereecececrnnnsssnssssseeseeseeeene 9
3.1 Version CONErol........coooiiiiiiiie e 9
3.1.1 What is Version CONtrol..........cccueeiiiiiiiiiiniiiiieeetee ettt 9
3.1.2 Benefits of Version control............cccoeviiiiiiiiiiiiniieeeieeeeeeeeeee e 9
3.2 Version CoNtrol SYStEML....cciiiiiieeiiiieieeeeeeeeetceeeeeeeeeeeete e e e 10
3.2.1 Local Version Control SYStemS..........eeeeeeiiiimeiiiiiiiieeeieeeeevieeeeee e, 10
3.2.2 Centralized Version Control Systems..........cceeeeeeiiiimmviiiiiieeeeeieeeeivnnnnn. 11
3.2.3 Distributed Version Control Systems..........cceeeeeviiiirveviiiiiieeeiiieeeeivnenn. 12
3.3 Version Control ProCESSES..........ceieeuiiiiiiiiiieieeiieee ettt 13
3.3.1 REVEIING. ..o 13
TG T WY £~ 41 o V-SSP 13
TG TG T 0] 1'0] o T= | o 1 1=/ 13
3.3.4 Branching & MEergiNg......cccoovveeiiiiiiiieiieee, 13
3.3.5 INIHANZE e 14
3.3.6 CheCKOUL... ... 14
3.3.7 COMMIL.ceiiiiiiiiiiieeee et e et e e e s saseae e 14

TG T T V10T = YRR 14

3.3.9 TA e eeeeeeeee et ee ettt ettt et et ettt et et ettt e e ettt et e aenenas 14
3.3.00 ClONE..nieieeeetee ettt e et e s e e 14
3.4 Version control WOrKfIOW...........ceieriiiiiiiriiiieieeiieeeeeeeee e 14
3.4.1 Centralized WOrkflow.........ccooouiiiiiiiiiiiiieieeeeee e 14
3.4.2 Feature WOrKflOW..........ceiiiiiiiiiiiieeeetee e 16
3.4.3 Gitflow WOIKFTIOW. ...ccoemiiiiiieiiiieeetce e 18
3.5 1T service ManagemMeENt.........uuucieeeiieeiiiiiiiieeee e e e e eeeeetree e e e e e e e e ea e 20
< T I I OO PP P PP PP PP PP 20
I I | B V2 J SO PO P RN UPPPPRRPPPPRRRPRt 21
3.7.1 SErVICE DESIZN..ceueeiieeie ittt eeeeetccee e e e e e e e et ree e e e e e eeeraaanaeeeeans 21
3.7.2 The five design aspects........ccoeeeieeeiieiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee, 22
3.7.3 Designing Service SOIULIONS.........cevvvviiiiiiiiiieiiiiriie e e e e e 22
3.7.4 Designing management information systems and tools...................... 23
3.8 Virtualization......coooeiiiiiiee e 24
3.8.1 Virtual Machine.........cooouiiiiiiiiiiieee e 24
B.8.2 HYPEIVISOI .. ceiiieeeiiiieeeeeteeeeeetee ettt e e e etee e e eette e e e et eeessaaeessssaneeeens 25
3.9 Datastoring and backup..........coovieiiiiiiiiiiiiieeeeeeee, 25
3.9.1 Network Attached Storage...........coooeiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeee, 25
3.9.2 RAID teChNOIOZIES.....ceeeeeeeeieeeeeeeeeeeeeerreeee e 26
3.9.3 Securing data with backup.........ccovvvviiiiiiiiiii, 26
3.9.4 Bacula backup SYStEM......ceeiiiiiiiiiiiiiieeeeeceeeeeee e 27
4 SYSEEM A@SIZN....cceiiiiiiiiieiiieieieeeeercceeeeeeeeeeecenssesessaeaeeeessasassssasteeeeeeeeeeeeaeesesaesaesanas 30
4.1 BeSE PraCtiCeS..uuuuuniiiiiiiiiieeeetceecceee et e e e et e e e e e e e e e eeees 30
4.2 DESIZN OVEIVIEW.....cceeeiiieiiiiiieeeeeeeeeeeeeeiteetraraeeeseeeeeeeesssseesssnnaaasaaeasesaseees 31
4.3 HArAWare......ceeeeiiiiee ettt ettt e e et e e ettt e e e e e e e aneee s 32

4.4 The Base SYSTEM...uuuuiiiiiiiiieiiiiiieeeeeeeeeetteeee e et e e e e e e ereerbeeeesaees 33

4.5 ConfIGUINNG VM.....eeeeeeeeeeeeeeeeeee e raas s aaaa s s aasasassssssanenns 35

A 0|V F= ol U | = TP 38

4.6.1 Configuring Bacula..........ccooeeeeeeiieeeeeeeeeeeeereree e 38

4.7 SECUIIEY eetteeiiiiiee ettt ettt e e e etee e e e ettt e e e s eaeeesrestaaeeesabaeeeessssnneesssnns 39

I (=7 n {2 - PRt 40
LI 2\ VZ 1 [TE: 1 n (o] o RPN 41
2 oY (o 1YY o T 41
8 CONCIUSION....ccoeeiiiiiiiiiicetcie ettt ase s sase s s sas s s s sase s s s s aneasssssnne 42
2] (=] =T Tl RN 43
Y 0] 07T T [ot .3 N 48
Appendix 1 Bacula Console configuration..............coooeeiiiiiieeiiiiicciieeeeeeeeees 48
Appendix 2 Bacula Client configuration - File Daemon..............ccvvvveeevvveennennnnns 49
Appendix 3 Bacula Director configuration.............ccccci 50

Appendix 4 Bacula Storage Daemon Configuration..............cccceeieeiiiicinnnnnennnnn, 53

Figures

Figure 1. Stages of development cycle of design researchcccccoeiiiiiiiinninnnnnnnn. 7
Figure 2. Local Version Control SyStemoooeviiiiiieiiiii s 10
Figure 3. Centralized Version Control SYStemSuueeveeeiiieiieeeeeeeeeeecccccccccceeraeaaes 11
Figure 4. Distributed Version Control SyStemscoovvieeiiiieeiieieeccccccceeeeeeaaes 12
Figure 5. A Git branching model by Vincent DrieSSenuvveevveevvvevveeneneeeerneennnns 19
Figure 6. The Service LIfECYCIEccooeeeeeeeeeeee e 21
Figure 7. Aligning new services to business requirementseeevvvevveeeverevnnennnnns 23
Figure 8. The service portfolio and its contentsoooieeiiiiiiiiiiiiiiiiiceaes 24
Figure 9. The two types of HYypervisorsooooveiiieeiiiiiees 25
Figure 10. Bacula COMPONENLSuuuuuuuiiiiiiiiiiereeeeeeareeessesasesssssasseassaraaana.s 28
Figure 11. Interactions Between the Bacula SErvicesoouvvveeeeveeeeeeiieeeeeeeeeeeeeeenees 29
Figure 12. The IT system design LAN tOPOIOgY........uuuuuumuunermnmniiiiiiiiienniiinenieenennarennnnnas 31
Figure 13. I3 container layout eXamplecoooiiiiiieiiiiiiccccccccccccceccc e 34
Figure 14. Bacula resources definitioncevviviiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeee 39
Tables

Table 1. Server technical SpecificationS.........ovvvvveiiiiiiiiiieeeeeeceeeeeeeeeen 32

1 Background and objectives of thesis

1.1 Senop Oy

Senop Oy is a company which develops and constructs reliable equipment and
systems for safety- and security-critical applications. Senop Oy began operating at the
beginning of year 2016, when Millog Optronics’ Product Business line and Oricopa
Oy’s System Integration Business line were merged into the established company.
Senop Oy develop and sell Millog Oy'’s existing products, including image intensifiers,
night sights, thermal cameras and target acquisition and observation systems. Senop
Oy’s products and services also include the development, design and manufacture of
mobile tactical systems, C4l-platforms, mid-life upgrade programs and system
integration services. Products are designed to sustain fully operational state under
extreme conditions and used by Defense Forces, Border Control, Special Forces, Navy,
Police and Customs in several countries in a wide range of operations. (Patria Oyj

2016)

1.2 Thesis background and assignment

Senop Optronics R&D software development team have been using a server with
Subversion service installed on it, to quickly allow it to act as a CVCS server. However,
the server was poorly configured and it was running unsupported and obsolete
operating system. Supported software for the operating system was very limited and
it caused issues with the configurability. New security updates were not provided for
the operating system which was considered as a security risk. The server was not
configured with any backup solutions and the system backups were taken manually
on a weekly basis by company workers using an external USB hard drive. This

approach, however, added unnecessary workload for the workers.

