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TIIVISTELMÄ 

 

Kaupunkiasumisen viherkatot ovat yksi innovatiivisimmista ratkaisuista, 
joiden avulla voidaan lieventää ilmastonmuutoksen aiheuttamia 
ympäristöongelmia. Viherkatot vähentävät pintavalumia, parantavat 
ilmanlaatua sekä vähentävät kaupunkien lämpösaarekkeiden vaikutuksia. 
Viherkattojärjestelmän vaikutuksesta valumien laatuun käydään kuitenkin 
keskustelua. Tämän tutkimuksen päätarkoitus oli tutkia viherkaton 
vaikutusta suotoveden ravinteisiin. Tutkittujen koeviherkattojen koostumus 
sisältää enimmäkseen kierrätettyä, murskattua tiiliseosta sekä vähäisen 
osuuden kompostia, kuorihaketta ja turvetta. Kaksi suunniteltua 
kasvillisuustyyppiä muodostuivat esikasvatetusta sedum-niittymatoista tai 
istutuksista, jotka kasvatettiin siementen ja pistokkaiden avulla. Lisäksi 
kenttäkokeessa tutkittiin biohiilellä tehtyjen parannusten potentiaalia 
suotoveden ravinteiden vähentämiseksi erilaisilla viherkattojen 
kasvillisuuskoostumuksilla. 

Veden laadun mittaustulokset osoittivat, että viherkatot vapauttivat 
merkitsevästi korkeampia ravinnepitoisuuksia kuin kontrollikatot, joissa ei 
ollut kasvillisuutta eikä kasvualustaa. Näin ollen valumamäärän 
väheneminen ei vähentänyt ravinnemassan aiheuttamaa kuormitusta . 
Voimakas sade näytti huuhtovan pois ravinteet , eikä ajan kuluminen 
parantanut viherkaton valuman laatua. Biohiili ei kyennyt vähentämään 
ravinnepitoisuutta ensimmäisenä vuotena, mutta järjestelmien 
kehittymisen myötä ravinnepäästöjen tilanne parani. 

Yhteenvetona voidaan suositella kokonaisvaltaista tutkimusta, jossa 
arvioidaan optimaalista lannoitteen ja kompostin suhdetta 
ravinnekoostumusten perusteella ja eri kasvien ravinnevaatimuksia. 
Lisätutkimuksia tarvitaan, jotta voidaan kehittää paras mahdollinen, 
optimaalisesti toimiva viherkattoratkaisu , jossa suotoveden 
ravinnepitoisuus ei ole liian suuri. 

Asiasanat: viherkatto, ravinne, biohiili, kasvillisuustyyppi  
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ABSTRACT 

 

The urban green roof is one of the innovative solutions to mitigate climate 
change via reducing surface runoff, improving air quality, and reducing the 
effects of urban heat islands. However, a debate exists over the role of 
green roof systems in runoff quality. The major purpose of this study was 
to investigate the impact of green roofs on nutrients leachate in the runoff. 
The growing media of the experimental green roofs in case study 
consisted mostly of recycled, crushed brick mixture and a small portion of 
compost, crushed bark, and peat. Two types of designed vegetation 
consisted of pre-grown sedum-meadow mats or planting with seeds and 
plug plants. Furthermore, the potential of biochar amendment to decrease 
nutrients leachate was studied for different vegetation establishment 
methods in a field experiment. 

The water quality results showed that the green roofs released significantly 
higher concentrations of nutrients than the bare control roofs without 
substrate and vegetation. Green roofs reduced runoff volume but did not 
mitigate the nutrients mass load. The extreme rain in August 2014 seemed 
to wash out the nutrients and increasing the duration time did not improve 
the quality of green roof runoff. Biochar was not able to decrease nutrients 
concentration during the first year, but it started to improve nutrients 
discharge when the systems had matured. 

Overall, a holistic study of optimum fertilizer or compost amendment based 
on their nutrients composition and different plants requirements for 
nutrients is recommended. More investigation is needed to find optimal 
solutions on how to construct green roofs that do not leach more nutrients. 

Keywords: green roof, nutrients, biochar, vegetation type  
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1  INTRODUCTION 

Increasing population in cities and growth of urbanization has to expand 

impermeable areas, deforestation and a dramatic loss of green areas. 

Chaos urbanization has numerous environmental problems such as 

climate change, extreme rainfall in some regions, in contrast with water 

famine in other districts, and urban heat island effects (Gill, Handley, 

Ennos & Pauleit 2007,115-131). Furthermore, an increase of impervious 

areas due to urbanization increases the volume of urban stormwater runoff 

that is higher than municipal storm water transmission canals capacity. On 

the other hand, groundwater tables are declining due to a loss of 

discharging and infiltration water by ground; that is a potential threat in the 

future, especially in semi-arid and arid regions. Additionally, groundwater 

quality is being deteriorated due to decrease the permeable soil areas by 

industrial and human activities, even though the soil treats the pollutants 

and act as a filter for water pass through it. As well as the human need to 

green spaces as a place for rest and recreation. 

Innovative green building techniques involving the creation of green 

infrastructure can be used as tools to mitigate these increasing challenges 

and can be actively encouraged within urban planning strategies. Green 

roofs are a type of green infrastructure that can also be classified as a 

green building technique since they are manmade and developed as a 

part of a building structure. A green roof is one of the innovative, promising 

solutions to mitigate urbanization challenges and benefits to the public and 

the environment ( Razzaghmanesh, Beecham & Kazemi 2014, 651-659). 

Nevertheless, many studies propose that green roofs sequester nutrients 

while several other studies have shown that the green roof growing media 

serves as a nutrients source in runoff and expose adverse effect on 

receiving water resources. Nitrogen compounds accelerate eutrophication 

in water resources causing health problem for public and equations. 

Phosphorous is another major nutrient which causes eutrophication. The 

desired soil amendment that prevents nutrients leaching into a runoff 
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would be effective. One soil amendment that may be able to solve this 

problem in green roof soil is biochar (Beck, Johnson & Spolek 2011, 1-8). 

Therefore, the main goal of this study is to evaluate the impact of green 

roofs on the quality of runoff focusing on these essential nutrients in pilot 

green roofs in field conditions.  
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2  LITERATURE REVIEW 

2.1  The definition and structure of green roof 

Green roof or garden roof is a roof of a building that is covered with plants. 

This lightweight roofing engineered system is designed to plant growth, as 

well as protect the roof and creating more green space for better quality of 

urban life. 

Green roofs usually consist of a waterproof membrane, root barrier, 

drainage layer, filter fabric, growing media, and vegetation layer (Fig.1). It 

is extremely important to choose proper green roof materials for longer 

durability and sustainable design. 

 

 

 

Figure1. Schematic of the green roof structure (Soco construction 2013.) 

 

The base layer is the waterproofing layer which is made of an elastic or 

thermoplastic material. It should be non-biodegradable and adequately 
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elastic to withstand pressure, retaining water in a heavy rainstorm and 

should be impervious to root entrance and acid leachate. (Conservation 

technology 2008.) 

The second layer is a root barrier layer, which protects of under layer from 

root penetration. Root influence and leaks can harm the roof membrane. 

The root barrier materials should be flexible and resistance to cracking 

and perforation. The earlier material was polyethylene consisting of two 

more multifilament grid layers, but nowadays RBM 400 and Blackline 500 

are common. ( Lange , Puffenberger, Bollineni & Wei 2008.) 

The next layer is the drainage layer that is necessary for the roofs with 

slope angle less than 10°. Roofs with steeper angles can drain naturally 

due to gravity. It should be highly resistant to retain rainwater and provide 

humidity back to the substrate during drought periods and provide more 

space for root growth. 

Granular drainage layers were common drainage layer in the past, 

whereas nowadays different light substances like permeable, plastics or 

polystyrene and recycled construction materials are used as a drainage 

layer. (Dabbaghian 2014.) 

The fourth layer is a filter layer which is prepared of permeable substance 

to prevents soil particles of the growing medium and plant entering lower 

layers. In most green roofs a semipermeable propylene fabric is utilized. 

(Dabbaghian 2014.) 

The top layer is the soil, growing medium or the substrate layer. It must be 

light to prevent high pressure on the roof and should provide an adjusted 

equilibrium between water retention and drainage. The substrate must 

consist of approximately 75%-80% of inorganic and 20%-25% of organic 

compost.  

Different materials have been utilized as a substrate, such as crushed 

brick, mineral aggregates, compost, coir and clay soil and other additives, 

such as crumb rubber, paper ash, clay and sewage sludge. However, 
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more research should be done for applying recyclable materials and 

sludge regards their potential negative impacts on the environment. For 

instance, if applied sludge was not sanitary and contains more organic 

material, it starts to decompose and harms humans and the environment. 

Vegetation is a fundamental element in a green roof. It can influence the 

runoff quantity by decreasing runoff via better evapotranspiration and 

uptaking water by zone root. Plant types for green roofs should be 

adapted to local climate conditions and can tolerate antecedent and high 

temperature, freezing, and the wind. (Dabbaghian 2014.) 

