

Development of a front-end application using
AngularJS: 1UP Media company case

Dao, Vu

2016 Leppävaara
Laurea University of Applied Sciences
Leppävaara

 2

Development of a front-end application using AngularJS: 1UP Media
company case

 Vu Dao
 Degree Programme in BIT
 Bachelor’s Thesis
 December, 2016

 3

Laurea University of Applied Sciences Abstract
Leppävaara
Business Information Technology

Vu Dao

Development of a front-end application using AngularJS: 1UP Media
company case

Year 2016 Pages 48

In this era of a data driven economy, customer behaviour data can be decisive for a
business’s success as it allows optimisation to services and products. While big busi-
nesses can afford an investment on expensive system to gather customer data, small
and medium businesses find it difficult. Realising a potential market space, 1UP Me-
dia Oy commissioned Lumi platform, a cloud based platform that is modularised, af-
fordable and precise.

The thesis starts by introducing the company and the project background. Then the
thesis product with its objectives and requirements is described. The thesis frame-
work, waterfall model, is used for it's straight-forward in execution and manage-
ment. All concepts that the application is based on are explained, such as cloud
computing, client-server, front-end application, and application framework. Addition-
ally, it explains the design, implementation of the application and analyse testing
result.

The main objective of the product is an application that provides people counting
data to the user as well as enables the user to manage resources and access to the
data. Additionally, the application should be structured to allow extra data services
which potentially would be developed later either by 1UP Media or third-party devel-
opers. To fulfil the requirements, AngularJS, a modern framework, was used for its
Model-View-Controller architecture allows developer to separate an application busi-
ness logic and behaviour logic from its presentation. As long as the application is di-
vided into cohesive loose-coupled components which are carefully documented, new
services can be added with minimal effort.

The thesis product was integrated into the platform completing a pilot version of it,
which was deployed for the customers and further developed based on additional us-
er feedback. All the desired features and attributes were successfully delivered to
the user during the live testing process, including an extra component requested dur-
ing the testing period and quickly developed by the project team. These results act
as a proof for the success of the project and the practices used in the product devel-
opment. The application is prepared for expanding and modifying as more users in-
teract with it.

Web development, Application framework

 4

Table of contents

1	 Introduction ... 6	
1.1	 Company background .. 6	

1.2	 Lumi platform project ... 6	
1.2.1	 User ... 7	

1.2.2	 System design ... 7	
2	 Thesis product .. 8	

2.1	 Objectives ... 8	

2.2	 Requirements ... 9	
2.2.1	 Modularization .. 9	

2.2.2	 Component based architecture .. 10	
2.2.3	 Coupling ... 10	

2.2.4	 Cohesion .. 10	
3	 Theoretical framework ... 11	

4	 Knowledge base ... 13	

4.1	 Cloud computing & Software as a Service ... 13	
4.2	 Client-server model ... 13	

4.3	 Front-end driven application .. 14	
4.4	 Application framework ... 15	

5	 Design ... 16	
5.1	 System modelling .. 16	

5.2	 Routing modelling ... 17	

5.3	 Authentication modelling .. 19	
5.4	 Chart modelling .. 20	

6	 Implementation ... 20	
6.1	 Development team .. 21	

6.1.1	 Communication .. 21	
6.1.2	 Progress monitoring ... 23	

6.1.3	 Risk Management .. 23	
6.2	 Technologies ... 24	

6.2.1	 HTTP ... 24	

6.2.2	 HTML ... 25	
6.2.3	 CSS ... 25	

6.2.4	 JavaScript ... 25	
6.2.5	 AngularJS ... 25	

6.2.6	 ChartJS .. 28	
6.2.7	 Node.js .. 28	

6.3	 Development tools .. 28	

 5

6.3.1	 Atom ... 29	

6.3.2	 Git .. 29	

6.3.3	 Yeoman & Grunt ... 30	
6.3.4	 ngDoc .. 31	

6.3.5	 Azure Web App Service ... 32	
6.4	 Directory structure .. 34	

6.5	 Routing component ... 37	
6.6	 Authentication component ... 38	

6.7	 Chart component .. 38	

6.8	 Build and deployment process ... 39	
6.9	 Documentation ... 40	

7	 Testing .. 41	
7.1	 Development testing .. 42	

7.2	 User testing .. 43	
7.3	 User feedback .. 43	

8	 Maintenance ... 44	

9	 Conclusion .. 44	
References ... 45	

Figures .. 47	

 6

1 Introduction

In recent years, web applications have seen enormous changes with new trends and best

practices emerged. One of them is the tendency to move increasingly application logic and

interaction to the client web browser (client), leading to the client-side application getting

bigger, so is the need for libraries and frameworks to enable developers to build them fast

and highly performant. Among modern front-end frameworks, AngularJS appears as a popular

choice. Therefore, when 1UP Media OY, the company I am currently working for, started a

project to create a cloud-based B2B service platform, AngularJS was chosen as the framework

for the modern web application.

This paper covers the process of creating a front-end web application using AngularJS frame-

work. It comprises of nine sections. In the first section I describe the basics of the project

including the company background and project background. The thesis product and its objec-

tives and requirements are introduced in the second section. The third section covers the

theoretical framework used in the project. The fourth section, knowledge base, explains nec-

essary terms and concepts for understanding the content of the paper. The fifth and six sec-

tion discusses the design and the actual implementation of the application. After that, testing

and maintenance process is covered before conclusion section wraps up the paper.

1.1 Company background

1Up Media OY is a private start-up company that operates in business to business software as

a service area. The company has a small and young development team. The combination of a

young energetic team and a fast-moving, hard-contested industry makes for a comfortable

but challenging environment. Currently the company’s main project is Lumi, a cloud based

platform to collect and provide critical business data to industrial customers.

1.2 Lumi platform project

Lumi is a platform that connects different hardware devices and software applications to col-

lect, display data and provide valuable insight for a smart urban living environment. Lumi

consists of several modules – a combination of hardware and software focus on collecting, and

displaying a particular type of data. For the prototype project the focus is on the people

counting module.

 7

1.2.1 User

The platform targets small and medium businesses which interest in a multi-services platform

including people counting. The reason is that 1UP Media is a small company and needs to

build its customer base, also the company market research shows that there is insufficient

supply in that area. Besides, starting with small and medium businesses in Helsinki region like

libraries, museums and transport companies make it easier for us to handle infrastructure

demand and improve our product with steady pace.

End users can view counting data and manage resources involved, such as hardware devices

and staff members. Hardware supply companies and 1UP Media are administrator users, to

supply the service to end users and monitor it.

1.2.2 System design

Hardware devices include mini computers, IP cameras and Internet modem, all of which will

be handled by the hardware supply companies and the users. Software applications are divid-

ed into data collection software running in the mini computers, a back-end API running on a

cloud server and a front-end application running on the user’s browser.