To solve the problem, Senop assigned to set up and configure an improved server
with VCS for software development purposes. The server consists of VCS and

supporting services such as automated backup and logging service.

1.3 Thesis Objectives

The thesis objective is to design and implement a server environment which fixes the
discovered flaws within the current setup. First the basic setup for the server is done
with care. On top of the basic setup, VM'’s are installed which allows different
environments and more advanced setups as needed. These VM’s are configured and
tested in other place before implementing to the server. As long the basic setup of
the server environment is stable, it can be expanded and developed with VM'’s. This

design allows continuous development and make the system very flexible.

1.4 Technical requirements

More detailed requirements specification was composed based on multiple
conversations with company workers. The specification was reviewed and approved

in the meeting. Technical requirements set in the specification were the following

e REQO1: Server MUST automatically backup files to Network Attached Storage
(NAS) - frequently changing files once a day and full system backup once a

month.
e REQO2: Every successful backup MUST be logged.
e REQO3: Server MUST maintain the integrity of the files.
e REQO04: Server files MUST be mirrored at least on two hard drives.

e REQOS5: Server and services MUST be reached at normal working time in

minimal delay.
e REQO6: Server configuration MUST be moveable to another system.
e REQO7: Server files MUST be able to recover after system failure.

e REQO8: Server MUST be able to recover from programmatic errors after user

input.

e REQO09: Server MUST be able to detect and inform the user of possible

failures.

e REQ10: Server network MUST be isolated from other networks.

2 Research method

2.1 Research Approach and Design

The thesis work is approached with qualitative Design research. The research

approach contains planning, data collection and analysis which are the same as in

qualitative research, however there are also actions which are performed after the

analysis which aim at a change or improvement. The research approach is similar to

Action research, however, it differs in participating in the operations of the

development object which is element of non-social nature such as products, services,

processes and actions. The objective is to produce functional and practical solutions

that can be used in practice. (Kananen 2013, 40-49)

1) Charting of
present situation

:

2) Analysis of problem
situation and factors
impacting it

!

3) Synthesis: suggestion
for improvement and
intervention

i
Jes

i
-

¥

4) Testing

A

'

5) Evaluation

!

6) Follow-up

L
oy PR RO W |

| .

___V.___l

—_—_—————— -]} —— I"————I

UonDIUSWNIOg

e

Research
Thesis

Figure 1. Stages of development cycle of design research (Source adapted from

Kananen, J. 2009)

The research design follows the same steps as presented in Figure 1 where the
research is illustrated as stages of a development cycle. First the present situation is
well defined and the problem is determined. This way the objectives can be set and
the context can be familiarizing with. After charting the situation, an analysis is
carried out to find the root causes and factors which affect the problem. With the
analysis, the design can be delimited and tested, followed with suggestion and
intervention which is the implementation of the suggested design. The implemented
design is tested according to earlier defined objectives that are tried to be solved and
the test results are evaluated by measurements. The evaluation gives an idea of how
successful the design and the implementation was. The evaluation process leads to a
follow-up where the big picture of the development is reviewed and a new cycle can
be started if necessary. The stages may proceed back and forth as needed if the next

stage needs to fill up with more information. (Kananen 2013, 60-61).

If there is no exact measure for the effects of the change, it is evaluated with a story
such as Most Significant Change (MSC) Technique. MSC-technique forms stories
which show the change, which the change resulted from, why it is significant, when it

happened and who were the actors included (Kananen 2013, 93).

2.2 Data Collection and Analysis

Data collection is divided into three phases. which are carried out before, during and

after the design and implementation processes of the server.

The first phase of the data collection was conducted before the implementation
process. Data was used to chart the current and the target state of the IT system to
produce a requirement specification with design suggestion. Data was gathered

through interviews with company employees.

The second phase of the data collection was carried out during the implementation
process. Data was used to support the implementation process, and it consists of
detailed information of how the different services are implemented in the IT system.
Data was gathered through interviews with company employees who are mainly
using the IT system, and using research material from the internet and books

regarding to services which are designed to be used within the IT system.

The third phase of the data collection was completed after the implementation
process. Data was used for evaluation and follow-up purposes. Data was gathered
from user feedbacks and tests of the IT system. The evaluated information shows
how the implemented design fulfilled the requirements, and if there are new

suggestions for improvement which can be done with new iteration.

3 Theoretical background

3.1 Version Control

3.1.1 What is Version Control

Version control helps to manage file changes. Recording changes of one or more files
over time allows specific version of the file to be reviewed later. Purpose of the
Version Control is to provide clarity to when, why and what the contents change
were. Importance of the Version Control grows in collaborative work where more
than one person works with the same files. It is very important to know who changed
the files, when the files were changed and why they were changed. These changes
are collected and brought together into a software tool which is capable of recording

and unifying all changes. This kind of tool is called as Version Control System (VCS).
3.1.2 Benefits of Version control

Version control in software development is an essential part of the every-day work.
Without version control, collaborative work between several developers would be
tedious as no one would know what changes are made and how the changes might

conflict with each other.

VCS have change history of every file creation, modification and deletion. The
changes are annotated with information of author, authors message describing the
reason of the change and date. Use of the change history helps with long term design
and work with legacy source code. VCS allows to revert files or even entire project
back to a previous state and compare changes over time. This is useful especially in
cases where some changes might be causing new problem and then it is necessary to

recover the changes for deeper inspections.

10

With VCS, developers are able to keep track of all the modifications and follow the
development work of each contributor which helps to prevent concurrent work from
conflicting. For this, VCS offers ability to work on independent branches and allows
developers to work without disturbing the main source code. Branches can be used
for different purposes and there are different workflows to which developers can

choose from.

3.2 Version Control System

3.2.1 Local Version Control Systems

Local Computer

Checkout Version Database
m Version 3
|
Version 2
|
Version 1

Figure 2. Local Version Control System (Source adapted from Chacon 2014).

Local Version Control System (LVCS) is one of simplest VCS methods available and it is
run locally without a central server. It is useful in single-user scenarios where files are
in dire maintenance. The problem with LVCS is the design which makes collaboration
with others problematic. Also, there are no built-in tamper protection mechanisms
and users who have access to the tools to version a file are also able to directly

manipulate the corresponding version control file. (Chacon 2014, 27-28)

Examples of such tools are Revision Control System (RCS) and Source Code Control

System (SCCS). To keep the concurrency, these VCSs rely to file locks. The file lock

11

allows the file to be edited only by one person at a time. LVCSs are considered as first

generation of VCSs. (Version Control by Example)

3.2.2 Centralized Version Control Systems

Central VCS Server

Computer A

m‘\ Version Database
Version 3
Version 2

Computer B ‘

Figure 3. Centralized Version Control Systems (Source adapted from Chacon 2014)

Centralized Version Control System (CVCS) is a successor of LVCS and was created to
enable multiple collaborators to work on projects together. These systems store all
the information in a centralized server, and the version control operations of all
collaborators must go through this server. All collaborators can download the current
revision from this server, apply their changes and share changes among the others by
committing them back to the server. Despite of the fact that the flaws of LVCS were
taken out, new drawbacks came to scene. Due to the design, network access to
central server is required for all version control operations, and the central server is a
single point of failure. The network with a server adds administrative overhead and
permission management must be configured and maintained to prevent

unauthorized access. (Gyerik 2013, 13)

Example of such tools are Concurrent Versions Systems (CVS) and Subversion (SVN).
To keep the concurrency, CVCSs rely on merge before commit procedure. This
ensures the latest available source code from central repository is adapted and

merged before the main code base is updated. Multiple persons are able to work

12

with the same code at the same time. CVCSs are considered second generations of

VCS’s. (Version Control by Example)

3.2.3 Distributed Version Control Systems

Server Computer

Version Database
Version 3
Version 2
Version 1

4 k

y \

Computer A Computer B
[A
Version Database | |4 » | Version Database
Version 3 Version 3

|
Version 2 Version 2

|
Version 1 Version 1

Figure 4. Distributed Version Control Systems (Source adapted from Chacon 2014)

Distributed Version Control Systems (DVCS) were created to make collaboration
possible without a need for a central server. Instead of storing all the information and
acting through centralized server, each collaborator has all the information and is
able to commit changes locally to their own personal branches. Technically there is
no need for a central server, however, most often there is a designated centralized

branch aggregating the work of all collaborators. By design, it is very easy to replicate

13

the full revision history and it can only get lost if all the collaborators lose all their

work. (Gyerik 2013, 14)

Examples of such tools are Bazaar, Git and Mercurial. To keep the concurrency, DVCS's
rely on commit before merge procedure. DVCSs allow the merge and commit
operation to be separated, which allows the users to make commit operations more
as they work, and after the work is finished the changes can be merged back to the
main code base which may be a decided central repository or the one responsible for
the software. Multiple persons are able to work with the same code at the same

time. DVCSs are considered third generation of VCSs. (Version Control by Example)

3.3 Version Control Processes

3.3.1 Reverting

VCS allows to revert files or the whole project to previous state. VCSs have a log of

changes which contains a full history of the project. (Gyerik 2013, 8)

3.3.2 lLogging

Log information is not optional as it is generated every time when changes are
recorded. It includes a user-supplied description line, the date and the author's
name. Typically, the description is at least a summary of changes optionally followed

with more detailed information. (Gyerik 2013, 8-9)

3.3.3 Comparing

VCS allows to view the difference between two states of the file and it is most useful
when comparing human readable text such as software source code, system script or

other plaintext files. (Gyerik 2013, 9-10)

3.3.4 Branching & Merging

VCS allows to make branches from the project and develop project separated from
the original files. This functionality is often useful in software developing. When
necessary changes are made in branched files, it is possible to merge changes back to

original files. (Gyerik 2013, 10-12)

14

3.3.5 Initialize

Initialize is used to create a new, empty repository. This is always issued when a new

project is started and it dows not share the common base with other software.