2.2  Types of green roof 

Green roofs are classified into two categories: extensive and intensive. 

Extensive roofs are characterized by light substrate depth of less than 15 

cm. Moreover, due to shallowness depths , plants are often limited to 

grasses and plants such as sedums, grass, and moss that can tolerate 

extreme weather conditions, high winds, and drought. The advantages of 

an extensive roofing system are that they are lighter due to less growing 

media and they need a lower capital operation and maintenance costs 

than intensive green roofs.  

Intensive roofs have substrate depths greater than 15 cm to support larger 

and more varied vegetation, including small trees and shrubs. Hence, the 

structure should support the heavier weight, which necessitates higher 

capital operation and maintenance costs.These roofs are more accessible 

for recreation, agriculture, and public use. So it demands more irrigation, 

maintenance, and expertise than extensive green roofs. 

2.3  Benefits of green roofs 

Green roofs or vegetated rooftops reduce storm water significantly due to 

vapor-transpiration through plants as well as storing some of the 

precipitation in the substrate. Furthermore, a green roof distributes the 

runoff over a longer period and likewise expand the flood peak duration 
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because of the slow release of water that is accumulated in the substrate 

layer and reduce sewage overflows. (Mentens, Raes & Hermy 2006, 217-

226 ; Gibler 2015; Kok , Sidek, Chow, Abidin, Basri & Hayder 2015, 1-7; 

Lee, Lee & Han 2015, Glass., 2007; Teemusk & Mander 2007, Czemil 

Berndtsson 2010) 

 Retaining runoff depends on many factors such as weather conditions 

(length of proceeding dry period, air temperature, wind conditions, 

humidity), characteristics of rain event (intensity and duration), green roof 

features (roof slope, green roof soil composition, thickness, moisture and 

depth, number of layers and materials component ), and type of 

vegetation. (Villarreal & Bentsen 2005, Teemusk & Mander 2007, Czemil 

Berndtsson 2010, 351–360. ) 

Green roofs may also reduce the heat island effect and improve building 

insulation and energy efficiency. Green roofs increase evapotranspiration 

through plants leaves, trap an air layer within the plants that causes 

preventing of summer heat reaching the construction surface; or in winter, 

the interior heat is prevented from escaping. (Takebayashi & Moriyama 

2007, 2971-9; Santamouris 2012, 682–703; Banting, Doshi, Li & Mission 

2005; Townshed 2007; Glass 2007. ) 

Green roof plants use carbon dioxide for their respiration and release 

oxygen and filter out fine air particles while the air passes over the plants 

(Green roofs for healthy cities 2016). Murphy (2015) believed that green 

roofs remove up to 73 kg of atmospheric pollutants annually. Soft 

surfaces, such as grass or green roof reduce noise by decreasing 

frequencies and stopping reflecting (Townshed 2007; Van Renterghem & 

Booteldooren 2009, 1081–1087). 

The green roofs are often established for aesthetic reasons. In populated 

urban areas with limited available lands, flat roofs play a significant role in 

providing recreational space for healthy living of urban dwellers. 

(Townshed 2007; Teemusk & Mander 2007, 271–277.) Finally, green 

roofs improve urban biodiversity and create habitat for plants and animals 

http://www.greenroofs.org/index.php/about/greenroofbenefits
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(Brenneisen 2003; Lee, Lee & Han 2015, 171-176; Madre, Vergnes, 

Machon & Clergeau 2014, 100–107 ).  

The investigations clearly demonstrated that green roofs neutralized acid 

rain to stabilize the pH of the runoff, Indicate that a green roof can be a 

good BMP best management practice for mitigating acid rain runoff in 

urban areas ( Gong, Wu, Peng, Zhao & Wang 2014, 1205-1210; Beecham 

& Razzaghmanesh 2015, 370 -384 ; Bliss, Neufeld & Ries 2009, 407- 417 

; Aitkenhead-Peterson, Dvorak, Voider & Stanley 2011, 17–33 ; Czemil 

Berndtsson 2010, 351–360; Chen 2013, 51–58 ; Teemusk & Mander 

2011, 3699–3713 ; Vijayaraghavan & Jushi 2012, 1337– 1345; lang 2010; 

Berghage, Beattie, Jarrett, Thuring & Razaei 2009).  

2.4  Challenges of green roofs 

From the perspective of construction, there are some barriers which are 

preventing the green roof industry are becoming more widespread. High 

installation and maintenance cost, lack of knowledge and awareness, lack 

of accessible roof and technical issues are the most common obstacles to 

green roof application. For instance, the extra load of the soil needs extra 

structure materials and costs to withstand extra pressure. Furthermore, 

green roofs should be attractive like parks to the public, and it demands a 

much deeper substrate and the complex irrigation systems. On the other 

hand, more care is needed in intensive green roofs as the native plants 

cannot tolerate the extreme conditions of a rooftop. ( Sihau 2008.) 

2.5  Nutrients 

2.5.1  Nitrogen 

Nitrogen is a vital nutrient for plant growth. Nitrogen is added to ground as 

fertilizer or arises naturally in the soil as organic forms from decomposing 

plant and animal residues. Soil bacteria convert nitrogen to nitrate by 

nitrification, that is a desirable form for plants to absorb. However, nitrate 
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is a hydrophile ion that moves with water through the soil profile easily. In 

the case of excessive rainfall or over- irrigation, nitrate will be leached 

from the root zone to groundwater from any soil. Denitrification can be a 

major mechanism of NO3
-N loss when soils are saturated with water for 2 

or 3 days. ( Lamb, Fernandez & Kaiser 2014.) 

Excess nitrogen in the aquatic system contributes to the growth of algae 

and other aquatic plants and eutrophication. Furthermore, the massive 

growth of algae causes taste and odor problems in drinking waters and the 

dissolved oxygen depletion causes harm to the aquatic organisms, clogs 

water intakes, drains, and pipes. (Vijayaraghavan & Jushi 2012, 1337– 

1345). 

The Environmental Protection Agency of USA (USEPA) considers 10 mg/L 

standard as the maximum contaminant level (MCL) for nitrate-

nitrogen and 1 mg/L for nitrite-nitrogen  in order to control inputs of 

nutrients from point sources into aquatic systems (Oram 2016) . 

Furthermore, European Union considered 2-10 mg/L as a limit value for 

total nitrogen to control eutrophication of surface water (Oenema 2016). In 

this study, the value of 10 mg/L is considered as a guideline limit for green 

roofs outflow in order to a better understanding of likely potential impacts 

of the green roof on water reservoirs. 

2.5.2  Phosphorus 

Phosphorus is the another essential macronutrient for stimulating plants 

growth. TP is the sum of three major forms: organic P, fixed mineral P, 

and orthophosphate (OP). Phosphorus is one of the three nutrients added 

to soils in fertilizers. Precipitation washes out phosphates from farm soils 

into watercourses. Excess phosphate cause rapid growth of algae, and 

aquatic plants that deplete dissolved oxygen. In contrast to nitrogen; 

phosphate is retained in the ground by biological activities, absorption, and 

mineralization. 

The initial phosphate in fertilizers and manure is moderately soluble and 

available for the plant. Nonetheless, various reactions begin to change 
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phosphate to be minus soluble and less accessible in exposure with the 

soil. Factors such as soil pH, moisture content, temperature, and the 

available minerals in the soil affect the rate of solving phosphate. The 

dissolving of the fertilizer occurs when it is in contact with soil moisture, 

that increases the soluble phosphate in the soil solution around the 

fertilizer particle and causes short and slow movement of the dissolved 

phosphate and react with minerals present in the soil. This movement can 

increase by rainfall or irrigation. The principal mechanism for phosphate 

ions reacts contain adsorbing to soil particles or combining with minerals 

in the soil ( Calcium (Ca), Magnesium (Mg), Aluminum (Al), and Iron (Fe) ) 

and developing solid complexes. The high quantity of phosphate in soils 

results in phosphate increase in soil solutions. This will generally result in 

minor, then potentially significant rises in the aggregates of phosphate in 

water. (Busman, Lamb, Randall, Rehm & Schmitt 2009.)  

The USEPA recommend 0.1 mg/L TP for streams which discharge into 

reservoirs to control eutrophication (Oram 2016). The European Union 

propose 0.1- 0.4 mg/L TP for surface water quality standards (Buijs 2016). 

The UK considers 0.03 mg/L for high and 0.5 mg/L for the poor ecological 

status of rivers. Denmark considers phosphorus standard (0.3 mg/l) to all 

point source discharges and does not have any standard for phosphorus 

in rivers. (A revised approach to setting Water Framework Directive 

phosphorus standards 2012.) The value of 0.1 mg/L TP is considered as a 

guideline limit for green roof discharge in this study. However, these 

standard concentration limits are not essential indicators for nutrients 

management in water supplies. 

2.6  Biochar 

While plants demand nutrients for better growth, higher nitrogen and 

phosphorus concentrations have repeatedly been observed in runoff from 

green roofs that confirm the high quantity of nutrients wash out from the 

soil before up taking by roots. So it is necessary to find out a desirable soil 

amendment that prepares essential nutrients available for plants and 
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prevent nutrients dissolving in the runoff. Amendment of biochar to retain 

nutrients would be a promising solution as a soil additive for growing green 

roofs. 