Figure 1-1: System model of Lumi people counting

 8

Data collection software are responsible for collecting and sending counting data. There are 3

local client applications. The first application identifies, counts people, and tracks their di-

rections. Another application running simultaneously oversees sending the collected data to

the back-end API. Also, settings of a mini computer can be configured using a web-based ap-

plication accessible in a local secured network.

The back-end API handles HTTP requests, executes additional business logic and interacts

with the database service to add, edit, or get necessary data. Front-end application provides

an interface for user to view data regarding their group, account, locations, devices, and

people counting data. It also provides the user an interface to add and edit resources.

2 Thesis product

My responsibility in the project is to develop the front-end application for Lumi people count-

ing platform. The main task is to design, develop all functionalities required for the applica-

tion to interact with users and the back-end API, build, deploy the application, as well as cre-

ate test cases and document the architecture and features.

2.1 Objectives

For functional requirements, the application includes the following features:

• Authentication: User must log in to access services provided by the application. User

authentication is mandatory when making HTTP requests to protected path of the

back-end API. Also, authentication should be stored in the browser’s window for con-

venience.

• People counting chart: Authenticated user should be able to view people counting da-

ta collected by devices under their control. Those data should be presented in reada-

ble format such as chart and can be filtered by several metrics such as time or loca-

tion, per user’s needs.

• Control panel: User should be able to view, add and edit resources such as compa-

nies, locations, devices, and users. Resources should only be available within compa-

nies and for their parent companies. Resources should be updated and show to user

immediately after new information is submitted and validated.

• Bug report: User should be able to submit bug report using a bug report form.

These features should be available for a pilot user based in Helsinki

 9

2.2 Requirements

Per Sommerville et al., functional and performant, maintainable, dependable, and usable are

desirable attributes in good software (Sommerville 2011). However, this paper will focus on

extensibility, an important quality for a growing project with changing requirements like Lu-

mi.

Extensibility is the ability of a system that allows new functionality to be added with minimal

or no effects on its internal structure and data flow. There are three most important qualities

of an extensible software system: modifiability, maintainability, and scalability.

• Modifiability as defined by Bass et al. is determined by how functionality is divided

architecturally and by how coding techniques are applied within the code. A system is

modifiable when a change involves the least number of changes to the least number

of possible elements (Bass et al. 2003). According to Johansson, this means striving

towards high cohesion and low coupling within the code.

• Maintainability as defined by Sommerville is to design a system to allow for the addi-

tion of new requirements without risk of adding new errors (Sommerville 2011). Per

Johansson, this also requires the code to have high cohesion and low coupling.

• Scalability as defined by Bondi, is “the ability of a system to expand in a chosen di-

mension without major modifications to its architecture” (Bondi 2000). A scalable sys-

tem can handle higher data load with minimal effect on performance. (Johansson &

Löfgren 2009)

As seen above, the definitions of modifiability and maintainability imply the importance of

the following four software quality attributes: modularization, component based architec-

ture, coupling, and cohesion.

2.2.1 Modularization

Modularization is a technique that emphasizes separating a software system into multiple dis-

tinct and independent modules, which can independently execute one or many tasks. These

modules may work as basic constructs for the entire software. Modules should be designed

with separated concerns so that they can be developed and/or compiled separately and inde-

pendently.

Advantages of modularization include improved maintainability, functionality based software

modules, desired level of abstraction, high cohesion, reusability, and enhanced security

(Tutorials Point 2016)

 10

2.2.2 Component based architecture

Component based architecture is a software architecture where the application is separated

into many objects called components. A component is a software object which handles a cer-

tain functionality or a set of functionalities. It should be created to interacts with other com-

ponents and to be reused in the application. Components are loosely coupled and independ-

ent unit whose implementation are isolated from their interface, which means one implemen-

tation can be replaced without affecting other parts of the system. Component based archi-

tecture is an important software development approach since software are becoming larger

and more complex, thus creating demand for high reusability. (Sommerville 2011)

2.2.3 Coupling

Coupling is how much one component implementation depends on that of another compo-

nent; in simple words, how much it knows about the execution of the other component. Usu-

ally, coupling is in contrast of cohesion, as a software component should aim to achieve loose

coupling and high cohesion. The act of making a tightly coupled component looser is called

decoupling.

Loose coupling is a method of reducing the dependency between the components in a system

while tight coupling is where components depend on one another to the extent that it is obli-

gated when changing one component to change other components depending on it.

A good example of tight coupling is iPods as they are tightly coupled because their battery is

soldered fixed to the device that once the battery dies, replacing new battery is very expen-

sive. A loosely coupled player would allow the battery to be changed effortlessly.

When the components are loosely coupled, developer can create separate implementations

for different problem areas. With separate implementation, a component can be changed as

much as desired without breaking some bigger process that is using it. Furthermore, when

components can be independently changed, they can be developed independently and even

deployed separately. (Skrchevski 2015)

2.2.4 Cohesion

Cohesion in software engineering is the degree to which the elements of a certain module,

class or component connected to each other to perform the task required of their container.

A module with high cohesion has its functions and properties strongly related functionally.

 11

Therefore, it reduces the complexity of the module as well as increases its maintainability

and reusability.

There are several types of cohesion commonly found and here is the description of some of

them:

• Coincidental cohesion: This type indicates low cohesion. Coincidental cohesion is

when parts of a module are grouped without a clear meaningful relationship between

them. An example of this in Angular could be a Utility service where functions and

properties are completely independent of each other.

• Sequential cohesion: Sequential cohesion is when parts of a module are grouped be-

cause the output from one part is the input to another part. The source code normal-

ly can be followed from top to bottom which shows good level of coupling and main-

tainability.

• Functional cohesion: This type indicates high level of cohesion. A module achieves

functional cohesion when its elements are grouped because they all supplement a

single comprehensive task of the module (Skrchevski 2015)

3 Theoretical framework

This section describes the theoretical frameworks applied in this paper. It serves as a guide-

line to approach the goals and objectives of the project so that a solution can be developed.

The process of creating Lumi front-end application includes developing a software product.

This creates the need for a theoretical framework focusing on the development process of a

software, thus validating the choice of using waterfall model.

The waterfall model is an example of a plan-driven process where plan and schedule of the

process activities are created before implemented. The fundamental development activities

of the waterfall model are reflected in its main stages:

 12

Figure 3-1: Main stages of the waterfall model

• Requirements analysis and definition: Consultation with system users helps establish-

ing the system’s services, constraints, and goals. They are then defined in detail and

serve as a system specification.

• System and software design: The systems design process allocates the requirements

to either hardware or software systems by establishing an overall system architec-

ture. Software design involves identifying and describing the fundamental software

system abstractions and their relationships.

• Implementation: During this stage, the software components are implemented based

on the design.