3.3.6 Checkout

Checkout is used to create a local working copy from the repository. If no additional

parameters are given, checkout will obtain the latest revision of the software.

3.3.7 Commit

Commit is used to write the changes made in the working copy back to the
repository. Committing will result in a new revision with commit message. Commit

messages are used to help other developers to understand the changes.

3.3.8 Update

Update is used to merge the changes made in the repository into the local working

copy.

3.3.9 Tag

A tag or a label is used to refer to an important snapshot in time for example release

version of software.

3.3.10 Clone

Clone is used to create a copy of another repository containing all the revisions.

3.4 Version control workflow

3.4.1 Centralized workflow

The centralized workflow is used in the same way as working with CVCS’s such as
Subversion and it is the most often used workflow within the environments using
CVCS. Users make changes and commit them to one central repository which acts as

single point-of-entry for all changes. The workflow does not need any other

15

repositories than the one central repository. In Subversion this would be called as

trunk.

Giving example with Subversion of very basic usage.

$ svn checkout
(time passes, changes are done)

$ svn commit -m ”“New function xyzzy”

First developer clones the central repository using checkout. The developer makes
changes to own local copy of the source code. After editing they commit changes
using commit. If ”-m” option is not given, the commit command is followed with
commit message input which is edited in text editor. If there are several developers
working with the same codebase at the same time, developer might need to resolve
conflicts. This happens if local changes diverge from the central repository. If conflict
happens the developer have several options to choose from and the final output

depends on how the developer want to resolve the conflict. (Centralized workflow)

An example with Subversion conflict as follows.

$ svn status

M baz.c

$ svn commit -m "Update function xyzzy"

Sending baz.c

Transmitting file data

svn: E155011: Commit failed (details follow):

svn: E155011: File '/home/ojari/tmp/test/baz.c' is out of
date

svn: E170004: Item '/baz.c' is out of date

$ svn update
Updating '.'
C baz.c
Updated to revision 3.
Summary of conflicts:
Text conflicts: 1
Conflict discovered in file 'baz.c'.
Select: (p) postpone, (df) diff-full, (e) edit
(mc) mine-conflict, (tc) theirs-conflict,

(s) show all options: dc

16

<<<<<<< MINE (select with 'mc') (1)
void xyzzy(float foo) {}
[111]11] ORIGINAL (1)

void xyzzy (int foo) {}

void xyzzy (double foo) {}
>>>>>>> THEIRS (select with 'tc') (1)

Select: (p) postpone, (df) diff-full, (e) edit
(mc) mine-conflict, (tc) theirs-conflict,
(s) show all options: tc
Resolved conflicted state of 'baz.c'
Summary of conflicts:
Text conflicts: 0 remaining (and 1 already resolved)
Explaining the example above. First the developer tries to commit the changes
assuming there is no changes in central repository. However, changes have occurred
and there is a conflict which need to be checked first. The developer runs an SVN
update command to get the latest changes from the central repository. The
developer discovers one conflict in "baz.c” file. The developer checks at least the
conflicting parts of source code before making any decisions. In this case, the
developer decided to use modification made by someone else as it fits better in this

case.

3.4.2 Feature workflow

The feature workflow uses branches. Each time the developer starts working with
particular feature, it uses dedicated branch. Dedicated branch helps users to work
without disturbing the main codebase. Benefit of this workflow is that the main
codebase should never be broken and the branches are focused to particular features

and fixes. This workflow can be used with centralized or distributed VCSs.

Since the main code base is not used straigth forwardly, it is possible to use pull
requests. Pull request is built-in Git functionality which generates summary of
changes. For example, when the feature is finished, the developer makes a pull
request. The project manager may decide to merge the changes to main codebase

after the changes are reviewed and accepted by other developers. This functionality

17

can be used as a concept in other VCSs also, however, not as effectively as in Git.

(Feature Branch workflow)

Giving example with Git of feature workflow with pull requesting.

$ git checkout work

(Making changes)

$ git commit

$ git tag -s -m "Completed xyzzy feature" feature-xyzzy work

$ git push https://example.com/foo.git/ +feature-xyzzy

$ git request-pull v1.0 https://example.com/foo.git/ feature-xyzzy >

message.txt

The following changes since commit 203da7c294179...:
Foo 1.0 (2016-12-03 10:12:05 +0200)

are available in the git repository at:
https://example.com/foo.git tags/feature-xyzzy

for you to fetch changes up to 7a25a49c¢5835c¢...:
Add return statement for xyzzy (2016-12-03 11:43:19 +0200)

Completed xyzzy feature

(Review of pull request)

$ git checkout master

$ git pull https://example.com/foo.git/ tags/feature-xyzzy

Explaining the example above: the developer has set up the Git repository on the
computer. The developer checkout the latest changes and starts working with the
feature "xyzzy”. The developer commits the changes and tags the commit with
signature. The developer pushes the "feature xyzzy” branch to the publishing
repository. When the repository is pushed, the developer makes the message to

request pull. The integrator reviews the pull request and decides to integrate the tag

18

in pull request. The integrator automatically makes merge commit as the integrator

pulled a signed tag.

Practices for how to work may differ. Giving example how feature workflow could be

done in Subversion using "rebasing” method.

$ svn cp trunk feature
(time passes, new commits to feature & trunk)

svn cp trunk feature-rebase
svn co feature-rebase

cd feature-rebase

svn merge feature

svn commit

svn rm feature

svn mv feature-rebase feature

svn switch feature

v v W W v »r U U

svn merge --reintegrate feature

Explaining the example above. In this case the developer use feature branches. The
developer starts to work with new feature. First the developer copies the trunk to
new branch called feature. As the time goes on and the feature is ready, developer
copies trunk to new branch, called feature-rebase. The developer changes the
directory to feature-rebase and merges feature branch changes to feature-rebase
branch. The developer commits the changes to central repository, removes the
feature branch, renames the feature-rebase branch as feature and updates working
copy URL. Now the developer is ready to issue merge action with "reintegrate” option
to replicate feature branch changes back into the trunk. The "reintegrate” option is
critical for reintegrating changes from a branch back into its original line of

development.

3.4.3 Gitflow workflow

Gitflow workflow do not add new commands or concepts to what is required in
centralized or feature workflow. However, it gives very specific meaning for different
branches and how them are used. It bases on feature workflow with addition of using

branches for development, releases and hotfixes. (Gtiflow workflow)

19

release

feature
branches hotfixes

branches develop master

- ({H g

Severe bug
fixed for
production:
hotfix0.2

Major
feature for
next release

Feature
for future
release

Incorporate
bugfix in
develop

Start of
release
branch for

From this point on,
“next release”
means the release
after 1.0

Bugfixes from
rel. branch
may be
continuously
merged back
into develop

Figure 5. A Git branching model by Vincent Driessen (Source adapted from A
successful branching Git branching model)

As illustrated in figure 5, starting with the main codebase, called as "master” when
using Git as VCS. Master branch is used to keep tagged stable releases. Master branch
will never be broken and offers the latest stable release of the source code to others.
Development branch is the place where "bleeding-edge” version of the source code
is. It is used for the continuous development. Feature branches are used by
developers to make bigger changes to source code as described in the section before,
but using the development branch as a main codebase when merging changes.
Hotfixes are branches used to fix bugs. Release branches are bounded branches
which will get only hotfixes, but no new features. Release branches are tagged and
cloned to master branch which other users and developers sees first when they take

a look at the repository.

