

Henri Kajova

Datacenter Application Delivery Virtual
Laboratory

Bachelor’s Thesis

Information Technology

November 2016

Tekijä/Tekijät Tutkinto Aika

Henri Kajova

Insinööri (AMK) Marraskuu 2016

Opinnäytetyön nimi

Datacenter Application Delivery Virtual Laboratory

52 sivua

8 liitesivua

Toimeksiantaja

Kymenlaakson ammattikorkeakoulu

Ohjaaja

Lehtori Vesa Kankare

Tiivistelmä

Kyseisen opinnäytetyön tavoitteena oli luoda Virtual Laboratory -ympäristölle
skenaario, jota voitaisiin käyttää application delivery controller -teknologioiden
opetuksessa datakeskuskursseilla. Virtual Laboratory mahdollistaa
tietoverkkoharjoituksien tekemisen virtuaalisesti ilman fyysisiä laitteita. Oli tärkeää
tehdä harjoitus, jonka avulla käyttäjä tutustuisi skenaarioon ja ADC-laitteisiin.

Työssä keskityttiin F5 BIG-IP Virtual Edition ADC-laitteeseen. Myös palvelimia ja muita
verkkolaitteita jouduttiin asentamaan ja käyttöönottamaan, jotta toimiva verkko
saataisiin rakennettua. Iso osa työtä oli ongelmien ratkaiseminen, koska kyseisiä
laitteita ei ole aiemmin käytetty kyseisessä ympäristössä. Kaikkia ongelmia ei pystytty
ratkaisemaan, ja joitain toimintoja ei voitu ottaa käyttöön, mutta toimiva skenaario
saatiin valmiiksi.

Harjoitus tehtiin niin, että sen avulla käyttäjä saa skenaarion otettua käyttöön. Verkon
asetukset asetetaan ja ADC-laite asennetaan. Kyseiseen laitteeseen asennetaan
virtuaalinen palvelin HTTP-palvelua varten, jonka avulla suoritetaan kuormanjakoa.
Palvelua varten ADC-laitteeseen asennetaan kyberhyökkäyksiä heikentäviä
ominaisuuksia.

Työ oli onnistunut, sillä toimiva skenaario saatiin luotua, vaikka ongelmia sen
toimintaan saamisessa oli. Joitakin ominaisuuksia jouduttiin jättämään pois, sillä
kaikkia ongelmia ei pystytty ratkaisemaan. Todennäköisesti jotkin näistä
ominaisuuksista voidaan saada toimintaan. ADC-laitteissa on vielä paljon
ominaisuuksia testattavaksi, mutta skenaarion pitäisi toimia hyvänä alustana
datakeskusopetukseen.

Asiasanat

application delivery controller, virtualisointi, datakeskus, kuormanjako, kyberturvallisuus

Author (authors) Degree Time

Henri Kajova

Bachelor of Engineer-
ing

November 2016

Thesis Title

Datacenter Application Delivery Virtual Laboratory 52 pages

8 pages of appendices

Commissioned by

Kymenlaakso University of Applied Sciences

Supervisor

Vesa Kankare, Senior Lecturer

Abstract

The goal of this Bachelor’s thesis was to provide a scenario for the Virtual Laboratory en-
vironment to implement application delivery controllers into a data center. Virtual Labora-
tory enables the possibility for training networking in a virtual environment. The scenario
will be used as a tool for teaching on data center courses, which means that a basic case
study needed to be provided. The case study introduces the user to the scenario, the
basic setup and functions of an application delivery controller.

The focus of the thesis was the F5 BIG-IP Virtual Edition application delivery controller.
Implementation of a working network and creation of server and client machines were
also done within the project. There was a lot of troubleshooting involved to get everything
working, and not everything could be solved within this project. However, a working sce-
nario was built with the most important features functional.

A basic case study was created so that the user can get the scenario up and running. The
case study begins with the configuration of the core network and then introduces the ap-
plication delivery controller. A virtual server for an HTTP service is created where load
balancing, SSL offloading and some denial of service attack mitigation are configured.

The project was successful as a working scenario was created. Some functions had to be
left out, because every problem could not be solved. There are more troubleshooting and
advanced configuration options left to be tested. The scenario should serve as a great
base to start working on data center courses.