• Testing: Unit testing is used to verify that each unit follows its specification. Next,

the individual modules and components are integrated and tested as a complete

software to ensure that the requirements have been fulfilled. After testing, the soft-

ware system is delivered to the customer.

• Operation and maintenance: Usually, this is the longest life cycle phase. The opera-

tion process is where the system is installed and put into practical use. During

maintenance, new errors are discovered and corrected, enhancing the implementa-

tion of system units, and improving the system’s services.

In principle, the result of each phase should be approved in one or more documents. The fol-

lowing phase should not start until the previous phase has finished. In practice, as the devel-

opment follow its phases and the team understand more about the product, changes are ra-

ther inevitable. For example, during design, problems with requirements are identified or

during coding, design problems are found. Feedback from one phase to another happens fre-

 13

quently, so the software process is not a simple linear model. Changes then must be reflected

in documents produced in each phase.

Main benefits of the waterfall model are consistency and familiarity. Many other engineering

process and projects follow waterfall model or a variant of it. Since it is easier to use a com-

mon management model for the whole project, software processes based on the waterfall

model are still commonly used. Also, documentation is produced at each phase making the

process visible so managers can monitor progress against the development plan. (Sommerville

2011)

4 Knowledge base

In this section, all concepts, and theories the application is based on are explained. These

include overall system model like cloud computing and Software as a Service, client-server

model, or high-level architectures like front-end driven application and application frame-

work.

4.1 Cloud computing & Software as a Service

Cloud computing is a model to deliver computing resources conveniently on-demand of the

customer. The resources can be continuously developed and released with minimal service

provider interaction or management effort.

Software as a Service (SaaS) is a service model for cloud computing where the applications

are accessible from various client devices. The consumer is not in charge of managing or con-

trolling the underlying cloud infrastructure including but not limited to network, servers, op-

erating systems, and storage (Mell & Grance 2011). SaaS model has many benefits such as re-

ducing cost and time of prototyping, manageable scaling in spending and resource usage and

being more accessible.

4.2 Client-server model

Client – server is a communication method between two remote applications. The client-side

application can be called a front-end application which communicates by making requests to

the server-side application. The server-side application can use a back-end API to handle its

requests. Figure demonstrates how this model works

 14

Figure 4-1: Client-server model

The front-end application usually provides the view and interface to the user. It controls what

the user can see and how they can interact with the system. The back-end API mainly handles

calculations, business logic, database interactions, and performance. (Jewett 2015)

4.3 Front-end driven application

In the past, websites were just static documents created with HTML. However, as the demand

for reliable ways to create dynamic content and complex UI increases, application logic in

website gets increasingly complex, creating the concept “front-end driven application”. A

front-end driven application is understood to have a “thick client” architecture pattern which

typically provides rich functionality independent of the back-end of the program (Halpern

2016). Front-end Driven Applications run on the client first from static files such as HTML,

CSS, JavaScript and rely on HTTP requests to connect to independent, third party back-end

services such as data storage, file storage, search, user management, emailing, and payments

that can’t occur on the client alone (Lindley 2014).

 15

Figure 4-2: Compare thin client and thick client architecture

The primary difference between front-end driven application and traditional web app is that

in a traditional web app, the server is accountable for fetching data and compiling it into

HTML which is served as the view to users, while in a front-end driven application the browser

is responsible for doing so (Staticapps.org 2016).

4.4 Application framework

A framework can be defined as an abstract design comprised of framework objects. It acts as

“a skeleton, or scaffolding, that determines how framework objects relate to each other”. A

framework contains abstract and concrete class implementations that are reusable. The ap-

plication classes use or inherit the implementation of framework objects and architecture,

then customize them with detail implementations. In this way, the application becomes “ex-

tensions of the application framework”.

Using application frameworks benefits the application in many aspects. Design and code reuse

are the primary technical advantages. Additionally, the framework localised key design and

implementation decisions, making the system easier to maintain. The primary business ad-

vantages of application frameworks are higher developer productivity and shorter develop-

ment and deployment time. Also, since application frameworks are highly matured, applica-

tions tend to be less buggy and tend to have a similar structure, as they share the same

framework and therefore has the same architecture and similar implementations. (Riehle

2000)

 16

5 Design

In the design phase of the development process, an abstract representation of how the appli-

cation works is created. It starts with an overall architecture of the system with all compo-

nents and their interconnection. Then the detail specification of each component is de-

scribed. This includes all objects required in the component and how they combined to ac-

quire and transform data resources into corresponding output.

5.1 System modelling

System modelling is the process of developing abstract models of a system, with each model

presenting a different view or perspective of that system. A model serves as a blueprint of a

system, ensures that the business functionality is completed and correct, user’s need is ful-

filled, and program design meets software quality standards before the implementation,

therefore reducing changes later in development process. In general, a graphical notation

such as UML is selected as a method of representing the system. The UML defines thirteen

types of diagrams to support many different types of system model, divided into three cate-

gories:

• Structure Diagrams represent static application structure including the Class Diagram,

Object Diagram, Component Diagram, Composite Structure Diagram, Package Dia-

gram, and Deployment Diagram.

• Behaviour Diagrams represent general types of behaviour including the Use Case Dia-

gram (used by some methodologies during requirements gathering); Activity Diagram,

and State Machine Diagram.

• Interaction Diagrams represent different aspects of interactions including the Se-

quence Diagram, Communication Diagram, Timing Diagram, and Interaction Overview

Diagram. (Object Management Group 2005)

Use case modelling is commonly used to support requirements analysis. A use case model de-

scribes different scenarios when user interacts with the system. Each use case represents a

discrete task that involves external interaction with a system. Figure below shows the use

case model from the Lumi web UI application that represents all main tasks of the system in-

cluding login, logout, view chart data, add, view and edit services. (Sommerville 2011)

 17

Figure 5-1: Different use cases of Lumi front-end application

There are two actors in the use case: the back-end API that handles data request and the us-

er. From this model, Lumi front-end application should be divided into authentication, chart

component, add a service component and view and edit service component. In addition, there

should be a component to handle routing. The structure of the project folder can be derived

from this use case model.