Biochar is a carbon-rich coproduct derived from the pyrolyzing of biomass 

under high-temperature, low oxygen conditions for biofuel production. 

Pyrolysis means chemical degradation of an organic substance by heating 

in anaerobic condition. The four different types of pyrolysis consist of fast, 

intermediate, slow pyrolysis and gasification. Slow pyrolysis is defined as 

“carbonization” due to producing a high quantity of carbonaceous material 

and in the gasification process, a large proportion of syngas is produced.   

( Verheijen, Jeffery, Bastos, Van der Velde & Diafas 2009.) At 

temperatures of between 250-1000ºC, biomass (wood, straw, manure) 

produce a different portion of syngas, bio-oil, and biochar. Slow pyrolysis 

(below 400ºC for 30 minutes to several hours) produce more biochar 

(35%) than fast pyrolysis.( Ahmad, Rajapaksha, Eun Lim, Zhang, Bolan, 

Mohan, Vithanage, Lee & Sik Ok 2014, 19–33.) 

Biochar is similar to other charcoals, however, in general biochar is 

produced by dry carbonization or pyrolysis and gasification of biomass, 

whereas the hydrochar is generated as a slurry in water by hydrothermal 

carbonization of biomass under pressure. Furthermore, biochar is 

consumed as a rectifier or fertilizer while charcoal is used for other forms 

of consumptions. ( Biederman & Stanley Harpole 2013, 202–214.)  

Biochar contains high organic carbon that led to being as a soil conditioner 

to improve the physicochemical and biological performance of soils. 

Biochar contains highly condensed aromatic structures that resist 

decomposition into the ground and thus can effectively sequester a portion 

of the applied carbon for decades or hundreds of years. (Biederman & 

Stanley Harpole 2013, 202–214.) It is worth noting that sorption of organic 

contaminants by biochars is more favored than that of inorganic 

contaminants.  
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The high stability of biochar due to the extensive structure of aromatic 

carbons cause modification of soil's water holding capacity through its 

macroporous nature ( Yao, Gao, Zhang, Inyang & Zimmerman 2012, 

1467–1471.) Biochar can sequester up to 2.2 billion tons of carbon every 

year by 2050. Furthermore, syngas and pyrolysis oils from biochar 

production can be a good alternative to fossil fuels. By using the biochar 

soil does not demand fertilizer and subsequently nitrous oxide emissions 

from soils will be reduced.( Ernsting 2016. ) 

Many soils are acidic and crops generally could not absorb nutrients in the 

acidic soil. Since most types of biochar are alkaline, adding an alkaline 

biochar cause easier take-up nutrients for plants, however, this effect 

might not be present for a long time. ( Ernsting 2016. ) 

2.6.1  Challenges of biochar 

Traditional biochar processing produces small airborne black carbon 

particles which have 500-800 times the negative impact of global warming 

than carbon dioxide, they can absorb short energy wave from the sun 

rather than reflect it back into space. Furthermore, small black carbon 

particles are deposited on snow and ice, they cause or speed up melting 

and thus cause further warming. Therefore, particles need to be very small 

and biochar should produce in equipped and well-designed machines, not 

a traditional process that farmers apply it. ( Ernsting 2016. ) 

Furthermore, depending on the pyrolysis temperature and the initial 

feedstock there is likely to produce Polycyclic Aromatic Hydrocarbons 

(PAHs) particles which are carcinogenic. The another problem with wood 

biochar is that it demands significant amounts of wood or other biomass, 

therefore, extensive application of wood biochar would destroy forests.      

( Ernsting 2016. )  
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2.7  Historical Background 

Nearly all the studies on green roof runoff quality detected nutrients in the 

runoff, but the results vary significantly. Some study results with similar 

conditions are as follow: 

Aitkenhead-Peterson, Dvorak, Voider & Stanley ( 2011, 17–33 ) reported a 

larger amount of nitrate nitrogen (NO3–N 2.1 mg/l) in the runoff than in 

precipitation (0.2 mg/l). Czemil Berndtsson, Bengtsson & Jinno (2009, 

369–380) studied runoff quality from an intensive green roof in Japan and 

extensive green roof in Sweden. The substrate depth of intensive green 

roof was 40 cm of perlite that is made of artificial inorganic lightweight soil. 

The extensive green roof in Sweden consisted of crushed lava, natural 

calcareous soil, clay and shredded peat with a depth of 3 cm. The result 

showed higher dissolved organic carbon and potassium in both roofs. The 

source of DOC was organic material from the roof soil or from the 

vegetation decomposition. Results indicated that nitrate nitrogen and 

ammonium nitrogen decreased in both extensive and intensive vegetated 

roofs. However, the intensive vegetated roof reduced TN and TP in 

contrast to the extensive roof.  

In another study by Gregoire & Clausen (2011, 963–969) runoff quantity 

and quality from a 248 m2 extensive green roof and a control were 

compared in Connecticut. The growth media component consisted of 75% 

lightweight expanded shale, 15% composted biosolids and 10% perlite. 

Each bed was planted with a mixture of 10 sedums and 12 plugs species. 

TP and PO4–P mean released from green roof runoff higher than in 

precipitation, but lower than the control roof. However, the green roof 

behaved as a sink for NH3–N, Zn, and Pb. It also reduced the mass export 

of TN, TKN, NO3, and NO2–N because of 51.4% reduction in stormwater 

runoff. The growing media and slow release fertilizer were probable 

sources of P and Cu in green roof runoff in this study.  

Wang, Zhao & Peng (2013, 2691–2697) evaluated the effect of different 

factors on nutrients leaching in green roof runoff via artificial rains. The 
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results represented that green roof was a source of total phosphorus, but 

a sink for most of the nutrients pollutants. The results also revealed that 

substrates applied in the green roof and substrates depth effected on the 

concentration of these nutrients pollutants in the runoff. The role of plant 

density and drainage systems were not so significant. 

Harper, Limmer, Showalter & Burken (2015, 127-133 ) conducted nine-

month field green roof pilot study to evaluate runoff quantity and quality 

with two different media ( Arkalyte mix and GAF’s GardenscapesTM ). 

Different type of sedum was used in this experiment. In initiate stage , total 

phosphorus >30 mg-P/L and total nitrogen concentrations >60 mg-N/L 

were observed in green roof runoff. GAF had much higher TP 

concentrations in runoff, and concentrations decreased over nine months 

media type hence age factor were considered as the largest influences on 

nutrients loading from the green roof . 

Beecham & Razzaghmanesh (2015, 370 - 384) studied factors affecting 

the quality and quantity of effluent green roof on sixteen low-maintenance 

and unfertilized intensive and extensive green roof beds. The first two 

factors of slope (1 and 25) and depth (100 mm and 300 mm) were 

randomized to the growing media (organic mix, Brick mix, and Scoria mix). 

The third factor was plant type , which was based on three plant species 

named Brachyscome Multifedia (Cut - leaved Daisy), Chrysocephalum 

Apiculatum (Everlasting Yellow Buttons), and Disphyma Crassifolium. 6 

roofs were designed as intensive and 6 as extensive and 4 roofs were 

considered as a control roof without vegetation. From the results green 

roofs generally acted as a source of nutrient pollutants in this study but the 

nutrients leachate was lower than non-vegetated beds which emphasize 

on the vegetation role in improving pollutant removal in green roof 

systems. Among vegetated beds, the intensive green roofs discharged 

nutrients less than the extensive beds while in the non-vegetated beds, 

the extensive beds performed better than intensive systems. In addition, 

growing media with the less organic matter contained better water quality. 
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In Vijayaraghavan & Jushi (2012, 1337– 1345 ) experiment, two types of 

substrates were used , the first media included white peat, black peat, and 

clay. The second substrate consisted of natural inorganic volcanic 

material, compost, organic and inorganic fertilizers, sedum Mexicanum 

was selected. Results showed over 40 mg/L phosphate concentrations; 

however, nitrogen concentrations were not significantly greater than the 

control. Type of growth media affected strongly by the concentration of 

chemical components in the green roof runoff. 

Beck, Johnson & Spolek (2011, 1-8) evaluated changes of adding 7% 

biochar in extensive green roof runoff quality and quantity. Growing media 

contained a mix of gravel, sand, silt, clay, as well as specially screened 

pumice, fiber life compost, and paper fiber. Sedum and regress were 

planted on the roofs. The biochar consisted of 70.0% agricultural char and 

30.0% manufactured waste char of passenger car tires. Trays with biochar 

amendment showed increases in water retention and significant 

decreases in the total nitrogen, nitrate, total phosphorus, phosphate, and 

organic carbon concentration. In terms of vegetation type, sedum retained 

phosphate and total phosphorus from both biochar and non-biochar 

treatments.  
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3  RESEARCH OBJECTIVES 

The objectives of this study that are derived from the former studies and 

study context in chapter 2 to achieve the aim of this study consist of: 

to determine the effect of green roofs ageing on the concentration of 

nutrients in the runoff (phosphorus and nitrogen); to determine the impact 

of differently designed vegetation type on nutrients leaching; to evaluate 

the effect of climate and rainfall intensity on nutrients releasing in the 

runoff ; to evaluate the effect of biochar amendment on nutrients 

discharging from green roof. 