20

3.5 IT service management

IT service management refers to the implementation and management
of quality IT services that meet the needs of the business. IT service
management is performed by IT service providers through an
appropriate mix of people, process and information technology. (Bon

2009a, 340)

The purpose of the IT Service Management (ITSM) is to make improvements which
affects the organization directly or indirectly and increase the value of the company
through benefits. Some generic benefits which are achieved through ITSM can be
grouped into financial, employee, innovation and internal benefits. Within ITSM there
will be costs involved, however, these costs must be compared with the cost of not
implementing suitable processes. Mostly the organization will encounter issues with
planning, implementing and running the ITSM processes. These issues can be easily
overlooked, however, more often raised issues impact the realization of perceived

benefits. (OGC 2006a, 9-13)

3.6 ITIL

A set of Best Practice guidance for IT Service Management. ITIL is
owned by the OGC and consists of a series of publications giving
guidance on the provision of Quality IT Services, and on the Processes

and facilities needed to support them. (Bon 2009a, 340)

ITIL was developed in recognition of the fact that organizations are becoming
dependent on IT to meet strategic goals. IT service has to be reliable, consistent, of a
high quality and of acceptable cost. ITIL was developed to disseminate proven ITSM
best practices with a systematic approach to the delivery of quality IT services and
developing processes which are effective and efficient. ITIL describes the
relationships between the activities in processes and operations to attain the
required quality. Processes together provide effective framework independently from

the structure of the organization. (OGC 2006b, 19-21)

21

Besides the systematic approach through processes, ITIL offers the approach and
philosophy shared by the people who work with it in practice through Service
Lifecycle as the main structure for its guidance (Bon 2009b, 19-21).

3.7 ITILV3

ITIL v3 consists of five phases in lifecycle publications, each volume providing
guidance and detailed information to attain processes required by the 1SO/IEC 20000
standard specification. The five phases are Service Strategy, Service Design, Service
Transition, Service Operation and Continual Service Improvement. (OGC 2011, 5) The

phases are illustrated in Figure 6.

ﬁ“ua" Service Improve
(‘Oo' 0;8
%

Figure 6. The Service Lifecycle (Source adapted from Bon, J. von. 2009a)

3.7.1 Service Design

The Service Design stage takes business requirements and creates
services, their supporting practices and management tools which meet

business demands for quality, reliability, and flexibility (OGC 2008, 38)

Service Design turns Service Strategy into a plan for delivering the business
objectives. Service Design provides guidance for the design and development services

and management practices. (OGC 2011, 6)

22

3.7.2 The five design aspects

An overall, integrated approach should cover the design of

Service solutions, including all of the functional requirements, resources and

capabilities needed and agreed

e Service Management systems and tools, especially the Service Portfolio for

the management and control of services through their lifecycle

e Technology architectures and management architectures and tools required

to provide the services
® Processes needed to design, transition, operate and improve the services

¢ Measurement systems, methods and metrics for the services, the

architectures and their constituent components and the processes.

When a new or changed service solution is produced, it needs to be checked against
each of the other aspects to ensure integration and interface with the existing

services. (OGC Office of Government Commerce 2011, 30)

3.7.3 Designing service solutions

Formal and structured approach is needed to produce services within the right
timeframe, functionality and cost. The approach must be iterative to ensure the
services are aligned with business strategic goals, policies, infrastructure and
requirements during the process development. (OGC Office of Government
Commerce 2011, 51) An example of such an approach and its stages is illustrated in

Figure 7.

23

Business Business Business Business
: i F - 5 A
requirements |'=- 1 requirements '~ 4 requirements |'Z_ 1 requirements
Pilot or warranty Live

_/

[Pesign 4

¥ {, * period operation
[e m s e e e bl e :_‘::_“ R s e
= De5|gn- and development H " A :
' '
I Project (Project Team) >: i
i : : - i '
f ' ' i
[1] 1
SAC v | sac 1| sac v | sAc . SAC SAC
' ' ' i
] L) 1 1
' ' ' ‘]
Document & + [Design +[Develop + [Build V| Test : :
agree business 1| service 1| service 1| sevice 1 service 1 1
requirements ' | solution | solution '| solution 1 solution ! 1
(Strategy & Design) | 1| (Design) 1| (Design) +| (ansition) ¢ | (Transition) |} :
i ; - ! : i
Strategy i : ! i 3
1] 1 ' 1
1 [= SDP N ' 1
1] L}
]
1 U N

: | Transition

; .
| Transition & Operation involvement >: I Operation >
: : ; ! 7 :
1 1 1 5 1 [
[— ; T ! HE N ; AN
SLR 1o fstR L [stR Lo |sm Lt |swr L sta ;

SLA
| Pilot | 51\ > Live

| Build, Test, Release and Deployment Management

1
Change Management:
RFC Approved for Approved for Approved for Approved for Approved for Approved for Review &
released design development build test warranty live release closure

Figure 7. Aligning new services to business requirements (Source adapted from OGC
Office of Government Commerce. 2011)

3.7.4 Designing management information systems and tools

The most effective way of managing services is using an appropriate management
system. The most critical system from a Service Design point of view is service
portfolio since it is used to support all processes. The service portfolio includes
important components and ideally should form a part of the service knowledge
management system (SKMS) and be registered as a document in configuration
management system (CMS). (OGC Office of Government Commerce 2011, 52) The

components of the service portfolio are illustrated in Figure 8.

24

" Service Knowledge Management System b

Service Portfolio
Service Lifecycle
Service

Status:

{ Requirements

Defined
Analysed S,Em,ce
Pipeline
Approved | =
Chartered a
. ustoman/suppon
Designed team viewable
Developed section of the
Built Service Partfolio
{the Service
Test Catalagiee, with
Released CEiicE 3?;::_:_‘;&1;&!{ s
Operatignal Catalogue

| Retired Retired Services -

Figure 8. The service portfolio and its contents (Source adapted from OGC Office of
Government Commerce 2011)

3.8 Virtualization

Virtualization is a technique which allows to run more than one operating system at a
time. It enables to run software written for one operating system on another without
rebooting between the operating systems. Virtualization allows easier software

installations, testing and disaster recovery and it can reduce hardware and electricity

costs by infrastructure consolidation. (Oracle VM VirtualBox User Manual, 12)
3.8.1 Virtual Machine

VM is the special environment that hypervisor creates for a guest operating system
while it is running. In other words, the guest operating system is run “in” a VM.
Normally, a VM will be shown as a window on a computer’s desktop. In a more
abstract way, a VM is a set of parameters that determine its behavior. They include

hardware settings and state information. (Oracle VM VirtualBox User Manual, 13)

25

3.8.2 Hypervisor

)

HYPER
VISOR

" HARD
. WARE >

HARD

WARE
AYEES) TYPE 2
{bare metal) hosted

Figure 9. The two types of Hypervisors (Source adapted from Hypervisor - Wikipedia)

A hypervisor is a hardware virtualization technique that allows multiple guest
operating systems to run on a single host system at the same time. The guest
operating system shares the hardware resources of the host computer, such that
each guest appears to have its own hardware resources. Hypervisors can be divided

into two types as shown in Figure 9.

Type 1 hypervisors, also known as native or bare-metal hypervisors, runs directly on
the host computer’s hardware to control the hardware resources and to manage

guest operating systems.

Type 2 hypervisors, also known as hosted hypervisors, runs within a formal operating
system environment. This type of hypervisor runs as a distinct second layer while the
operating system runs as a third layer above the hardware. (What is Hypervisor -

Definition from Techopedia)

3.9 Data storing and backup

3.9.1 Network Attached Storage

Network Attached Storage (NAS) is a storage device connected to a network. Using a
NAS server allows to share files among other clients in the network. The clients

connect to the NAS through a computer network which allows the NAS to be located

26

anywhere in the network. The NAS device may include the server system within the
device and are often referred as NAS servers. Depending of the NAS server, it may
contain several hard disk drives with RAID capability. (What is NAS? - Buffalo

Technology)

3.9.2 RAID technologies

Redundant Array of Independent Disks (RAID) is data storage technology that
combines multiple hard disk drives into an array and can be used like a one hard disk
drive. There are variety of RAID modes which offer different levels of integrity and

fault tolerance. (What is RAID? - Buffalo Technology)

Mirrored (RAID 1)

In mirroring the data is written to two disks, so that there are always two copies of
the same information. Data can be retrieved from the disk with the shorter delays
and if a disk fails, the second copy can be used. Mirroring is used in applications
where availability and transaction rate are more important than storage efficiency

(Chen 1994, 10)

3.9.3 Securing data with backup

A backup is a secondary copy of data used for data protection. Backing up data
should not be confused with archiving data, where the primary data is moved to a
less-expensive type of media such as tape for long-term and low-cost storage. The
purpose of the backup is to create a copy of data so it may be restored after data is

lost, corrupted, deleted or if a disaster strikes.