5.2 Routing modelling

For the navigation system, I use UI-Router, a third party angular component that allows for

advanced navigation features of a single page application, which fit Lumi web UI application’s

potential for scaling. UI-Router organises the navigation system into states, which are setup

 18

before the application starts running and being rendered to view as the user navigating. A UI-

Router state usually correlates to a view section with its UI and navigation which contains a

feature of the application. Every state is an object with properties defining the functionality

of the application when that state is active. The main properties of each states are:

• ‘name’: A name for the state, which can be used to refer to that state

• ‘URL’: The URL of the browser when the application should navigate to that state

• ‘views’: How the UI will look and behave

o ‘template’: The html file defines how the view looks

o ‘controller’: The AngularJS controller file controls behaviour of the view

A UI-Router state can have nested states and nested views. All states of the application and

their nested states form a state tree. Nested states views are often rendered inside its par-

ent’s view, these are nested views. (AngularUI 2016)

UI-Router’s approach of using a state tree splits the application into a hierarchy of functional-

ity. The tree defines the application’s functionality structure. The URL and views are presen-

tation and control of the active state. This improves maintainability and scalability for Lumi

web UI application. Below is the state tree of the application using UML state diagram

Figure 5-2: State diagram of Lumi front-end application

When user wants to transition to the Main state, the application checks their authentication

token and only makes the transition if they are authenticated, otherwise the user is navigated

to Login state. Because the user should not be able to navigate to any content pages without

authentication, all content pages are child states of the main state which only accessible with

user authentication. This ensures any future states added in similar fashion will be protected

by the same authentication system.

 19

5.3 Authentication modelling

As authentication in web application is a common feature, there are many examples and tuto-

rials related to the issue. After researching and benchmarking, I decided Lumi front-end ap-

plication should use a token based authentication. A token is a piece of data that inherently

has no meaning, but when used alongside the correct tokenization system, help securing ac-

cess to an application. Below is a diagram describing the token-based authentication system

Figure 5-3: Sequence diagram describes token-based authentication

Token based authentication works by ensuring that each request to a server is accompanied

by a signed token which the server verifies for authenticity and only then responds to the re-

quest. Token is retrieved after the user log in and saved in either cookies, local storage, or

session storage of the browser. For Lumi, I chose to save the authentication token in cookies

using AngularJS $cookies module. The token then is sent to the back-end API on each request

and must either be removed when the user logs out or closes the browser window or expire

after a certain period. (Pose 2014)

 20

5.4 Chart modelling

Lumi people counting chart receives an array of raw counting data for a set of devices within

a time range and filter them by a time unit. The process of creating a chart is described in

the sequence diagram below

Figure 5-4: Sequence diagram describes the process to create a chart

When a chart is created, first it creates its labels – an array of time interval based on the

time unit provided and its empty data – an array of the same length as labels, but empty.

Then it makes a request to the back-end API for people counting data. The back-end API re-

turns “rawData” – an array of people counting records. Each record is an object containing id

of the device that recorded it, timestamp of when the device detected a person, and other

information. The application then finds the label that record resides and adds the record to

the data array. After filtering all items in “rawData” array, a new chart is created.

6 Implementation

The implementation phase is the duration where the actual product is created. This process

makes use of the models created in the design phase by using optimal languages, libraries,

and development tools to realise the design of every components in the software. Individual

components are integrated into the completed application, built, and deployed.

 21

6.1 Development team

The development team consists of 2 back-end developers, a graphic designer and me as front-

end developer. All developers have previous experiences working with common technologies,

tools, and practices. This allows the team to collaborate with ease. Another advantage the

team has is that all developers are familiar with JavaScript and NodeJS, so choosing those

technologies for the project is a straight-forward decision.

When it comes to management, communication and progress monitoring are our main focus-

es. Effective communication plays vital role in the success of a project. It bridges gaps be-

tween client and the organization, among the team members as well as other stake holders in

the project such as hardware suppliers. Monitoring Lumi web app project in general includes

reviewing and tracking project progress. Changes from the original plan are identified and

managed to keep the project within scope, on time, and within budget.

6.1.1 Communication

Slack is used for internal communication between the project team and the project manager.

Slack is a messaging application for teams with helpful features for collaboration such as pri-

vate channels and file-sharing. Slack provides a centralized place to communicate internally

through instant messages and in chat rooms, which can reduce the time team members must

spend on e-mail. Being able to use all features from mobile devices also increases members’

availability.

 22

Figure 6-1: User interface of Slack

Bitrix24 is a project management tool our team used to follow schedule and report their pro-

gress. Bitrix24 improves efficiency both personally and collaboratively by providing compre-

hensive organizational features. Tasks can be defined to team members, or delegated after

being received. Project management features of the product are imbedded in the ‘groups’.

Time spent working on any given project task can be reported, and tasks are integrated into

the group calendar so managers can monitor the progress on a regular basis. (Bitrix24 2016)

 23

Figure 6-2: Bitrix24 tasks management interface

6.1.2 Progress monitoring

We use several methods of monitoring the progress to check whether tasks are completed per

the original schedule and make iterations to the schedule accordingly.

• Activity Monitoring: All activities scheduled within some task can be monitored on

day-to-day basis. When all activities in a task are completed, it is considered as com-

plete.

• Status Reports: The reports contain status of activities and tasks completed within a

given period, generally a week. Status can be marked as finished, pending or work-in-

progress etc.

• Milestones Checklist: Lumi development process is divided into multiple phases where

major tasks are performed. A milestone checklist of objectives and team members

mark the end of these phases can report their status.

6.1.3 Risk Management

During risk management process, the team identify, analyse, and prepare solutions for possi-

ble risks in the project. A successful project normally includes evaluating potential problems

in the plan and developing strategies to address them.

Because the project deadline is aggressive, the risk of requirement change or misinterpreting

requirement is quite substantial. Among all features, those that are common for several exist-

 24

ing applications which implementation can be reused such as user authentication and naviga-

tion pose smaller risks. Other features unique for Lumi web application which for the large

part must be designed and built by the development team are more vulnerable to changes,

therefore more time should be reserved.

There is also a risk of under-estimation of required time and resources. Although I have expe-

riences with the technologies used in the project, I am not used to the scale and complexity

of this application, so details have a potential to be left out.

6.2 Technologies

To implement all designs model of the components, many web technologies were used. These

includes HTTP to get and post data; HTML, CSS, and JavaScript as standard language for web

browsers; AngularJS and ChartJS as frameworks and libraries to help with development; and

finally, Node.js to create a server for the application.

6.2.1 HTTP

The HTTP protocol is a request/response protocol for distributed information systems. A cli-

ent establishes a connection to the server before sending a request in the form of a request

method, URL, and protocol version, followed by a message containing request modifiers, cli-

ent information, and possible body content. The server then sends a respond containing a sta-

tus line, including the message's protocol version and a success or error code, followed by a

message with server information, entity meta-information, and potential entity-body content.

The set of common methods for HTTP are: GET, POST, PUT and DELETE. However, the most

used methods are GET and POST, which are explained below

The GET method is used to retrieve the information identified by the requested URL. A GET

request can include more information about the request in its header like path, query, data

type, etc. The POST method is used to send an enclosed data to the origin server at the re-

source identified by the requested URL. POST is designed to allow a uniform method to

• Post a message to a bulletin board, newsgroup, mailing list, or similar group of arti-

cles

• Providing a block of data, such as submitted data from a form, to a data-handling

process

• Extending a database through an append operation.