The data used in this study has been collected by Kirsi Kuoppamäki and her 

colleagues that are working on a series of experiments, carried out under 

the Fifth Dimension-green roofs in urban Areas-research program in the 

University of Helsinki. 
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4  MATERIALS AND METHODS  

The study area of this research from Helsinki university was located at 

Jokimaa research station in Lahti City, Southern Finland. The experiment 

was conducted in 25 green roof beds of size 1×2×1.5 meters each were 

made of plywood with the slope adjusted to 4o or 1:14. The experiment 

was established in early July 2013. 

The effect of biochar (present or absent),  and the effect of two vegetation 

structure methods: pre-grown mats, plug plants and sowing were 

considered as two main factor design in a random plot design, each with 5 

replicates. In addition to twenty vegetated beds, there were five non-

vegetated beds without substrate, biochar or other green roof layers. 

Experimental green roofs (Fig. 2) consist of some layers. Each bed bottom 

and inner wall were covered with an HD polyethylene roofing membrane, 

the second layer was 25 mm drainage layer made of a molded polystyrene 

(Nophadrain; Veg Tech AB 2014) in the form of egg shell-like plastic , the 

next layer was10 mm thick water holding fabric (“VT-filt”: Weight 1280 

g/m², water storage capacity 8 l/m²; Veg Tech AB 2014), the fallowing 

layer was the substrate layer, and finally the plants were placed. Substrate 

major constituents included crushed, recycled brick (85%), compost (5%), 

peat (5%) and crushed bark (5%). 

For pre-grown mats with biochar, a 50 mm substrate layer was added and 

then a 10 mm thick layer of biochar (equal to 4 kg/m2) were spread (Fig.3). 

For non-biochar pregrown 60 mm substrate layer was added. Finally, 40 

mm thick green roof vegetation mat was applied for both plots. These 

readymade mats were produced by VegTech in Sweden and imported to 

Finland by Envire VRJ Group Ltd. The mats consist of dense vegetation of 

mosses, Sedum spp., herbs, and grasses. For plug plant plots, a substrate 

layer was added to the depth of 100 mm. Then eight plug plants of 

different species (per plot) and seeds were sown. The plug plant species 

were Campanula rotundifolia, Centaurea jacea, Fragaria vesca, Knautia 

arvensis, Lotus corniculatus, Pilosella officinarum, Veronica spicata and 
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Viola canina. The seed mixture sown included Antennaria dioica, Allium 

schoenoprasum, Dianthus deltoids, Galium verum, Leucanthemum 

vulgare, Sedum acre, S. telephium, Thymus serpyllum, and Viola tricolor. 

Biochar was produced from birch (Betula spp.) were pyrolyzed for 2 hours 

at the range of temperature from 380-420o C and had BET specific surface 

area of 7 m2 /g, the bulk density of 389 g/l and pH 7.6. Runoff was 

collected from green roofs to three drainage holes at the lower edge of the 

green roof box connecting a gutter that is attached the rain gauge and a 

funnel to a 25 L container (Fig. 2 & 4). 

The containers were emptied and the water volume measured after 

precipitation events. 200 ml water samples were taken for analyses at 3-4 

month intervals; totally six samples were collected whole experiments. The 

first water sample was collected one month after plant establishment when 

sufficient volume of runoff collected from the container. One ECRN-100 

rain gauge was installed next to the green roof treatments to measure 

precipitation. Furthermore, a local weather station collected data on 

precipitation events, wind velocity, and air temperature. 

4-1  Laboratory analysis 

For all nutrients experiments analysis in the case study, Ascorbic acid and 

molybdate reagent (ISO 6878:2004) were added to phosphorous samples 

and then were measured by a spectrophotometer. To determine total 

nitrogen High-Performance Liquid Chromatography (HPLC) instrument 

with 0.04M sodium chloride (NaCl) as an eluent (ISO 29441:2010) were 

applied.  
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Figure 2. The experimental setup of green roofs and control roofs 

connecting from a gutter to which is attached the rain gauge and a 

funnel to a 25 L container  

 

 

Figure 3. A cross section of substrate layers of pre-grown biochar 

amendment green roof. The planted green roofs had a similar structure 

except for the 4 cm pre-grown layer that was replaced by substrate, plug 

plants and seeds ( Kuoppamäki & Lehvävirta 2016, 39-48) 
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Figure 4. The experimental setup of green roofs at Jokimaa research 

station, Lahti  
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5 RESULTS 

Nitrogen leaching from non-vegetated roofs was low and did not vary 

during the study period from August 2013 until November 2014 (Fig. 5). 

However, more fluctuation was seen in runoff from planted green roof. A 

high peak of nitrogen was seen in August 2014 in planted green roofs, 

while leaching from pre-grown green roofs rose slightly. The extreme 

rainfall occurred in August both 2013 and 2014, while the mildest event 

took place in November 2013 (Table 1), when the majority of runoff 

originated from the melting ice in the substrate. Therefore, based on data, 

runoff from the experimental green roofs contained higher TN 

concentrations compared to the roofs without vegetation. For emphasis, a 

guideline limit line of nutrients is drawn in all graphs to compare with the 

quality of green roofs discharge. The concentrations above the guideline 

limit reflect the probable threat of eutrophication in water resources. Also, 

pre-grown green roofs contained lessTN than planted roof in August 2014 

rain storm. 

 

Figure5. The average (±SE) concentration of total nitrogen in the runoff 

from pre-grown, planted and non-vegetated roof during the study period 

from August 2013 until November 2014. 
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Table1- Basic information about the precipitation, the interval of antecedent 

dry weather period (ADWP), mean air temperature, rainfall volume (with 

maximum rain intensity) and the mean (±SD) amount of runoff. ADWP and 

rainfall intensity were determined only for precipitation, not for snowfall or 

melting events ( Kuoppamaki & Lehvävirta 2016, 39-48) 

             Date 

15.8. 

2013 

24.9 

2013 

28.11 

2013 

12.3. 

2014 

13.5. 

2014 

20.8. 

2014 

ADWP, days 1.5 0.5 ------- ------- 2 1.5 

Mean temperature 

ranges(co) 
(11.4-20.8) (6.2-15.7) (-1.0-6.5) (-5.9-7.6) (6.8-14.3) (6.4-22.2) 

Rainfall, mm (max 

intensity mm/20 min) 
81.4(3.9) 17.7(2.4) 0.4(-) 17.5(-) 14.2(2.0) 31.2(3.8) 

Runoff(SE), mm 

Planted 34.6(2.9) 2.3(0.6) 1.4(0.3) 8.2(3.3) 4.9(0.2) 6.4(0.2) 

Planted + Biochar 33.3(17.0) 1.7(0.7) 1.2(0.2) 11.5(4.4) 3.3(0.4) 3.3(0.4) 

Pre grown 47.2(9.5) 10.4(1.2) 3.2(0.5) 9.3(2.3) 4.7(0.2) 2.2(0.3) 

Pregrown + Biochar 30.4(15.6) 7.4(4.1) 2.3(0.6) 9.4(2.3) 4.6(0.3) 1.4(0.2) 

 

As is shown by the figure 6 the total phosphorous concentration fluctuated 

slightly in all green roofs during the research period, however, a peak was 

observed in August 2014 that plunged to less than 0.1 mg/l during three 

months. Overall, the total phosphorus concentrations were higher in runoff 

from the experimental green roofs than from the non-vegetated control 

roofs. Furthermore, planted green roofs showed better performance in 
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higher rainfall than the pre-grown roofs. Runoff contained less nutrients at 

freeze-thaw events (November) compared to rain events during the 

growing season 2014, but slightly increased with the starting of snow 

melting. 

It is evident that TN leaching was less in non-vegetated roofs comparing 

the other green roofs (Fig. 8). However, TN concentration did not exceed 

the guideline limits. It seemed that the N levels fluctuated in all three types 

of roof. However, the trends were almost similar among them, and the 

most less leaching was seen in November 2013. Amending of biochar was 

not noticeable until Jun 2014, but after that when the systems became 

less than one year old it started to retain nitrogen, apparently. 

 

 

Figure 6. The average (±SE) concentration of total phosphorus in the 

runoff from pre-grown, planted and non-vegetated roofs during the 

study period from August 2013 until November 2014. 
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Figure 7. The average (±SE) concentration of total nitrogen in runoff 

from planted green roofs in biochar treatments and non-vegetated 

roofs during the study period from August 2013 until November 2014. 

 

 

 

 

Figure 8. The average (±SE) concentration of total nitrogen in runoff 

from pregrown green roofs with and without biochar amendment and 

non-vegetated roofs during the study period from August 2013 until 

November 2014. 
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The biochar-amended soil did not result significantly in decreasing TP 

concentration levels in the rainfall runoff (Fig. 9). However, with the high 

amount of nutrients in the runoff in August 2014, biochar had a clearly 

reducing impact on the concentrations of both TN and TP in all experiments. 