The objective of backup is to ensure data retrieval in any situation if the data is lost in
the primary location. Backup and recovery testing examines practices and
technologies for data security and data replication. With periodic testing, it is
guaranteed that the goal of protecting data is being met. (Full, incremental or

differential 2008)

Full backup
Full backup is the most basic and complete type of backup operation and it forms a

base for other backups. The primary advantage is that Full backup makes a copy of all

27

data to a single set of media. This results in a minimal time to restore data from other
types, however, the disadvantages are that it takes longer to perform and it requires

more storage space. (Full, incremental or differential 2008)

Incremental backup

An incremental backup will result in copying only the data that has changed since the
last backup operation of any type. Incremental backup may be run almost as often as
desired because it will copy only the most recent changes stored. Incremental backup
results in a smaller amount of data than a full backup. The advantage of incremental
backup is that it will complete faster, and require less media to store the backup. The
disadvantage is that in the case of data restore the entire initial backup and each of
the previous backups are needed to retrieve all the updated files. (Full, incremental

or differential 2008)

Differential backup

Differential backups sit between the Full and incremental backup. A differential
backup creates an independent file, containing all changes since the last full backup.
Differential backup does not have to process through all previous backups in case of
data restore which makes it faster than incremental backup. Differential backup
requires more space and time to complete than incremental backups, however, less

than a full backup. (Full, incremental or differential 2008)

3.9.4 Bacula backup system

Bacula is an enterprise level computer backup system, designed to automate backup
tasks in a heterogeneous networks. Bacula is a very comprehensive set of software
used to manage backup, recovery and verification of computer data across a network
of computers. Bacula is a network based backup program and it is capable of
handling systems consisting of hundreds of computers located over a network. Bacula
can run on a single computer or it can be distributed depending on the configuration.
As illustrated in Figure 10, Bacula is made up of five major components which are:

Director, Console, File, Storage, and Monitor services. (Sibbald 2016, 1-2)

28

Bacula Runs,
Application schedules,
Interactions authenticates
connections
and controls backup and
restore operations
Bacula Client Bacula Storage Server
The File Wirites data to the devices r—
Daemon during backup cperations
75l . }
from sn;ze Dick prvey,
and sends them e Autoloaders,
‘storage server. VL,

B YEO0 @

NAS [SAN

Figure 10. Bacula components (Source adapted from Sibbald 2016)

Typical interactions between the Bacula Services for a backup job are presented in
Figure 11 where each block represents a seperate process in general. Each service is

presented in the following chapters. (Sibbald 2016, 7-8)

29

Console

User 3 Commands File
Commands 1§ o Daemon
Comimands Files attributes
: +
Director
Authorization Data
Catalog requests
File attributes Stnrage
Storage location
Daemon
File attributes
Catalog Starage location Files attributes
+
5QL DBMS fics

Physical media

Figure 11. Interactions Between the Bacula Services (Source adapted from Sibbald
2016)

Bacula Director

The Bacula Director service supervises all the backup, restore, verify and archive
operations. The system administrator uses the Bacula Director to schedule backups
and to recover files. (Sibbald 2016, 2)

Bacula Console

The Bacula Console service allows the administrator to communicate with the Bacula
Director. The Bacula Console is available in three versions: text-based console
interface, QT-based interface, and a wxWidgets graphical interface. In this case, text-

based console interface is used. (Sibbald 2016, 2)

Bacula File

The Bacula File service is installed on the machine to be backed up. It is specific to the
operating system on which it runs and is responsible for providing the file attributes
and data when requested by the Director. The File services are also responsible for
the file system dependent part of restoring the file attributes and data during a

recovery operation. (Sibbald 2016, 2-3)

30

Bacula Storage

The Bacula Storage services consist of the software programs that perform the
storage and recovery of the file attributes and data to the physical backup media or
volumes. The Storage daemon is responsible for reading and writing files. (Sibbald

2016, 3)

Bacula Catalog

The Catalog services are comprised of the software programs responsible for
maintaining the file indexes and volume databases for all files backed up. The Catalog
services permit the system administrator to quickly locate and restore any desired
file. The catalog maintains a record of all Volumes used, all Jobs run, and all Files
saved, permitting restoration and Volume management. Bacula currently supports
three different databases, MySQL, PostgreSQL, and SQLite, one of which must be
chosen when building Bacula (Sibbald 2016, 3)

Bacula Monitor

A Bacula Monitor service is the program that allows the administrator to watch
current status of Bacula Directors, Bacula File Daemons and Bacula Storage Daemons.
To perform a successful save or restore, the following four daemons must be
configured and running: the Director daemon, the File daemon, the Storage daemon,
and the Catalog service with MySQL, PostgreSQL or SQLite database. (Sibbald 2016,
3)

4 System design

4.1 Best practices

To achieve a well defined IT system, the processes presented in ITIL were studied and
used when possible. As the ITIL framework is very comprehensive publication series
and a huge process to fully cover, only the necessary sections were covered. The
workload was reduced by only covering the Service Design publication and related
literature as a reference. ITIL Service Design publication covers all the needed

procedures, tasks, and checklists to achieve better design of the IT system during

31

design phase. Despite the study of the ITIL, the focus is in requirement specification

and ITIL was used as reference to adapt paradigm of the design process.

4.2 Design overview

Overview of the network structure is shown in Figure 12. All the devices are
connected through one central switch which forms a star network topology. The
switch can be used to control and inspect data traffic in the network for

administration purposes.

NAS
i 1?!] F |
3 4 . |
B (" |
RAID1
SMB AFP FTP Server
j ‘ 5 -: i a-j’ VM
_— N A w 3
= - J e 4 .
__ _j e h.'. - VCS service
J R Backup service
- Switch '
AN e DHCF service Syslog service
Developers))

Figure 12. The IT system design LAN topology

When a device is connected to a network, it obtains the IP address from DHCP service
installed in the server. The switch, NAS and one VM have dedicated static IP
addresses and other computers obtain the first free IP address in order. The release
times of the IP addresses are set to one year to make working with different devices
smoother. The IP address pool should not fill-up as the devices connected to the

network are limited.

The server has a basic setup and configuration to run VMs. VMs can be built and
tested somewhere else before placing them to the server which makes further
development easier in the future. One VM is installed and configured to run VCS,

system logging and backup services.

32

Backups are implemented to NAS which is an independent system and physically
separate from the server. NAS could be located in a different place than the server in
case of a disaster. In this case the NAS is first located in the same building as the
server and may be moved to another location when the system is configured and

fully tested.

The integrity of the system and NAS is maintained by using RAID1 hard drive setup
and scheduled file system checks. Using the RAID1 setup, all the data is copied at
least on two hard drives which decreases the possible data loss during hardware
failures. File system checks maintain the file system integrity and are done on a a

regular basis or when a sudden power off has occurred in the system.

To keep a record on how the system is performing, all actions are recorded to log
files. The devices supporting a logging and external logging server are configured to
send the log files to the server. In the case of a programmatic error, notification is
sent via SMTP service to the local administration account in a server used for

monitoring of the services.

The network is isolated from other networks, especially from the internet. The
network needs to be hardened and fully tested to make sure it is secure from outer
threats. There was also no reason to connect to the system to the internet. All the
necessary installation of the server base system is done before it is isolated from
other networks. Afterwards the server can be updated with removable media such as
CD or USB memory. VMs can be reconfigured and updated in other computers and

then moved to the server.

4.3 Hardware

The IT System setup consists of one PC, NAS and switch. The PC acts as a server and a
base for all the services, NAS is a separate physical place for data backups and switch

connects all the devices and computers together to form the LAN.

The server was built using already available parts. For a better performance, the
central memory units were replaced with bigger units, and the old hard drive was

replaced with two identical bigger hard drives. All other necessary equipment such as

33

keyboard and display were found in the company. The final technical specifications

are illustrated in Table 1.

Table 1. Server technical specifications

UNIT Acer Veriton M265

Intel® Pentium® Processor E5300

CPU
(2M Cache, 2.60 GHz, 800 MHz FSB)

1: Kingston 2GB DDR2 800MHz CL6 (KVR800D2N6/2G)
2: Kingston 2GB DDR2 800MHz CL6 (KVR800D2N6/2G)

RAM

HDD1: Seagate Barracuda 1TB, 64MB 7200 RPM 3.5" SATA Ill, 6 Gb/s
(ST1000DMO003)
HDD2: Seagate Barracuda 1TB, 64MB 7200 RPM 3.5" SATA Ill, 6 Gb/s
(ST1000DMO003)

STORAGE

The chosen NAS was Buffalo Linkstation™ 441 (LS441) which is designed for business
and home office use. It is a ready standalone storage solution with internal server
equipment. LS441 is able to perform automated integrity tests which is very
important feature in the setup. L5441 has four hard drive places with RAID 1/5/10

capability and gigabit network peripheral which is enough for the current usage.