 25

However, the server usually determined the actual function performed by the POST (Fielding

1999)

6.2.2 HTML

HTML is a mark-up language for describing web documents. HTML documents include a tree of

elements and text. In the source, a start tag, such as "<body>", and an end tag, such as

"</body>" indicates an element. Certain start tags and end tags can in certain cases be omit-

ted and are implied by other tags. Attributes can be added to elements to specify their pre-

cise implementation. This mark-up text can be parsed by a browser into a DOM (Document

Object Model) tree, which is a representation of the document which is stored in the

memory. Each element in the DOM tree is represented by an object, and these objects can be

controlled through their API using scripts embedded in the document. Scripts (typically in Ja-

vaScript) are small programs that can be embedded using the script element or using event

handler content attributes. (Faulkner et al. 2016)

6.2.3 CSS

CSS (Cascading Style Sheets) is the language for describing the rendering of structured docu-

ments such as HTML and XML, including colours, layout, and fonts. A CSS document is a series

of qualified rules consisting of usually style rules that apply CSS properties to HTML elements,

specifying their presentation styles, and at-rules that define special processing rules or values

for the CSS document. (Atkins & Sapin 2014)

6.2.4 JavaScript

JavaScript is a high-level programming language commonly used as a Web technology. JavaS-

cript is part of the triad of fundamental technologies for web development: HTML to specify

the content of web pages, CSS to specify the presentation of web pages, and JavaScript to

specify the behaviour of web pages. With JavaScript being able to run on all modern browsers

without the need for plug-ins or compilation, it is used in an overwhelming majority of mod-

ern websites, and all modern web browsers such as on desktops, game consoles, tablets, and

smart phones. (Flanagan 2011)

6.2.5 AngularJS

AngularJS is a JavaScript MVC framework for making front-end web applications. MVC (Model –

View – Controller) is an architectural design pattern that aims to improve application organi-

zation by enforcing the isolation of business data (Models) from user interfaces (Views), with

 26

a third component (Controllers) traditionally managing logic and user-input. By separating

application logic from the user interface, MVC frameworks increase thee reusability of their

data and logic for other interfaces in the application.

Figure 6-3: Model - View - Controller pattern

• Model: A Model manages data and logic of the application. An MVC application can af-

fect its model using Controllers. When a model changed, it would inform its observ-

ers.

• View: A View is a visual representation of its Model that represented the current state

of a Model. The Observer pattern allows the View to know whenever the Model was

updated or modified. AngularJS applications contains HTML templates which can be

loaded and transformed, and rendered as the view. AngularJS directives extend

HTML's syntax to express application's components clearly and succinctly.

• Controller: Controllers role is handling user interaction (such as key-presses and

mouse clicks), making decisions for the View. Controllers are responsible for two

tasks: update the view when the model changes and update the model when the user

manipulates the view.

• Directive: In general, directives are markers on a DOM element (such as an attribute,

element name, comment, or CSS class) that attaches a behaviour, often defined in a

controller, to that DOM element using AngularJS's HTML compiler. Directives can also

be used to handle DOM transformation of the element and its children.

• Service: In AngularJS world, the services are singleton objects or functions that carry

out specific tasks. It holds some business logic that can be shared across the applica-

tion. A controller or directive can be injected with any services. AngularJS manages

these service objects. (Osmani 2015)

 27

According to (Lau 2013), Angular offers an application several benefits including:

• Using directives, HTML can include new elements and syntax (for exam-

ple <tab></tab>, <calendar></calendar>, <dropdown></dropdown>) without the de-

velopers manually manipulating the DOM. All the application needs to do is to assign

attributes to elements to implement new functionalities. DOM manipulation is dele-

gated to directives, which in turn allows the application to only concern with updat-

ing the view with new data. The directives will handle the subsequent behaviour logic

of the view.

• With Angular taking care of high level architecture such as MVC model, developer can

focus on the core logic of the application. The view is defined using HTML, which is

more concise. Angular data-binding takes care of adding data to the view so it does

not need to be done manually. Since directives are separate from the application

code, multiple teams can work on them simultaneously with minimal integration is-

sues.

• In traditional web applications, the view modifies the DOM to present data and ma-

nipulates the DOM to add behaviour. Using Angular, DOM manipulation code is navi-

gated into directives. Angular sees the view as just another HTML page with place-

holders for data. This way of looking at the view help user interface designers tre-

mendously. User interface designers can focus on the view without distractions from

DOM manipulations and application logic. Development process is streamlined by

making application purely about presenting business data into views.

• Angular is unit testing ready. Angular links dependencies from different components

together by Dependency Injection (DI). Because all controllers depend on DI to pass it

information, Angular application can carry out unit testing by injecting mock data in-

to the controller and measuring the output and behaviour. In addition, fake server re-

sponses into controllers can be handled using an Angular mock HTTP.

For those reasons, AngularJS has gained significant popularity in the web developing commu-

nity and is one of the most popular front-end frameworks, creating an active community

where I can find solutions for issues I faced during the development.

 28

Figure 6-4: Interest in search term "AngularJS" over time

6.2.6 ChartJS

To help user gaining meaningful insight into the people counting data collected, I decided to

display the data in charts. Since creating charts and graphs for web pages and front-end ap-

plications is a common requirement, many open source third party libraries are developed

and actively maintained. After making sufficient research on JavaScript chart libraries, I

chose Chart.js as my chart library for the following reasons

• Chart.js supports creating many types of chart including line chart, bar chart and pie

chart.

• Chart.js uses HTML5 canvas which is highly performant across all modern browsers.

• Charts created are responsive and change size when the browser resizes.

• The API is very versatile, well documented, and highly customisable.

• Angular-chart is an Angular component using Chart.js making it easier for Angular de-

veloper to implement Chart.js in their app.

6.2.7 Node.js

Node.js is a JavaScript runtime environment that is used to develop and run various types of

applications (Node.js Foundation 2016). Node.js is commonly used to create Web servers and

networking tools with the support of many modules. Lumi front-end application uses Node.js

to create a web server since deploying with Node.js using Azure Web App Service is our

choice for deployment. Further information about Azure Web App Service and how it is used

is provided in “Development tools” section.

6.3 Development tools

In this section, all programs, tools, and services that were used in development process of

Lumi front-end application are described. Atom is used as our preferred text editor; Git is

 29

used as our version control system; Grunt and Yeoman are our choice for automatic task run-

ner and scaffolder tools; ngDoc was used to generate documentation of the source code; and

Azure Web App Service was selected as deployment hosting service.

6.3.1 Atom

Atom is a text editor fitting for web development. It has several benefits such as being free,

customisable with built in package manager, multiple panes, and a file system browser.