A more drastic change was seen in the pregrown green roof as it leaped 

from 0.4 in May to 2.4 mg/l in August 2014 (Fig. 10). By observing the graph, 

it can be seen that green roofs contained more phosphorous that it 

fluctuated during the time while non-vegetated roofs did not show 

phosphorous leaching. Amending biochar did not improve the leaching of 

phosphorous at first. Though; it started to decrease phosphorous leaching 

vastly since August 2014. 

 

 

Figure 9. The average (±SE)  concentration of total Phosphorous in 

runoff from pre-grown green roofs in the biochar treatments and non-

vegetated roofs during the study period from August 2013 until 

November 2014. 
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of TN would have been present in the runoff from the green roof. 

Therefore, the volume of runoff was necessary to determine the mass 

loadings. Therefore, mass load per unit of green roofs area were 

considered as well. When considering impacts to water bodies 

downstream, concentrations are much less important than loading. So, the 

mass loading is investigated as well. 

 

Figure 10. The average (±SE)  concentration of total Phosphorous in 

runoff from pregrown green roofs in the two biochar treatments and 

non-vegetated roofs during the study period from August 2013 until 

November 2014. 

For these experiments, TP and TN concentrations and loading in runoff 

still elevated more than one year after construction. Since the green roofs 

discharged higher concentrations of the nutrients, reduction in runoff 

volume did not similarly mitigate the nutrients load. The mass loads from 

non-vegetated roofs were lower than green roofs (Fig. 11&12) except in 

two lighter rainfall events that lower nutrients load occurred due to lower 

runoff from the green roofs. 

Application of biochar decreased nutrients loading in the first year slightly 

with some exceptions. However, it reduced both peak concentration and 
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interaction with initial high N load in planted green roofs without biochar. 

Biochar positive effect on TP load decreasing was almost similar in 

planted and pre-grown green roofs. (Due to a high mass load of TN in 

August 2014 in planted green roof (518) it cannot be seen in real quantity 

in the Fig. 11). 

 

Figure 11. TN load in runoff from all green roof treatments and non-

vegetated roof during a year of study 

 

Figure 12. TP load in runoff from all green roof treatments and non-

vegetated roof during a year of study 

0

20

40

60

80

100

120

18/8/13 24/9/13 28/11/13 12/3/14 13/5/14 20/8/14

TN
 lo

ad
(m

g/
m

2 )

Date

planted

pre-grown

planted +
biochar

pre-grown +
biochar

non-vegetated

518

0

1

2

3

4

5

6

7

8

9

10

18/8/13 24/9/13 28/11/13 12/3/14 13/5/14 20/8/14

TP
lo

ad
(m

g/
m

2
)

Date

planted

pre-grown

planted + biochar

pre-grown + biochar

non-vegetated



27 

6  DISCUSSION 

6.1  The effect of green roofs on nutrients in runoff 

Monitoring of the experimental roof plots in Lahti showed nutrients 

discharging from green roofs in terms of concentration and mass loading 

were higher than non-vegetated roofs as the survey by Kuoppamaki & 

Lehvävirta (2016, 39-48) in Helsinki area indicates on more nutrients 

leaching from green roofs. Malcolm, Reese, Schaus, Ozmon & Tran 

(2014, 705–712) achieved same results . The green roofs in their 

experiment discharged 10 to 180 times higher concentrations of the TP 

compared the gravel roof , that indicates the reduction in runoff volume did 

not mitigate the nutrients load. In only one of the analyzed storms, the 

99.8% of the reduction in runoff volume resulted in a lower load from the 

green roofs. Application of Alum as a solution to decrease nutrients 

leaching caused 22% reduction of TP. 

Elevated concentrations of nutrients pollutants, particularly phosphorus 

leaching from green roofs conveyed in numerous studies (Czemil 

Berndtsson 2010, 351–360; Li & Babcock., 2014; Vijayaraghavan & Jushi 

2012, 1337– 1345 ; Teemusk & Mander 2007, 271–277 ; Monterusso, 

Rowe, Rugh, & Russell 2004, 369–376 ; Hathaway, Hunt & Jennings 

2008, 37-44; Culligan, Carson, Gaffin, Gibson, Hakimdavar, Hsueh, 

Hunter, Marasco, & McGillis 2014; Berghage, Beattie, Jarrett, Thuring & 

Razaei 2009; Kok , Sidek, Chow, Abidin, Basri & Hayder 2015, 1-7; 

Aitkenhead-Peterson, Dvorak, Voider & Stanley 2011, 17–33; Glass & 

Johnson., 2008). 

The majority of the measured concentrations of phosphate phosphorus of 

green roofs in this thesis were higher than non-vegetated roofs and were 

above USEPA’s recommended limit of 0.1 mg/l to avoid accelerated 

eutrophication in freshwater. It seems phosphors is more limited 

substance for discharging in water bodies. Besides, most of substrate 

layer and media contain more phosphorous. However, in most cases, 

nitrogen concentrations were not so higher (from 0.4 mg/N to <20 mg/N; 
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excluding the exceptionally high levels from some of the experimental 

roofs in 2014) than non-vegetated roofs. Furthermore, they were below the 

US Environmental Protection Agency (USEPA)’s and European Union’s 

recommended standard of 10 mg/l in freshwater. 

Though, it seems that the annual mass (mg) of nutrients release of a 

green roof is less than control roof nutrients leaching because of green 

roofs discharge less water quantity per annum (Li & Babcock., 2014). It is 

estimated that 600 kg of Total P, 7000 kg of NH4
+ and 150, 000 kilograms 

of NO3
- could save from releasing into the sewer system or local water 

bodies via green roof applying in NYC case study. These values are not 

concerning than annual nutrients discharges from sewage treatment 

plants (Oberndorfer, Lundholm, Bass, Coffman, Doshi, Dunnett, Gaffin, 

Kohler, Liu & Rowe 2007, 823–833; Culligan, Carson, Gaffin, Gibson, 

Hakimdavar, Hsueh, Hunter, Marasco, & McGillis 2014). Moreover, the 

concentrations are the same with planted landscape run off at ground level 

(Berghage, Beattie, Jarrett, Thuring & Razaei 2009). 

A corresponding study by Beecham & Razzaghmanesh (2015, 370 - 384) 

investigated runoff volume and quality of sixteen low-maintenance, and 

unfertilized intensive and extensive green roofs in an arid climate. They 

found a greater concentration of nitrate and ammonia in green roofs than 

in the inflow stormwater. It can be concluded that the higher organic 

component of the substrate generated higher nutrients concentration. 

Vijayaraghavan & Jushi ( 2012, 1337– 1345 ) found higher levels of nitrate 

in green roof runoff (0.28 – 0.8 mg/L) than in control roof runoff (0.19 – 0.4 

mg/L), but the levels they found were low because fertilizer was not used. 

The most factors potentially influencing leaching of nutrients from green 

roofs can be fertilizers or compost that is used in soil or substrate as a 

nutrients supplier for the plant (Czemil Berndtsson 2010, 351–360). The 

other important factors consist of: thickness of the substrate layer and its 

composition, vegetation properties, drainage and roof material, age of the 

roof, its maintenance , type of the surrounding area, local pollution sources 

, atmospheric deposition dynamics of precipitation, physicochemical 
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properties of pollutants (Czemil Berndtsson 2010, 351–360; Alsup, Ebbs & 

Retzlaff 2010, 91–111 ; Wang, Zhao, & Peng 2013, 2691–2697; Speak, 

Rothwell, Lindley, & Smith 2014, 33-43 ; Ahmed 2011, Vijayaraghavan & 

Joshi 2014, 121-129 ; Rowe 2011, 2100-2110; Teemusk & Mander 2007, 

271–277; Emilsson, Berndtsson, Mattson, & Rolf 2007, 260–271) . 

Vegetation in urban areas due to more surface area act as a filter to trap 

fine air particles as the air passes over the plants, the particles settling on 

plant surfaces are washed into the soil by rain. During dry periods, some 

of the dissolved components can combine to the substrate or the solid 

substance of the drainage layer while pollutant components during rainfall 

events can be leached and transported by the subsurface outflow (Alsup, 

Ebbs, Battaglia & Retzlaff  2011, 1709–1717; Gnecco, Palla, Lanza & La 

Barbera 2013, 4715–4730 ).  

Nitrate concentrations were found to be higher in runoff from a sedum 

roofs in comparison to herbaceous perennials, and in runoff from 

shallower substrates (Monterusso, Rowe, Rugh, & Russell 2004, 369–

376). Nitrate nitrogen leached more than ammonium nitrogen during 

moderate rain events. However, during heavy precipitation events and 

melting of snow, ammonium can exceed nitrate in green roof runoff. 

(Teemusk & Mander 2007, 271–277 , Teemusk & Mander 2011, 3699–

3713.)  