The chosen switch was HP1910 Ethernet switch which included 24 connections and is
capable for layer 3 networking. This switch was chosen because it has wide range of

configuration options to support the administration and future additions.

4.4 The Base system

The operating system had to be lightweight to save system resources. The chosen
operating system for the server was Linux Ubuntu Server as the other software
developers in the company are familiar with the Ubuntu environment. It is also a
convenient choice because it is open source software with a wide community support
(Canonical Group Ltd 2016a) and it is licensed free for commercial use (Canonical

Group Ltd 2016b).

The operating system partition scheme for the server haas “boot”, “root”, “srv” and

“swap” partitions. The “boot” partition is separated for better fault tolerance as it

34

allows the system to boot as long the hardware is working. The “root” partition was
kept relatively small to keep the automatic file system checks short. The “swap”
partition is implemented to cover cases when the memory is running out. This
situation should never happen, however, the "swap” partition may rescue the system
from complete system halt if there is a problem which consumes plenty of memory in
a server. The “srv” partition will work as a primary partition for services provided by
the server for example the VMs are installed in “srv” partition. All partition are
configured to RAID 1 volume except the boot partition, which allows legacy support
for older GRUB and BIOS systems, making the recovery of the system easier in case of

hardware or software failures.

SSH, virtualization, and DHCP software were installed on top of the operating system
installation. SSH is used to get access to the system from other computers in LAN if
maintenance is necessary. Virtualization is used to run VMs in the server. The chosen
hypervisor for virtualization was “Oracle VM VirtualBox”, a type 2 hypervisor. It was
chosen because the other developers are familiar with the software. It is also licensed
with GNU GPLv2, which means it can be used in the company with some limitations

(Licensing_FAQ - Oracle VM VirtualBox).

The graphical user interface (GUI) was decided to be installed to allow control and
monitoring locally. GUI is not recommended in server environments because it uses
resources (ServerGUI - Community Help Wiki). To avoid bloat software and keep GUI
relatively light, it was installed as separate packages. For having GUI in Linux
environment, there are three main components to be installed: Display server,
Display manager and window manager. The operating system installation was already
included with a X Window System as a display server. The chosen display manager
was “lightdm” and window manager was “i3” tiling window manager. The desktop is
always started as an empty screen with the status bar at the bottom, however, it still
provides a fully functional lightweight desktop environment to launch applications

with GUI. An example of i3 tiling layout is shown in Figure 13.

35

X200y “/i3 =200 FLmp e
michael ~/i3s [] : : nichael /tmps []
ael ~/iZs []

Or “/i3

michael “/i3/docs# =crot mo

dez ,phg|

Figure 13. 13 container layout example (Source adapted from Stapelberg 2013)
4.5 Configuring VM

One VM is installed with the same operating system as the base system and the
services are placed there. This chapter provides a short overview on the services

installed and configured to the VM.
TFTP

The TFTP server was installed with the following command
sudo apt-get install tftpd-hpa

Once the installation is complete, TFTP server is running on the system and will be
listening on all active network interfaces, on both IPv4 and IPvé. By default, TFTP now

allows other devices to download files from the TFTP server.
NFS

The NFS server was installed with the following command
sudo apt-get install nfs-kernel-server

The configuration was implemented by adding the directories to be exported to

/etc/exports file. For example

/ubuntu * (ro,sync,no_root squash)

/home * (rw, sync,no_root squash)

One can replace * with one of the hostname formats to restrict the access to the NFS

mount.

To start the NFS server, the following command is run at a terminal prompt

sudo service nfs-kernel-server start

36
Samba

The Samba server was installed with the following command

sudo apt-get install samba

The main Samba configuration file is located in /etc/samba/smb.conf. The
configuration was implemented by adding an own section to the /etc/exports file

which describes the share folder. For example

[share]
comment = Ubuntu File Server Share
path = /srv/samba/share
browsable = yes
guest ok = yes
read only = no

create mask = 0755

Finally, the Samba server services are restarted with the following commands

sudo restart smbd

sudo restart nmbd

SVN

The SVN server was installed with the following command
sudo apt install subversion

After the installation, the Subversion repository was created. For example
svnadmin create /path/to/repos/project

Once the repository is created, files are imported into the repository. For example

svn import /path/to/import/directory \
file:///path/to/repos/project

Apache Web Server
The Apache Web Server was installed with the following command
sudo apt-get install apache?2

By default, content in /var/www/ is shown over HTTP protocol and can be accessed

from LAN.

37

Git Server

The Git server was installed with the following command
sudo apt-get install git-core
A new repository is created with the following commands

mkdir test-repo.git
cd test-repo.git

git --bare init
To make the Git Server work over HTTP protocol, a repository was created under
/var/www/ folder and permissions were changed. For example

cd /var/www

mkdir test-repo.git

cd test-repo.git

git --bare init

git update-server-info

chown -R www-data:www-data

WebDAV plugin on Apache Web Server needed to be enabled with the following

command

sudo aZenmod dav_fs

Then /etc/apache2/mods-enabled/dav_fs.conf was filled with a new section. For

example

<Location /test-repo.git>
DAV on
AuthType Basic
AuthName "Git"
AuthUserFile /etc/apache2/passwd.git
Require valid-user

</Location>

The user account needed to be added to allow the access to repository with the

following command

htpasswd -c /etc/apache2/passwd.git testUser

38

Now the user is prompted to enter the password for “testUser”. These credentials are
used to communicate with Git. To apply changes, Apache Web Server is to be

restarted with the following command

/etc/init.d/apache2 restart

Now the client can access the repository. For example

mkdir ~/Git/test-project

cd ~/Git/test-project

git init

git remote add origin \
http://testUser@example.com/test-project.git
touch README.md

git add .

git commit -a -m “Initial import”

git push origin master

4.6 Why Bacula

The chosen software for backup and recovery was Bacula backup solution. The
backup solution was chosen due to the recommendations from different
communities and websites which pointed to Bacula. The recommendations were
mostly justified based on the configurability and stability of the software. While
exploring Bacula system there was much discussion about BareOS and BURP backup
systems, which led to a post by Kern Sibbald (Sibbald 2014) where it was stated that
these were forks from the original Bacula project. After exploring these solutions, the
conclusion was made to use Bacula software. The reason for this was that Bacula may
be more mature than the other derived projects and the documentation is very

comprehensive, which is helpful in many situations.
4.6.1 Configuring Bacula

In this thesis work, all the components are installed and configured on single VM.
Bacula configuration mainly consists of four configuration files as illustrated in Figure

14.

39

Resources
definition
at a glance

Storage daemon configuration
| batula-sd.canl)

Storage {

Ona resourcs

Figure 14. Bacula resources definition (Source adapted from Sibbald 2016)

The configuration of Bacula was fairly easy as it is mostly pre-configured. Only a small
portion of configuration was needed to get the Bacula services to communicate with
each other. The backup plan was configured according to Bacula Main Reference
overall design example (Sibbald 2016, 261 - 266). With the configuration, Bacula
maintains six months of backup data and is able to access the old files on a daily basis
for a week, a weekly basis for a month, then monthly for six months. The full backup
is done once a month, a Differential backup once a week, and Incremental backup
daily. The detailed example configuration files can be found in Appendices 1, 2, 3 and

4.

4.7 Security

According to the requirement specification, the system is not connected to WAN,
therefore security breaches through the internet should not be possible. There is a

physical access to the system, however, the access to the company's office is

40

controlled, which why the security is not the main concern. In sense of good practice,
the basic security is implemented to prevent a prohibited access in the LAN by using

credential authorization for the devices and services.

5 Testing

REQO1: Server MUST automatically backup files to Network Attached Storage
(NAS) - frequently changing files once a day and full system backup once a
month.

REQO2: Every successful backup MUST be logged.

REQO3: Server MUST maintain the integrity of the files.

REQO4: Server files MUST be mirrored at least on two hard drives.

REQO5: Server and services MUST be reached at normal working time in minimal
delay.

REQO6: Server configuration MUST be moveable to another system.

REQO7: Server files MUST be able to recover after system failure.

REQO8: Server MUST be able to recover from programmatic errors after user
input.

REQO9: Server MUST be able to detect and inform the user of possible failures.
REQ10: Server network MUST be isolated from other networks.