(GitHub 2016)

Figure 6-5: Atom user interface

6.3.2 Git

Git is a widely-used version control system, which helps a software team manage changes to

source code over time. Git keeps track of every modification to the code by each contributor

in a special kind of database. In Git, every developer's working copy of the code is also a re-

pository that can contain the full history of all changes. (Atlassian 2016)

Developing software without using Git is risky, because it provides the developer with back-

ups of different development versions. Git can also enable developers to move faster and it

allows software teams to preserve efficiency and agility as the team scales to include more

developers. Git has many features to help with development process:

 30

• A complete long-term change history of every file: Having the complete history ena-

bles going back to previous versions to help in root cause analysis for bugs and it is

crucial when needing to fix problems in older versions of software.

• Branching and merging: Having team members working concurrently is the main bene-

fit. Creating a “branch” in Git keeps multiple streams of work independent from each

other while also providing the facility to merge that work back together, enabling de-

velopers to verify that the changes on each branch do not conflict.

• Traceability: Being able to trace each change made to the software and being able to

annotate each change with a message describing the purpose and intent of the

change can help with reading the code and understanding the code and therefore en-

able developers to make correct changes.

• Faster release cycle: The ultimate result is a faster release cycle. These capabilities

facilitate an agile workflow where developers are encouraged to share smaller chang-

es more frequently. In turn, changes can get pushed down the deployment pipeline

which makes Git work very well with continuous integration and continuous delivery

environments.

• Community: In many circles, Git has come to be the expected version control system

for new projects. If the team is using Git, odds are new developers do not have to be

trained on workflow, because they’ll already be familiar with distributed develop-

ment. (Atlassian 2016)

6.3.3 Yeoman & Grunt

Yeoman is a scaffolding tool which helps kick-starting new projects, prescribing best practices

and tools to configure an effective build process and pull relevant dependencies needed.

Yeoman can be used by running a generator, which is basically a plugin, in the terminal with

the ‘yo’ command to scaffold complete projects or useful parts. The Yeoman workflow in-

cludes three types of tools for enhancing convenience and effectiveness of a web application

development process: ‘yo’ is the tool for scaffolding; Gulp or Grunt can be chosen as building

tool and ‘npm’ or ‘bower’ as package manager.

The Package Manager is used for dependency management, so that developers can use third-

party code to streamline the development process. npm and Bower are two popular options.

The Build System is used to build, preview and test the project. Grunt, alongside Gulp, is a

popular option. Grunt ecosystem consists of many plugins to automate different tasks needed

to preview the code during the development process, test the code with various situations as

well as build a project from development to production.

 31

With its generators, Yeoman creates a “client-side stack” which comprises of “tools and

frameworks that can help developers quickly build web applications”. For example, with the

yeoman angular generator, instead of manually installing every plugins and tools and setting

up at the start of every project, ‘yo angular’ command can be run and Yeoman will take care

of providing everything needed for developing, building and testing applications. Yeoman an-

gular also includes support for linting, minification and much more, so applications can be

well documented and optimized. (The Yeoman Team 2016)

In particular, the build tool Grunt automates many common tasks that are a part of many pro-

jects. The less attention must be spent on performing repetitive tasks like minification, com-

pilation or unit testing, the easier it is for me to focus on developing the product. After a

Grunt file is configured, a task runner can do most of such mundane works with minimal ef-

fort. (2016)

6.3.4 ngDoc

ngDoc is an API documentation generator for AngularJS, based on another documentation

generator for JavaScript called JsDoC. ngDoc has a purpose of documenting the API of a Ja-

vaScript application or library. ngDoc supports standards tags for generic JavaScript such as

name, parameter, returns, description, example as well as some other tags specific for Angu-

lar such as directive, service, and scope (GitHub 2014). Documentation comments are added

directly to the source code, right alongside the code itself. Below is an example of the com-

ment block:

Figure 6-6: Comment block to generate ngDoc documentation

 32

There are several benefits of generating documentation from source code comments

• All the documentations are kept coordinated as the code changes.

• Version-specific documentation can be available by simply checking out a version of

the application and running the build.

The ngDoc tool then scans the source code and generates a complete HTML documentation

website.

Figure 6-7: The resulting documentation website

6.3.5 Azure Web App Service

App Service Web Apps is a compute platform that is developed for hosting websites and web

applications. This platform-as-a-service (PaaS) offering of Microsoft Azure manages the infra-

structure to run and scale applications and lets developers focus on the business logic of their

applications.

In App Service, Azure provides web apps as the compute resources for hosting a website or

web application. The web apps can run on shared or dedicated virtual machines managed by

 33

Azure and isolated from other customers, depending on the pricing tier chosen. Software

code can be in any language or framework that is supported by Azure App Service, such as

ASP.NET, Node.js, Java, PHP, or Python.

Azure App Service maintains the application framework for Lumi web front-end app, which is

Node.js. In addition, application framework can be customized such as choosing version for

Node. With web server and application framework being managed by Azure App Service, de-

ploying process is simplified to only deploying code, binaries, content files, and their respec-

tive directory structure, to the /site/wwwroot directory in Azure. App Service supports many

deployment options, but since Lumi web UI app is already managed by a local Git repository,

the most convenient option is repository-based deployment with manual sync from local Git

(Lin 2016).

To deploy an existed local Git repository to Azure App Service, I follow the instruction provid-

ed by Microsoft Azure:

1. Log in to the Azure Portal.

2. Choose Local Git Repository as the deployment source

3. Set deployment credentials

 34

4. Get remote Git repository UR

5. Add the remote Git repository and push the content of the local Git to Azure App Ser-

vice (Grigoriu 2016)

6.4 Directory structure

Directory structure is the way folders and files located in a project folder. A good directory

structure should allow developers to open and work with all the related files for a feature, as

well as identify the purpose and function of a file with minimal efforts. This makes an appli-

cation easily maintainable and extensible.

There are some commonly used directory structures for an AngularJS application. Sort by

type: controllers have their own folder, views have their own folder, external libraries have

their own folder. This structure is preferable when writing a small application since its sepa-

 35

ration of concerns makes it easier for the reader to follow and have a conceptual idea of

what the application is trying to do.

Figure 6-8: An example of a sort-by-type directory structure

Files are located based on their type, so all controller files are group together, similarly for

directives, services, and views. Although easy to understand at the beginning, as the applica-

tion grows, sort by type becomes less useful since all files that related to a feature are scat-

tered in several folders and to work with a feature, developers must go through several fold-

ers.

 36

A better directory structure is sort by components. It is based on a principle that an ideal An-

gularJS app structure should be combined with single purposed reusable components. (Kukic

2014)

Figure 6-9: An example of a sort-by-feature directory structure

The components folder contains all components of the application. In each component folder,

there are all files needed for the component to work including views, controllers, services,

and directives. Specifically, Lumi web UI application includes main components such as rout-

ing, register, chart, authentication, and control panel. This way, each component resembles

a mini-MVC application. If the component has multiple related views, these files will be fur-

ther separated into ‘views’, ‘controllers’, ‘services’ subfolders.