When comparing the release of nitrate concentrations in Robinson (2012) 

study, all three media (commercial, compost, bio solids) contained higher 

nitrate in the runoff than the amount was reported in the literature, but only 

the runoff from commercial media had higher nitrate concentration than 

drinking water quality standard. When comparing the total phosphorus 

concentration results discharging from green roofs , all three media 

(commercial, compost, and bio solids mix) released greater phosphorus 

concentration than water quality criteria and most green roof water quality 

reports. 



30 

For the non-vegetated groups, extensive roofs recorded higher ammonia 

concentrations than intensive roofs which could be due to the lower 

volume of growing media and probably less reaction time for nitrification to 

nitrite and nitrate or changing substrate moisture and temperature 

(Beecham & Razzaghmanesh 2015, 370 - 384). The results of mass and 

concentration of nitrate in black EPDM membrane (control) roofs, modular 

green roof, and built-in-place (BIP) green roof runoff were similar. 

However, mean nitrate mass in the runoff from the green roof systems 

were higher than from the control roofs and that the mass of the planted 

BIP systems were statistically more than the seedless structures. The 

average nitrate mass of the BIP’s runoff declined as depth increased. 

(Morgan, Cooper& Retzlaff 2015, 98-112.) Studies in Charlotte, North 

Carolina found that atmospheric deposition accounted for 10-65% of runoff 

pollutant loadings for phosphorus and total suspended solids, 30-50% of 

runoff pollutant loadings for copper and lead, and 70-100% of runoff 

pollutant loadings for nitrogen. (Moran, Hunt & Jennings 2003, 1-10.) 

Therefore, some main factors were investigated in our experiment field as 

follows. 

6.2  The effect of climate 

Like naturally vegetated ecosystems, green roof ecosystems might show 

seasonal fluctuations in runoff water chemistry due to variation in plant 

productivity, microbial activity, temperature or other light-dependent 

processes (Buffam, Mitchell & Durtsche 2016, 506–514). 

The highest rainfall events occurred in August 2013 and 2014, It seems 

that rain washed out nutrients in the green roof in August 2014. However, 

nutrient leaching was less in August 2013 despite about two-fold more 

rainfall compared to August 2014. It might be related to higher rainfall and 

runoff in August 2013. Therefore, the concentration of nutrients in runoff 

and the amount and intensity of the rain events might be connected to 

each other. 
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Less amount of nutrients were seen in the runoff in winter, but it slightly 

increased when the ice melting started. The precipitation quantity in 

12.3.2014 and 24.9.2013 was almost equal. However, the higher 

temperature in September 2013 caused more evapotranspiration and less 

runoff. The TP and TN concentrations were less due to less effluent in 

September 2013. 

Teemusk & Mander (2007, 271–277) found that in the case of a moderate 

runoff, the substrate layer of the green roof retained phosphorus well, but 

in the event of the heavy rainstorm, phosphorus and phosphate were 

washed out. The results of the melting water of the green roof were 

intermediate.  

Ammonium nitrogen is positively charged and tends to be attracted to soil 

particles. Nitrate nitrogen is negatively charged and is repelled by 

negatively charged soil particles. Therefore, nitrate nitrogen is more 

subject to leaching than ammonium nitrogen during moderate rain events. 

But during heavy rainstorm and snow melting, ammonium can exceed 

nitrate in green roof runoff (Teemusk & Mander 2007, 271–277). Most 

nitrogen compounds shows up in the runoff in the forms of ammonium 

nitrogen and nitrate nitrogen. These inorganic forms of nitrogen are 

soluble and easily mobile in water (Hudak 2000, 37-47; Zawaideh & Zang 

1998, 107-115; Ward, Dekok, Levallois, Brender, Gulis, Nolan & Van 

Derslice 2005, 1607-161). Plants normally use nitrogen in only the 

ammonium and nitrate forms. 

It is expected that precipitation retention will be higher in summer months 

because evapotranspiration rates are higher and will allow sufficient time 

for the moisture content of the soil media to be reduced before the next 

rain event. However, as it can be perceived from the table 1 rain intensity 

was higher during both August months, that caused more runoff and 

washing out of nutrients . 

Likewise, one study observed a higher level of copper and nitrate 

concentrations in the summer months compared to fall and winter samples 
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(Van Seters, Rocha, Smith,  MacMillan 2009, 33–47 ). Neverthless, other 

studies have found more phosphorus leaching in snowmelt vs. rain event 

runoff (Gregoire & Clausen 2011, 963–969). 

Buffam, Mitchell & Durtsche (2016, 506–514). analyzed water chemistry 

from 88 green roof runoff samples, 86 traditional roof runoff samples, and 

61 precipitation samples. Results presented that inorganic nutrients, nitrate, 

and phosphate in green roof runoff were higher in the summer than any 

other season. It seemed that the green roof internal temperature dynamic 

plays a significant role in runoff quality. Microbial mineralization of nutrients-

rich organic matter in the substrate is expected to be a source of the main 

variation in nutrients concentrations as well. Furthermore, organic N added 

as fertilization had a direct and substantial role on the NO3
− leaching in one-

year operation.  

Hydrology trend is an important key for nutrients cycling within green roofs 

during a larger storm or melts events because hydrologic residence times 

is shortened once the system is saturated (Buffam & Mitchell 2015, 107-

137). In another study by Kuoppamäki, Marleena, Lehvävirta, Setälä 2016, 

1-9) in Lahti, the concentrations of both nutrients were lower in autumn than 

in summer in green roofs. 

6.3 The effect of time 

With regard to time and green roof age effect, most of the studies reported 

decreasing nutrients leaching over time (Czemil Berndtsson, Emilsson & 

Bengtsson 2006, 48-63; Razzaghmanesh, Beecham & Kazemi 2014, 651-

659; Speak, Rothwell, Lindley, & Smith 2014, 33-43). Köhler, Schmidt, 

Grimme, Laar, de AssuncãoPaiva & Tavares 2002, 382–391 found that 

green roofs retained 67% PO4 over three years. Teemusk & Mander (2011, 

3699–3713) realized the efficiency of phosphate retention increased from 

26% in the first year to 80% in the fourth year. Another study showed high 

nitrogen and phosphorus levels with a dramatic reduction in concentration 

over a few months in green roof runoff (Harper, Limmer, Showalter & Burken 

2015, 127-133 ). 
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However, there was not any apparent relation between the age of 

surveyed green roofs and the discharge of nutrients concentrations in 

present study. If we compare two highest intensity in August 2013 with 

two-fold rainfall and August 2014, green roofs perform better in retaining 

nutrients in August 2013. It is similar to Moran, Hunt & Jennings (2003, 1-

10) experiment results that despite decreased TN over time, TP and OP 

increased in runoff over time. Moran, Hunt & Jennings (2003, 1-10) 

believes it can be a result of saturation of soil microsites. When soils are 

saturated, the phosphorus anions, known as orthophosphate (OP) can 

become reduced and thereby released into the soil solution and can then 

drain out of the soil that is parallel in present experiments. Climates with 

frequent intense rainfalls, where evapotranspiration would be negligible, 

for instance in August more P and N leached from the media that remains 

saturated. Biochar decreased nutrient leaching because of its high absorb 

capacity of rainfall. Furthermore, based on green survey roofs aged 

between 1-6 years old in Helsinki by Kuoppamäki & Lehvävirta (2016, 39-

48) age characteristics did not have significance influence on nutrients 

leaching. 

Another possible reason for nutrients increasing is decomposition of OM 

and slow breakdown of nitrogen in the substrate from non-available forms 

to a more labile form (Czemil Berndtsson 2010, 351-360). 

The colder climate in Europe causes slower microbial decomposition than 

in the tropics, leading to much longer residence times of organic matter 

and nutrients retention (Verheijen, Jeffery, Bastos, van der Velde & Diafas 

2009). 

6.4 The effect of designed vegetation type and substrate layer 

Controlling nutrients leaching is challenging because it demands 

concurrent management of plant growth and nutrients discharge. In this 

study, the total cover of vegetation in all pre-grown green roofs was 99%, 

and their vegetation survived well over the experiment course, however, 

50% of plug plant vegetation did not survive over the winter. Biochar 
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amendment improved vegetation in both two types of green roofs 

treatment to a maximum of 10%. Grasses and herbs in green roofs 

suffered during the dry and hot conditions. However, vegetation in all 

treatments soon improved the following precipitation. 

Nitrogen fixation plants include the legume family – Fabaceae such 

as kudzu, clovers, soybeans, alfalfa, lupines, that have nodules in 

their root systems,  they producing nitrogen compounds that help the plant 

to grow. Once the plant is wilted, the fixed nitrogen is released to soil 

making it available to other plants that fertilize the soil as well. Some 

nitrogen fixing leguminous plants, such as Trifoliumrepens and Lotus 

corniculatus that were growing especially in present planted experimental 

green roofs, might explain the rising nitrogen concentrations in runoff 

during summer 2014 after a long antecedent period that affects on plants. 

In the present experiment, two types of designed vegetation behave 

differently in nutrients leaching in higher intensity of precipitation. 