The system was tested according to the requirements specification. To fulfill REQO01,
an automatic backup was confirmed to work by checking the backup files existing in
NAS after few backups. To fulfill REQ02, it was checked that the backups are logged
by the Bacula software which sends message through SMTP to the local user. To fulfill
REQO3, integrity of the NAS and the server was confirmed to be working by checking
the procedures after the forceful power off. To fulfill REQ04, RAID functionality of the
server and the NAS was confirmed to work by disconnecting one of the hard drives
without powering off the system. To fulfill REQOS5, all the services were confirmed to
be reachable without external delays by using the services during normal work time.
To fulfill REQO6, portability of the configuration was tested by starting the VM in
different computer successfully. To fulfill REQO7, the recovery of the files was tested
with a full backup and confirmed to be working by extracting the backup files from

NAS to server. To fulfill REQOS, it was tested that the system was able to recover from

41

programmatic errors after user input during heavy configuration. To fulfill REQ09, the
failures caused by the software were informed to a local user account through SMTP
by forcefully closing a running service. To fulfill REQ10, the system LAN was confirmed

to be isolated from WAN by using network mapper “nmap” scanning tool in the LAN.

6 Evaluation

The server and the host system haves been online for one year after the
implementation. The server and network infrastructure design was successful and
meets the requirements set by the specification. The implementation process went
well. By using the VMs, it was possible to expand the system when needed and test
different configurations without disconnecting or breaking currently running services.
The availability of the services has been very high, and the system seems to be very
fault tolerant in cases of power failures. Data backup service runs as expected,
however, data recovery is only partially tested and it needs further testing to confirm

data integrity in the future.

7 Follow-up

At the time of writing, the maintenance of the system is fairly complex as it consists
of many different software components. The developers working currently are
familiar with the new set up to make further configurations. To ensure, the system is
usable and can be developed in the future, a more detailed documentation of the

system and the services should be available.

An automatic testing of the IT system could improve the reliability of the system. This
could be accomplished by regularly executing dedicated testing software and tailored
hand written scripts. The automatic testing could include hardware testing, system

software testing and data backup testing.

VMs use a great deal of system resources which may result in problems if there are
many VMs. An alternative choice for VMs could be application containers which do

not need the virtualization of the hardware.

42

8 Conclusion

The VCS server design was successful and the implementation process went well. The
study of ITIL framework gave more understanding about ITSM and broadened my
perspective for design work as | was more aware of how an IT system should be
designed to support the business strategy. The use of ITIL framework helped to
achieve a better design of the IT system during the design phase. ITIL is a very
comprehensive framework which gives a well-structured basis for the IT system.
However, the ITIL framework is a huge subject to study and a burdensome task to

fully implement.

The use of VMs in the design allows to develop the server environment in stages
without interfering with it. VMs can be tested before implementing them in the
server which is a big benefit for quality assurance. The server design allows
continuous development, which is necessary to ensure the server can be updated

and new services can be implemented as necessary.

The objectives of the thesis were met and Senop Oy R&D team were pleased from
the server set up. The server set up supports the software development work and it

had a positive influence to the software development in the R&D team.

43

References

Bon, J. von. 2009a. Foundations of IT Service Management based on ITIL V3.

Zaltbommel: Van Haren.

Bon, J. von. 2009b. IT Service Management Based on ITIL V3 - A Pocket Guide.

Zaltbommel: Van Haren.

Chacon, S. & Straub, S. 2014. Pro Git. E-book. Accessed on 12.3.2016. Retrieved from
https://progit2.s3.amazonaws.com/en/2016-03-08-3f34a/progit-en.1067.pdf

Canonical Group Ltd. Licensing. Accessed on 2.10.2016a. Retrieved from

https://www.ubuntu.com/about/about-ubuntu/our-philosophy

Canonical Group Ltd. Licensing. Accessed on 2.10.2016b. Retrieved from

https://www.ubuntu.com/about/about-ubuntu/licensing

Data backup types explained: Full, incremental, differential and incremental-forever
backup. Referenced 20.10.2016. Retrieved from
http://searchdatabackup.techtarget.com/tip/Data-backup-types-explained-Full-

incremental-differential-and-incremental-forever-backup

Department of Energy Quality Managers. 2000. Software Configuration Management
(SCM)

A Practical Guide. Accessed on 12.11.2016. Retrieved from

http://energy.gov/sites/prod/files/cioprod/documents/scmguide.pdf

A successful Git branching model. Accessed on 4.12.2016.

Retrieved from http://nvie.com/posts/a-successful-git-branching-model/

Centralized workflow. Accessed on 4.12.2016.
Retrieved from https://www.atlassian.com/git/tutorials/comparing-

workflows/centralized-workflow

Feature Branch workflow. Accessed on 4.12.2016.
Retrieved from https://www.atlassian.com/git/tutorials/comparing-

workflows/feature-branch-workflow

44

Full, incremental or differential: How to choose the correct backup type. 25.8.2008.
Accessed on 20.10.2016. Retrieved from
http://searchdatabackup.techtarget.com/feature/Full-incremental-or-differential-

How-to-choose-the-correct-backup-type

Gitflow workflow. Accessed on 4.12.2016.
Retrieved from Retrieved from https://www.atlassian.com/git/tutorials/comparing-

workflows/gitflow-workflow

Gyerik, J. 2013. Bazaar version control : a fast-paced practical guide to version control
using Bazaar. E-book. Accessed on 3.4.2016. Retrieved from

https://jyu.finna.fi/Record/jykdok.1439749

Hypervisor - Wikipedia. Accessed on 25.10.2015 Retrieved from
https://en.wikipedia.org/wiki/Hypervisor

Kananen, J. 2009. Toimintatutkimus yritysten kehittamisessa. Sarja: Jyvaskylan

ammattikorkeakoulun julkaisuja 101. Jyvaskyla: Yliopistopaino.

Kananen, J. 2013. Design Research (Applied Action Research) as Thesis Research.
Sarja: Publications of JAMK University of Applied Sciences 146. Tampere:

Yliopistopaino.
Sibbald, K. 14.9.2014. Why forking is bad | Bacula. Accessed on 23.3.2016.
Retrieved from http://blog.bacula.org/why-forking-is-bad/

Licensing_FAQ - Oracle VM VirtualBox. Accessed on 15.10.2016. Retrieved from

https://www.virtualbox.org/wiki/Licensing_FAQ

LTS - Ubuntu Wiki. Accessed on 15.10.2016. Retrieved from
https://wiki.ubuntu.com/LTS

OGC Office of Government Commerce. 2011. ITIL Service Design. TSO The Stationery
Office.

OGC Office of Government Commerce. 2006a. Planning to Implement Service

Management. TSO The Stationery Office.

45

OGC Office of Government Commerce. 2006b. Introduction to ITIL. TSO The
Stationery Office.

OGC Office of Government Commerce. 2008. ITIL V3 Foundation Handbook. TSO The
Stationery Office.

Oracle VM VirtualBox User Manual. Referenced 29.10.2016
Retrieved from http://download.virtualbox.org/virtualbox/UserManual.pdf

Patria Oyj. 2016. Senop focuses on advanced sensor technology for defense and
security. 29th January 2016. Accessed on 5.6.2016. Retrieved from
http://patria.fi/en/media/news/senop-focuses-advanced-sensor-technology-defense-

and-security-markets

Chen, P, Lee, E., Gibson, G., Randy, K. & Patterson, D. 1994. RAID: High-Performance,
Reliable Secondary Storage. E-book. Accessed on 6.12.2016. Retrieved from
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.41.3889

ServerGUI - Community Help Wiki. Referenced 15.10.2016. Retrieved from

https://help.ubuntu.com/community/ServerGUI

Sibbald, K. 2016. Bacula Main Reference. 21.9.2016. Accessed on 25.10.2016.

Retrieved from http://www.bacula.org/7.4.x-manuals/en/main/main.pdf

Stapelberg, M. 2013. i3 User’s Guide. Accessed on 20.10.2016 Retrieved from

https://i3wm.org/docs/userguide.html

Version Control by Example. A History of Version Control. Accessed on 3.12.2016.