 37

The benefits of this modularized approach include:

• Maintainability: The approach above logically divides the application into smaller

components and I am easily able to locate all files necessary for any component that I

am working with.

• Extendibility: The code will be much easier to extend. Adding new directives and

pages will not affect existing folders. Additionally, with this approach, components

can be added or remove from the application with relative ease.

6.5 Routing component

Routing component consists of a config file (routing.conf.js) where all UI-Router states are

defined. The navigation component contains a template file (nav.html) with a left navigation

bar where user can find the button lists of different views and navigate where they want to

go, and a controller (nav.controller.js) which handles behaviour logic of the navigation bar

including showing the add new service popup as well as logging the user out.

Figure 6-10: Lumi front-end application navigation bar

 38

6.6 Authentication component

The authentication component contains a template file (login.html) with an HTML form that

allows the user to input their username and password and a button to submit them. It also has

a controller file (login.controller.js) to make HTTP request to the back-end API to authenti-

cate the user and listen to the response. The user will be navigated to the dashboard if the

response is successful, otherwise a message will be displayed on screen announcing that the

authentication has failed.

Figure 6-11: Log in page

6.7 Chart component

Since chart data can be filtered in several types, namely by day, by week and month, the

chart component includes a template service (chartTemplate.js) to choose a type of chart to

create. There is also a service file (chartCreator.js) that receives a template, get raw data

and filter them to chart, and a directive (chart.js) that renders the chart as HTML canvas.

The figure below shows the resulting chart component being served to the user

 39

Figure 6-12: Dashboard view with chart components

The benefit of separating chart logic and chart rendering is that the chart data can be reused

to render in different ways such as table of a different chart type. A separate template ser-

vice is easier to document and make changes.

6.8 Build and deployment process

The purpose of the build process is to reduce the size of the code, remove development spe-

cific code, and link all backend request to the web API instead of the local one. To achieve

this with minimal work and following industry standards, I use a Grunt process generated by

Yeoman called ’build’, with some modifications for this project.

Yeoman creates a default Grunt build task which does the following:

• Clean ‘dist’ folder: clear all files and folders in ‘dist’ directory to prepare for the new

build.

• Link third party dependencies to index: include third party libraries and components

such as Angular, angular-chart or UI-Router. This is a automation process so developer

must not forget third party dependencies in the build.

• Concatenate and uglify JavaScript files: all script files are combined into one big file,

and uglify removes spaces and line-brakes from the one big script file. These two pro-

cesses reduce the size of the build.

• Pre-process Sass files into CSS files: read “.scss” files and create “.css” files for appli-

cation styles.

 40

• Copy other files including images and fonts to the ‘dist’ folder: automatic process to

save time on manual copying of images and fonts.

• Minify JavaScript, CSS, and HTML files: Minification process removes unnecessary or

redundant data without affecting how the browser processes the resource. This pro-

cess further reduces the size of the build, thus improves performance of the applica-

tion.

Modify Yeoman build task for Lumi front-end application

• Update tasks with new directory structure

• Remove logging statements

• Replace URL of development API to production API URL

For the server to serve the content to browsers on request, I wrote a Node.js script to. With

AngularJS handle all the routing, logic and rendering for the client, this run script only need

to redirect all request to a ’dist’ folder where all files needed for the application to work are

located.

As mentioned above, Lumi front-end app uses git to deploy to azure web services. To sepa-

rate development build with production build, I use two separate app services. With the build

tasks being automatic, deployment to development app services can be done daily in a few

commands. The development build then can be evaluated by the manager and if approved,

can be pushed to production.

6.9 Documentation

As mentioned above, the documentation is generated following ngDoc. Because the project is

already using Grunt, I integrated the documentation process into the workflow with a third-

party grunt task called grunt-ngdocs. The task is modified and registered in a ‘grunt docs’

task which will serve the output documentation web page and update whenever any changes

is made in the source code documentation. The final documentation website can be seen be-

low

 41

Figure 6-13: Lumi front-end application documentation website

Since the documentation is only used internally, it is not hosted on the server, but is managed

alongside the souce code. The ‘grunt docs’ command can be used later to access the

documentation.

7 Testing

Testing is the process of verifying that the program works as intended and discover bugs be-

fore it is released. The results of the test consist of errors, anomalies, or information about

the program’s quality attributes. Typically, a commercial software system must go through

three stages of testing:

1. Development testing, where the system is tested during development to discover bugs

and defects.

2. Release testing, where a separate testing team tests a complete version of the system

before it is released to users.

3. User testing, where users or potential users of a system test the system in their own

environment. (Sommerville 2011)

 42

In Lumi front-end application project, three specific testing methods were conducted. Unit

testing was used for development testing. Release testing was carried out by the project

manager one week before the release date, and user testing was done in cooperation with a

pilot test customer in Helsinki region.

7.1 Development testing

Unit test scenarios were created for major components such as chart services, routing ser-

vices and log in service. For example: Routing should allow user to go to states they have ac-

cess to, meaning unauthenticated user can only access login page, regular authenticated user

cannot add new resources.

Figure 7-1: An example unit test case

 43

7.2 User testing

The user testing phase was conducted after the app was deployed to Azure Web App Service

by a pilot customer located in Helsinki city. Test period started in June 2016 and finished in

August 2016, during which a set of cameras and a computer was installed at the tested loca-

tion to gather people counting data. Data was sent to the back-end API to be saved in the

database in real time. The front-end app was accessible to view data and interact with the

system.

There are many functionalities tested by the users during the pilot period.

First 1UP Media admin user logged in to add a new company, user and device for the customer

company and the test user. The login was successful, and so was adding new resources. To

test saving authentication feature, 1UP admin user refresh the browser page. The authentica-

tion token was successfully saved and the user did not have to log in again.

After the installation team installs the camera and device and configure them, the regular

user can log in to see the real-time chart for that day. He/she can also select a filter so the

chart data can cover different devices or time range. All tasks were completed successfully.

To finish the tasks for the installation day, the regular user logged out of the application, and

tried to access the service without authentication. The attempt was unsuccessful means the

log out function was functional.

After the installation day, the regular user can access the application on a network connected

computer at any time. The chart fulfilled the requirements of being functional and perfor-

mant. There were some minor issues during the pilot test, but they were fixed quickly and

the user was satisfied.

7.3 User feedback

Towards the end of the pilot period there was an extra feature requested that the customer

can print the chart data as PDF file for report purposes. The development team responded

quickly and the feature was developed, tested, and released before the end of the pilot.

Overall, the customer was pleased that Lumi people counting was usable and provided in-

sightful data.

 44

8 Maintenance

The maintenance process starts after the application is released in August 2016. The devel-

opment team follows bug reports and feature requests from users, and from that a new de-

velopment cycle starts with requirement analysis, design, implementation, testing and docu-

menting. Since the maintenance process is outside the scope of this paper, it will not be dis-

cussed further.