Furthermore, no distinct relation observed for different vegetation type and 

nutrients concentration. However, pre-grown vegetated roofs decreased 

mass nutrients load than plug plants. The concentrations of TP in meadow 

mats runoff contained higher TP than sedum mats in Kuoppamäki, 

Marleena, Lehvävirta & Setälä (2016, 1-9) study in Lahti University 

campus. on the other hand, nutrients concentration in runoff were minor in 

autumn than in summer in another study (Kuoppamäki & Lehvävirta 2016, 

39-48). 

Morgan, Alyaseri & Retzlaff (2011,179-193) concluded that the media 

cause the change in water quality more than the vegetation type. Nitrate 

concentrations were higher in runoff from a sedum roof than herbaceous 

perennials, and in runoff from shallower substrates (Monterusso, Rowe, 

Rugh, & Russell 2004, 369–376). 

Numerous studies found a direct link between the release of nutrients and 

the application of fertilizers in the production process and maintenance of 

green roofs (Czemil Berndtsson., 2006; Rowe 2011, 2100-2110; Teemusk 

https://en.wikipedia.org/wiki/Legume
https://en.wikipedia.org/wiki/Fabaceae
https://en.wikipedia.org/wiki/Kudzu
https://en.wikipedia.org/wiki/Clover
https://en.wikipedia.org/wiki/Soybean
https://en.wikipedia.org/wiki/Alfalfa
https://en.wikipedia.org/wiki/Lupin
https://en.wikipedia.org/wiki/Root_nodule
https://en.wikipedia.org/wiki/Root
https://en.wikipedia.org/wiki/Soil
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& Mander 2007, 271–277; Emilsson, Berndtsson, Mattson, & Rolf 2007, 

260–271. Vijayaraghavan & Jushi 2012, 1337– 1345; Kok, Sidek, Chow, 

Abidin, Basri & Hayder 2015, 1-7; Moran, Hunt & Jennings (2003, 1-10); 

Czemil Berndtsson , Bengtsson & Jinno 2009, 369-380; Moran, Hunt, 

& Smith 2005, 1-12 ). For instance, leaching of nutrients increased when 

fertilizers were added conventionally to the substrate to achieve dense 

vegetation, but not for controlled release fertilizer (CRF) or a combination 

of CRF and conventional fertilizer and although the levels decreased over 

time (Emilsson, Berndtsson, Mattson, & Rolf 2007, 260–271). 

Green roof growing media are typically engineered to include nutrients to 

promote plant growth cause much higher levels of phosphorus, total 

Kjeldahl nitrogen (TKN)((Monterusso, Rowe, Rugh, & Russell 2004, 369–

376). Moran, Hunt & Jennings (2003, 1-10) used different quantity of 

compost: 5%, 15 %, and 30%. The nutrients concentrations of nitrogen 

and phosphorus species were significantly less in drainage from sand and 

soil media with 5% compost than soil media with 15% or 30% compost. 

The thick substrate has been found to released higher concentrations of 

phosphate and nitrogen than the thin substrate (Seidl, Gromaire, Saad & 

Gouvello 2013, 195-203), as a higher volume of the substrate can be 

expected to leach out more nutrients than lower volume. 

Application of a combination of P-rich material commonly leads to 

substrate with about equal quantities of N and P, despite 15- fold higher 

plant demand for N. A homogeneous mixture of organic substance and 

inorganic compound added to green roof substrate without taking soil 

horizons in to account caused washing of organic matter from the top soil. 

Different plant species have different requirements for nutrients that 

should be mentioned. (Buffam & Mitchell 2015, 107-137.) Therefore, if 

fertilizer amendment was more than the plants required, nutrients leaching 

would increase. 
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6-5 The effect of biochar 

In this experiment, biochar was not able to decrease nutrients 

concentration leaching in the first year. Even the concentration of total 

nutrients in the runoff from green roofs with biochar amendment were 

higher than the green roofs without biochar in some precipitation events. 

Therefore, it can be assumed that the excessive nutrients leaching 

originated from biochar. The performance of biochar fluctuated during the 

time, but it seems it started to retain nutrients after 9 months when the 

green roof became older. Furthermore, biochar reduced the concentration 

of nutrients leaching in higher rain intensity. Moreover, biochar reduced 

TN load more in the planted green roofs than in the pre-grown ones, 

however it is interaction with initial high N load in planted without biochar. 

Biochar positive effect on TP load decreasing was almost similar in 

planted and pre-grown green roofs. If the cumulative loading is assumed, 

biochar amendment in planted green roofs decreased 62% of TN and 78% 

of TP loading. Furthermore, biochar decreased 67% of TN loading and 

71.31% of TP loading in pregrown green roofs runoff. From table 2, it can 

be observed that pregrown and planted green roofs with biochar were 

more efficient in reducing TN and TP load respectively. Biochar reduced 

TN load more than TP in the highest intensity of rainfall. 

Pyrolysis circumstances (pressure, gas content, temperature, process 

method), feedstock features (composition, size, moisture amount and 

storage conditions) and production parameters describe biochar properties 

(Antal & Grønli 2003, 1619–1640).  

Preliminary feedstock selection influences the biochar characteristics, for 

instance as it can be seen from Table 3 (in appendices) manure 

feedstocks produces biochars with higher available nutrients, on the other 

hand, plant-based biochars contain lower nutrients. Greater N 

concentrations in biochars made of manure can be associated with the 

high protein content in the feedstock (Ippolito, Spokas, Novak, Lentz & 

Cantrell 2014, 137-162 ; Yao, Gao, Zhang, Inyang & Zimmerman 2012, 

1467–1471). 
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Table 2- Mass load of total nutrients in all green roofs treatments and non-

vegetated roofs since August 2013 to December 2014 

Types of the green 

roofs 

Cumulative load of 

TN(mg/m2) 

Cumulative load of 

TP(mg/m2) 

Non-vegetated 68.5379 2.926 

Planted 744.8511 15.76 

pre-grown 114.80 13.41 

Planted + biochar 175.9385 12.43 

pre-grown + biochar 77.52 9.5638 

 

Table 4 (in appendices) illuminates the effect of temperature, pyrolysis 

type or their interaction influence on nutrients availability in biochar. From 

the table, it shows that available P, K, Ca and Mg concentrations are 

greater in slow pyrolysis rather than fast pyrolysis. Increasing pyrolysis 

temperature cause a decrease indecomposable substances, volatile 

compounds and elements such as O, H, N, S and thus concentrates 

nutrients available in biochar( Ippolito, Spokas, Novak, Lentz & Cantrell 

2014, 137-162 ). It appears that total N content reached a maximum level 

between 300 to 399oC and decreased at greater temperatures (Table 4 in 

appendices). 

Nitrogen is sensitive to heat, so biochar that is produced in high 

temperature consists extremely low nitrogen content and decrease 

available nutrients for plants. Phosphorus exists among the organic 

carbon in plant tissue. Organic carbon starts evaporation at 100oc 

temperature while phosphorus volatilized at 800oc. So among pyrolysis 

process free carbon volatile and phosphorus in the plant tissue is release  

( Verheijen, Jeffery, Bastos, van der Velde & Diafas 2009).Thus, 
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phosphate leaching is seen in green roofs with biochar produced in lower 

temperature.  

Yao, Gao, Zhang, Inyang& Zimmerman (2012, 1467–1471) evaluated 

sugarcane bagasse, peanut hull, Brazilian pepperwood, and bamboo 

biochar that pyrolyzed at 300, 450 or 600 °C in a slow process, and a 

hydrochar to determine their potential to remove NO3
− from solution. It was 

found that biochars (bagasse, bamboo, peanut hull, and Brazilian 

pepperwood) which produced in 600 °C were able to remove between 

0.12% to 3.7% of NO3
− from a solution. Mizuta, Matsumoto, Hatate, 

Nishihara & Nakanishi (2004, 255–257) realized that bamboo biochar 

pyrolyzed at 900 °C could adsorb high NO3
−.  

Significant NO3
− adsorption happened at pyrolysis temperatures ≥700 °C 

in Kameyama, Miyamoto, Shiono & Shinogi (2012, 1131-1137) analyses 

for bagasse biochar made toward five pyrolysis temperatures (400–800 

°C). It is believed that adsorption of NO3
− might attribute to base functional 

groups because high pH observed at high pyrolysis temperatures. 

Therefore, a biochar with NO3
−  adsorption capacity should be pyrolysis at 

a temperature of 600 °C or above.  

Hardie, Oliver, Clothier,  Bound, Green & Close (2015) experienced 

fertilizer efficiency in the Huon Valley, Tasmania. They applied 47 Mg ha-1 

Acacia hardwood biochar on commercial apple (Malas domestic) orchard, 

a higher concentration of phosphorous in the leachate observed while 

having no significant effect on nitrate or potassium concentration in 

biochar application than the control. 

Kuoppamäki, Marleena, Lehvävirta & Setälä (2016, 1-9) tested two 

different biochar products performance in a laboratory experiment on pre-

grown green roofs with sedum mat produced in Sweden (product name 

Nordic Green Roof®Sedum matte), the origin of feedstock for both 

biochars were birch wood, but they were manufactured by the different 

company. Biochar (A) had been pyrolyzed in a continuous process at 380–

420°C for 2 h. Whereas biochar B was produced in a batch retort at 450°C 
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for a holding time of 23 h. Five replicates were performed for two biochars 

and the green roofs without biochar as a control. The laboratory results 

revealed that biochar A reduced TN and TP load by 24% and 27%, 

respectively. In contrast, biochar B increased TN and TP load by 5% and 

21%, respectively. 