Retrieved from http://ericsink.com/vcbe/html/history_of_version_control.html

What is Apache Subversion (SVN)? - Definition from Techopedia. Accessed on
3.10.2016 Retrieved from https://www.techopedia.com/definition/3304/apache-

subversion-svn

What is Apache Web Server - Definition from Techopedia. Accessed on 3.10.2016

Retrieved from https://www.techopedia.com/definition/4851/apache-web-server

46

What is DHCP? - Definition from Techopedia. Techopedia dictionary. Accessed on
3.10.2016. Retrieved from https://www.techopedia.com/definition/11337/dynamic-

host-configuration-protocol-dhcp

What is Git? - Definition from Techopedia. Accessed on 3.10.2016
Retrieved from https://www.techopedia.com/definition/28960/git

What is Hypervisor - Definition from Techopedia. Accessed on 3.10.2016. Retrieved
from https://www.techopedia.com/definition/4790/hypervisor

What is Information Technology Infrastructure Library (ITIL) - Definition from
Techopedia Accessed on 3.10.2016. Retrieved from
https://www.techopedia.com/definition/24417/information-technology-

infrastructure-library-itil

What is NAS? - Buffalo Technology. Accessed on 7.12.2016.
Retrieved from http://www.buffalo-technology.com/en/technology/standard-

technologies/what-is-nas/

What is a Network File System (NFS)? - Definition from Techopedia. Accessed on
3.10.2016 Retrieved from https://www.techopedia.com/definition/1845/network-

file-system-nfs

What is Redundant Array of Independent Disks (RAID)? - Definition from Techopedia.
Accessed on 3.10.2016 Retrieved from
https://www.techopedia.com/definition/24492/redundant-array-of-independent-
disks--raid

What is RAID - Buffalo Technology. Accessed on 6.12.2016.
Retrieved from http://www.buffalo-technology.com/en/technology/standard-

technologies/what-is-raid/

What is Revision Control System (RCS)? - Definition from Techopedia. Techopedia
dictionary. Accessed on 3.10.2016. Retrieved from

https://www.techopedia.com/definition/30666/revision-control-system-rcs

What is a Samba? - Definition from Techopedia. Accessed on 3.10.2016. Retrieved

from https://www.techopedia.com/definition/3527/samba

47

What is Server Message Block (SMB)? - Definition from Techopedia. Techopedia
dictionary. Accessed on 3.10.2016. Retrieved from

https://www.techopedia.com/definition/5470/server-message-block-smb.

What is a Trivial File Transfer Protocol (TFTP)? - Definition from Techopedia. Accessed

on 3.10.2016. Retrieved from https://www.techopedia.com/definition/1881/trivial-

file-transfer-protocol-tftp

What is a Virtual Machine (VM)? - Definition from Techopedia. Accessed on
3.10.2016. Retrieved from https://www.techopedia.com/definition/4805/virtual-

machine-vm

Appendices

Appendix 1 Bacula Console configuration

#
Bacula User Agent (or Console)

#

Director {
Name = bacula-dir

DIRport = 9101

address localhost

Password = " *** CHANGE ME ***"

Configuration File

48

Appendix 2 Bacula Client configuration - File Daemon

#

Default Bacula File Daemon Configuration file

#

For Bacula release 7.0.5 (28 July 2014) -- ubuntu 16.04
#

There is not much to change here except perhaps the

File daemon Name to

#

#

List Directors who are permitted to contact this File daemon
#

Director {

Name = bacula-dir

Password = " *** CHANGE ME ***"
}
#
Restricted Director, used by tray-monitor to get the
status of the file daemon
#

Director {
Name = bacula-mon
Password = " *** CHANGE ME ***"
Monitor = yes

}
#

"Global" File daemon configuration specifications
#
FileDaemon { # this is me
Name = bacula-fd
FDport = 9102 # where we listen for the director
WorkingDirectory = /var/lib/bacula
Pid Directory = /var/run/bacula
Maximum Concurrent Jobs = 20
Plugin Directory = /usr/lib/bacula
FDAddress = 127.0.0.1
}

Send all messages except skipped files back to Director
Messages {

Name = Standard

director = bacula-dir = all, !skipped, !restored

49

Appendix 3 Bacula Director configuration

Director { # define myself

Name = bacula-dir

DIRport = 9101

QueryFile = "/home/bacula/bin/query.sql"
WorkingDirectory = "/home/bacula/working"
PidDirectory = "/home/bacula/working"
Maximum Concurrent Jobs = 1

Password = " *** CHANGE ME ***"

Messages Standard

}

By default, this job will back up to disk in /tmp
Job {

Name = client

Type = Backup

Client = client-fd

FileSet = "Full Set"
Schedule = "WeeklyCycle"
Storage = File

Messages = Standard

Pool = Default

Full Backup Pool = Full-Pool

Incremental Backup Pool = Inc-Pool
Differential Backup Pool = Diff-Pool
Write Bootstrap = "/home/bacula/working/client.bsr"

Priority = 10
}

Backup the catalog database (after the nightly save)Job {

Name = "BackupCatalog"

Type = Backup

Client = client-fd

FileSet="Catalog"

Schedule = "WeeklyCycleAfterBackup"

Storage = File

Messages = Standard

Pool = Default

This creates an ASCII copy of the catalog

WARNING!!! Passing the password via the command line is insecure.
see comments in make catalog backup for details.

264 Bacula Version 7.4.4

RunBeforeJob = "/home/bacula/bin/make catalog backup bacula bacula"
This deletes the copy of the catalog

RunAfterJob = "/home/bacula/bin/delete catalog backup"

Write Bootstrap = "/home/bacula/working/BackupCatalog.bsr"

Priority = 11 # run after main backup

}

Standard Restore template, to be changed by Console program
Job {

Name = "RestoreFiles"

Type = Restore

Client = havana-fd

FileSet="Full Set"

Storage = File

Messages = Standard

50

Pool = Default
Where = /tmp/bacula-restores

}

List of files to be backed up

FileSet {

Name = "Full Set"

Include = { Options { signature=SHAl; compression=GZIP9 }
File = /

File = /usr
File = /home
File = /boot
File = /var

File = /opt
}

Exclude = {
File = /proc
File = /tmp

File = /.journal
File = /.fsck

}

}

Schedule {

Name = "WeeklyCycle"

Run = Level=Full 1lst sun at 2:05
Run = Level=Differential 2nd-5th sun at 2:05
Run Level=Incremental mon-sat at 2:05

}

This schedule does the catalog. It starts after the WeeklyCycle
Schedule {

Name = "WeeklyCycleAfterBackup"

Run = Level=Full sun-sat at 2:10

}

This is the backup of the catalog
FileSet {

Name = "Catalog"

Include { Options { signature=MD5 }
File = /home/bacula/working/bacula.sql
}

}

Client {
Name = client-fd
Address = client

FDPort = 9102

Catalog = MyCatalog

Password = " *** CHANGE ME ***"

AutoPrune = yes # Prune expired Jobs/Files
Job Retention = 6 months

File Retention = 60 days

}

Storage {

Name = File

Address = localhost

SDPort = 9103

Bacula Version 7.4.4 265
Password = " *** CHANGE ME ***"

Device = FileStorage
Media Type = File
}

Catalog {
Name = MyCatalog
dbname = bacula; user = bacula; password = ""

}

Pool {
Name = Full-Pool
Pool Type = Backup

Recycle = yes # automatically recycle Volumes
AutoPrune = yes # Prune expired volumes
Volume Retention = 6 months

Maximum Volume Jobs = 1

Label Format = FullMaximum

Volumes = 9

}

Pool {

Name = Inc-Pool

Pool Type = Backup

Recycle = yes # automatically recycle Volumes
AutoPrune = yes # Prune expired volumes
Volume Retention = 20 days

Maximum Volume Jobs = 6

Label Format = IncMaximum

Volumes = 7

}

Pool {

Name = Diff-Pool
Pool Type = Backup

Recycle = yes

AutoPrune = yes

Volume Retention = 40 days
Maximum Volume Jobs = 1
Label Format = DiffMaximum
Volumes = 10

}

Messages {

Name = Standard

mailcommand = "bsmtp -h mail.domain.com -f \"\ (Bacula\) %r\"

-s \"Bacula: %t %e of %c $1\" S%r"

operatorcommand = "bsmtp -h mail.domain.com -f \"\ (Bacula\) S%r\"
-s \"Bacula: Intervention needed for $j\" Sr"

mail = root@domain.com = all, !skippedoperator = root@domain.com =
mount

console = all, !skipped, !saved

append = "/home/bacula/bin/log" = all, !skipped
}

53

Appendix 4 Bacula Storage Daemon Configuration

Storage { # definition of myself

Name = bacula-sd

SDPort = 9103 # Director’s port
WorkingDirectory = "/home/bacula/working"
Pid Directory = "/home/bacula/working"

}

Director {

Name = bacula-dir

Password = " *** CHANGE ME ***"
}

Device {

Name = FileStorage

Media Type = File

Archive Device = /files/bacula

LabelMedia = yes; # lets Bacula label unlabeled media
Random Access = Yes;

AutomaticMount = yes; # when device opened, read it
RemovableMedia = no;

AlwaysOpen = no;

266 Bacula Version 7.4.4 }

Messages {

Name = Standard

director = bacula-dir = all

}