9 Conclusion

Overall, Lumi front-end application has succeeded in providing user-friendly interface for its

customers to view critical user behaviour data and manage their counting data services as

well as gaining business value for 1UP Media. With strong emphasis on extendibility and main-

tainability, the application can be expanded to include several services beside people count-

ing data. The development process can be used as an example of creating front-end web ap-

plication, and its practices can be reuse for later projects.

 45

References

AngularUI. 2016. About States. Accessed 2016. https://ui-router.github.io/guide/states

Atkins, T. & Sapin, S. 2014. CSS Syntax Module Level 3. [Document] W3C. CSS Working Group

(3) Accessed 2016. https://www.w3.org/TR/css-syntax-3/

Atlassian. 2016. What is Git. Getting Git Right. Accessed 2016.

https://www.atlassian.com/git/tutorials/what-is-git

Atlassian. 2016. Why Git for your organization. Getting Git Right. Accessed 2016.

https://www.atlassian.com/git/tutorials/why-git

Bass, L., Clements, P. & Kazman, R. 2003. Software Architecture in Practice. 2nd ed. Boston:

Addison Wesley.

Bitrix24. 2016. Project Management and Tasks. Accessed 2016.

https://www.bitrix24.com/features/tasks.php

Bondi, A. 2000. Characteristics of Scalability and Their Impact on Performance. In:

Proceedings of the 2nd international workshop on Software and performance, Ottawa, 2000.

ACM New York.

Faulkner, S., Eicholz, A., Leithead, T. & Danilo, A. 2016. HTML 5.1. [Document] W3C. (5.1)

Accessed 2016. https://www.w3.org/TR/html/introduction.html#a-quick-introduction-to-

html

Fielding, R. 1999. Hypertext Transfer Protocol -- HTTP/ 1.1. [Document] Internet Engineering

Task Force. (1.1) Accessed 2016. https://tools.ietf.org/html/rfc2616#section-1

Flanagan, D. 2011. JavaScript: The Definitive Guide. 6th ed. Sebastopol: O'Reilly.

GitHub. 2014. Writing AngularJS Documentation. [Wiki] Accessed 2016.

https://github.com/angular/angular.js/wiki/Writing-AngularJS-Documentation

GitHub. 2016. Atom. Accessed 2016. https://atom.io/

Grigoriu, D. 2016. Local Git Deployment to Azure App Service. Microsoft Azure. Accessed

2016. https://docs.microsoft.com/en-us/azure/app-service-web/app-service-deploy-local-git

Grunt. 2016. Accessed 2016. http://gruntjs.com/

Halpern, B. 2016. The Fat Client - Thin Client Debate. Dev. https://dev.to/ben/the-fat-

client---thin-client-debate

Jewett, M. 2015. A Comparison of Frontend and Backend Web Development. Bloc.

https://blog.bloc.io/frontend-vs-backend-web-development/

Johansson, N. & Löfgren, A. 2009. Designing for extensibility. Bachelor Thesis. Gothenburg:

University of Gothenburg 2016.

 46

Kukic, A. 2014. AngularJS Best Practices: Directory Structure. Scotch.io. Accessed 2016.

https://scotch.io/tutorials/angularjs-best-practices-directory-structure

Lau, D. 2013. 10 Reasons Why You Should Use AngularJS. Site Point. Accessed 2016.

https://www.sitepoint.com/10-reasons-use-angularjs/

Lin, C. 2016. Deploy your app to Azure App Service. [Article] Microsoft Azure. Accessed 2016.

https://docs.microsoft.com/en-us/azure/app-service-web/web-sites-deploy

Lindley, C. 2014. Front-end Driven Applications – A New Approach to Applications. Telerik.

http://developer.telerik.com/featured/front-end-driven-applications-new-approach-

applications/

Mell, P. & Grance, T. 2011. The NIST Definition of Cloud Computing. Special Publication.

Gaithersburg: NIST NIST.

Node.js Foundation. 2016. Node.js. Accessed 2016. https://nodejs.org/en/

Object Management Group. 2005. Introduction to OMG's Unified Modelling Language (UML).

UML. http://www.uml.org/what-is-uml.htm

Object Management Group. 2005. What is UML. Unified Modelling Language. Accessed 2016.

http://www.uml.org/what-is-uml.htm

Osmani, A. 2015. Learning JavaScript Design Patterns. O'Reilly.

Pose, A. 2014. Cookies vs Tokens. Getting auth right with Angular.JS. Auth0. Accessed 2016.

https://auth0.com/blog/angularjs-authentication-with-cookies-vs-token/

Riehle, D. 2000. Framework design, a role modelling approach. PhD Thesis. Zurich: Swiss

Federal Institute of Technology Zurich.

Skrchevski, B. 2015. High cohesion and loose coupling. Accessed 2016.

https://thebojan.ninja/2015/04/08/high-cohesion-loose-coupling/

Sommerville, I. 2011. Software Engineering. 9th ed. Boston: Addison-Wesley.

Staticapps.org. 2016. Defining Static Web Apps. Accessed 2016.

https://staticapps.org/articles/defining-static-web-apps/

The Yeoman Team. 2016. Yeoman. Accessed 2016. http://yeoman.io/

Tutorials Point. 2016. Software Design Basics. Software Engineering Tutorial Accessed 2016.

http://www.tutorialspoint.com/software_engineering/software_design_basics.htm

 47

Figures

Figure 1-1: System model of Lumi people counting .. 7	
Figure 3-1: Main stages of the waterfall model .. 12	
Figure 4-1: Client-server model .. 14	
Figure 4-2: Compare thin client and thick client architecture 15	
Figure 5-1: Different use cases of Lumi front-end application 17	
Figure 5-2: State diagram of Lumi front-end application .. 18	
Figure 5-3: Sequence diagram describes token-based authentication 19	
Figure 5-4: Sequence diagram describes the process to create a chart 20	
Figure 6-1: User interface of Slack ... 22	
Figure 6-2: Bitrix24 tasks management interface ... 23	
Figure 6-3: Model - View - Controller pattern .. 26	
Figure 6-4: Interest in search term "AngularJS" over time 28	
Figure 6-5: Atom user interface .. 29	
Figure 6-6: Comment block to generate ngDoc documentation 31	
Figure 6-7: The resulting documentation website ... 32	
Figure 6-8: An example of a sort-by-type directory structure 35	
Figure 6-9: An example of a sort-by-feature directory structure 36	
Figure 6-10: Lumi front-end application navigation bar .. 37	
Figure 6-11: Log in page ... 38	
Figure 6-12: Dashboard view with chart components ... 39	
Figure 6-13: Lumi front-end application documentation website 41	
Figure 7-1: An example unit test case ... 42	