Biochar can retain nutrients via several mechanisms including electrostatic 

adsorption and the retention of dissolved nutrients in the water; the 

biochar capacity depends on its large surface area and quantity of 

functional groups, porosity, and NO3
− adsorption capacity, age of biochar, 

the quantities of consumed biochar, the rate of N loading of the assumed 

ecosystem, soil type and hydraulic, precipitation circumstances, plant and 

microbial demand N (Clough , Condron , Kammann & Müller 2013, 275-

293). 

High surface area and microporosity of biochar are dominant for organic 

adsorbent. On the other hand, ion-exchange, electrostatic attraction, and 

precipitation are dominant mechanisms for the remediation of inorganic 

contaminants by biochar. Since the sorption of organic contaminants 

depends mainly on surface area and pore size, biochar in general shows 

greater sorption capacity for organic than inorganic contaminants. 

(Ahmad, Rajapaksha, Eun Lim, Zhang, Bolan, Mohan, Vithanage, Lee & 

Sik Ok 2014, 19–33. ) 

Another mechanism could be nitrification of nitrate. Besides that, the C/N 

ratio in soil affects mineralization and immobilization of nitrogen, 

as greater ration increase nitrogen immobilization. Since biochar effects on 

nitrate leaching may improve over time, further studies need to examine 

nitrate leaching and biochar effects in large scale over long durations as 

declining washing out of nutrients by biochar application was observed in 

the second year of this experimental study.  

 

Another probable reason for nutrients leaching by biochar is that the 

surface of  biochar is often negatively charged, which causes negatively 

charged ions to be repulsed, but depends on both the nutrients and the  
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biochar type (Yao, Gao, Zhang, Inyang & Zimmerman 2012, 1467–1471). 

Additionally, as mentioned before, nitrate and phosphate groups are 

negatively charged and they are hydrophilic ions, therefore they cannot 

compound with soil or negatively charged  biochar easily (Hudak, 2000; 

Zawaideh & Zang, 1998; Ward et al., 2005). Therefore, some 

consideration should be given to chemistry of nutrients and soil and the 

nutrients cycle in the ecosystem.  

 In Yao, Gao, Zhang, Inyang & Zimmerman (2012, 1467–1471) study 

contrary to higher zeta potentials of the raw sugar beet tailing  biochar 

than digested sugar beet tailing  biochar, both removed low phosphate 

from solution. And digested sugar showed highest phosphate removal. 

They realized that digested sugar contained MgO on the surface that 

absorb phosphate. the other metal elements (Ca, K, Fe, Zn, Cu, and Al) 

did not show significant absorbent of  biochar. Magnesium oxide is used 

for many purposes such as soil and groundwater remediation, water and 

wastewater treatment, air treatment, and waste treatment due to its acid 

buffering property and stabilizing dissolved heavy metals (Magnesium 

oxide 2016). 
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7  CONCLUSION 

 

According to the main goal, this study indicated that green roofs increased 

the amount of nitrogen and phosphorous in runoff which is the main 

concern about green roofs. It seems that lots of factors might contribute to 

nutrients leaching such as the roof materials, fertilizers, precipitation 

properties, soil properties and hydrology trend, internal temperature 

dynamic of green roof, seasonal variation, evapotranspiration rate, 

chemical properties of nutrients, plant species and different requirements 

of the plant for nutrients and atmospheric deposition. It seems the largest 

challenge is the negatively charged and hydrophilic features of nutrients 

and the washing out of nutrients.  

Furthermore, there was not any apparent relation between the age of 

surveyed green roofs and the nutrients concentrations in green roofs 

runoff.  

In terms of vegetation influence on nutrients leaching, no apparent relation 

was observed when comparing different vegetation types and nutrients 

concentration. However, it seemed that pre-grown vegetated discharged 

lower mass nutrients load than plug plants. 

As regards climate, extreme rain caused washing out of nutrients in the 

green this appears to be since the soil is saturated and less concentration 

of nutrients were released from a green roof in the freezing season.  

In the experiment, it seemed that biochar was not able to decrease 

nutrients concentration during the first year, but it started to reduce peak 

concentration and cumulative loading and nutrient discharging during the 

second year. On the other hand, the biochar that was used in this 

experiment might not have been of proper quality. The pyrolysis 

temperature, feedstock features, and production parameters should be 

mentioned more for biochar efficiency on nutrients retention. Hence, 

amending biochar has a positive effect, but it should be optimized, and 

more research is needed to optimum quantity and properties of biochar to 
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be applied and its actions in the longer term. Further study is suggested 

about possible positively charged additives to the biochar used in this 

study. 

Overall, it is impossible to control all the variables, but it is suggested that 

green roofs at least be constructed with suitable materials and that the 

substrate and fertilizers be well designed to avoid excessive runoff of 

nutrients and other pollutants in the process. Therefore, it is suggested 

that more holistic investigation of green roofs should be considered over a 

longer period to achieve more reliable conclusions about the mechanism 

of water runoff from green roofs. 
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APPENDICES 

Table 3- Average biochar available nutrient concentrations based on 

feedstock sources (dry weight basis)( Ippolito, Spokas, Novak, Lentz & 

Cantrell 2014, 137-162) 

source NO3 

(mg kg-) 

P K Ca 
Mg 

Com 0.85 806 11600 1280 1340 

Wheat/barely 1.05 596 14000 379 112 

Rice Straw/husk -------- -------- -------- 840 552 

Sorghum -------- 99.5 -------- -------- ------- 

Soybean stover -------- -------- -------- -------- ------- 

Peanut shell -------- -------- -------- -------- ------- 

Pecan shell -------- -------- -------- -------- ------- 

Hazelnut shell -------- -------- 899 270 28.0 

Switchgrass -------- -------- -------- -------- -------- 

Baggage -------- 76.0 -------- -------- -------- 

Coconut coir -------- -------- -------- --------- -------- 

Food waste -------- -------- 13300 5060 1090 

Other(grass, leaves, 

orange peel, other 

green wastes) 

0.92 307 8370 680 574 

Hardwoods 0.12 25.1 1620 652 116 
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Softwoods --------- 200 1020 684 103 

Papermill waste --------- -------- 117 20800 234 

Poultry manure/litter --------- 448 13800 5830 1280 

Turkey manure/litter --------- 1400 ---------- --------- -------- 

Swine manure --------- 225 ---------- --------- -------- 

Dairy manure --------- 240 13500 7940 3170 

Cattle manure --------- 320 ---------- --------- -------- 

Biosolids/Sewage 

Sludge 

--------- -------- --------- --------- -------- 

 

 

Table 4- Average biochar total nutrient concentration based on pyrolysis 

temperature, pyrolysis type and pyrolysis temperature by type (dry weight 

basis) (Ippolito, Spokas, Novak, Lentz & Cantrell.2014, 137-162) 

Pyrolysis 

temperature 

C(%) N(%) P 

(gkg-) 

K 

(gkg-) 

S 

(gkg-) 

Ca 

(gkg-) 

Mg 

(gkg-) 

Fe 

(gkg-) 

Cu 

(gkg-) 

<300 o 53.6 1.25 11.4 4.90 7.05 1.10 ------- 0.05 5.16 

300-399 57.1 1.99 13.7 21.1 14.0 39.1 7.07 2.49 330 

400-499 62.1 1.29 13.0 17.7 0.17 52.4 5.05 2.79 124 

500-599 63.2 1.15 11.8 14.9 2.00 49.9 6.93 2.19 105 

600-699 62.4 0.94 11.4 14.9 0.60 55.6 6.73 1.25 115 

700-799 63.7 1.50 42.9 54.0 6.57 46.8 18.8 4.32 545 
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>800 63.2 0.84 25.4 77.2 92.0 78.4 72.6 7.93 330 

Pyrolysis type 

Fast 56.2 0.74 14.8 53.2 0.33 

 

60.5 60.6 5.75 8.52 

Slow 60.2 1.44 15.4 20.8 8.97 47.8 8.65 2.67 294 

Pyrolysis temp×type 

Fast, 300-

499 

61.0 0.92 31.5 51.2 0.23 58.0 1.79 ------ ------- 

Fast, 500-

699 

51.1 0.72 0.30 3.40 0.37 3.70 1.50 1.40 17.0 

Fast, 700-

900 

59.1 0.34 3.39 105.5 ------- 92.8 120 7.93 -------

- 

Slow, <300  53.6 1.25 11.4 4.90 7.05 1.10 -------

- 

0.05 5.16 

Slow, 300-

399 

60.0 1.71 11.9 17.0 13.0 43.4 6.25 2.11 289 

Slow, 500-

699 

62.8 1.17 12.5 15.6 2.30 54.4 7.19 1.90 124 

Slow, 700-

900 

64.2 1.53 43.7 53.2 6.57 495 20.0 4.32 509 

 