Keywords

application delivery controller, virtualization, data center, load balancing, cybersecurity

CONTENTS

1 INTRODUCTION .. 6

2 VIRTUAL LABORATORY ... 7

3 CYBER ATTACKS .. 11

4 APPLICATION DELIVERY CONTROLLERS ... 12

4.1 F5 Networks.. 14

4.1.1 F5 BIG-IP ... 14

4.1.2 F5 Virtual Editions & BIG-IQ ... 15

5 TINY CORE LINUX ... 16

6 IMPLEMENTATION .. 17

6.1 Licensing the software .. 18

6.2 Creating a working scenario ... 21

6.2.1 Networking ... 21

6.2.2 Hypervisors and servers... 27

6.3 Creating a case study ... 30

6.3.1 Basic network configuration ... 31

6.3.2 ADC management and licensing .. 31

6.3.3 Basic ADC configuration .. 33

6.3.4 Load Balancing .. 36

6.3.5 SSL offloading .. 39

6.3.6 Mitigating slowloris attack... 41

6.3.7 Mitigating SSL renegotiation flood attack ... 44

7 IDEAS FOR FURTHER PROJECTS .. 47

8 CONCLUSIONS ... 48

REFERENCES .. 49

APPENDICES
Appendix 1. Datacenter Application Delivery Case Study

ABBREVIATIONS

 ADC Application Delivery Controller

 ADN Application Delivery Network

 AOM Always On Management

 CDN Content Delivery Network

 DNS Domain Name System

 DoS Denial-of-Service

 EUD End User Diagnostics

 HMS Host Management Subsystem

HSRP Hot Standby Routing Protocol

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

KVM Kernel-based Virtual Machine

LACP Link Aggregation Control Protocol

MAC Media Access Control

MOS Maintenance Operating System

NTP Network Time Protocol

OSI Open Systems Interconnections

RAM Random-access memory

SQL Structured Query Language

SSH Secure Shell

 SSL Secure Sockets Layer

 TMM Traffic Management Microkernel

 TMOS Traffic Management Operating System

 USB Universal Serial Bus

VNC Virtual Network Computing

 VLAN Virtual Local Area Network

6

1 INTRODUCTION

Datacenter hardware is expensive, and buying multiple sets of hardware for

students to practice on would not be cost-effective. The hardware takes up a

lot of space and electricity, and a powerful cooling system is necessary to

keep the devices from overheating. Hardware also gets old and new better

hardware needs to be bought to keep with the times, and to provide teaching

with the latest technologies.

The goal of this project was to provide a scenario for a virtual environment

called Virtual Laboratory. The scenario would be used to teach the latest ap-

plication delivery controller technologies used in modern data centers. A basic

case study, which would introduce the user to the scenario and devices in it,

would also be necessary. By creating a basic case study, the scenario would

also be tested to be working. This would allow to find any possible problems

that would arise when a user starts working with it.

The implementation of Cyberlab, a cyber security laboratory, to the Ky-

menlaakso University of Applied Sciences motivated to start researching run-

ning data center appliances, one of them being application delivery control-

lers, in the Virtual Laboratory environment. The Virtual Laboratory was created

as a bachelor’s thesis work by Jaakko Nurmi for KyUAS in the spring of 2016.

It provides an environment where the users can practice configuring network-

ing devices and servers. (Nurmi 2016.)

The creation of Cyberlab began in the spring of 2014 and most of the ground-

work was done during the following summer (Kettunen 2016). Cyberlab has

generated a lot of thesis works for the students of KyUAS studying information

technology. One of the thesis works related to application delivery controllers

was the implementation of such devices in Cyberlab. The work was done by

Antti Peltonen in the spring 2016. The students studying information

technology in KyUAS were involved in the stress and attack testing of the

devices. (Peltonen 2016.) This generated interest in looking into application

delivery controllers and was a big motivation for this project.

7

2 VIRTUAL LABORATORY

The virtual laboratory is a virtual environment in which the user can train and

experiment networking related case studies. It provides a set of networking

devices for each student to configure themselves, instead of working in groups

with a smaller set of devices. Because of the progression of virtualization over

the years, it has become more cost efficient to use virtual devices to teach

than to buy a set of real hardware.

Virtual laboratory uses a virtual machine called NestCore as its base, which

runs a QEMU/KVM hypervisor. The machine has been designed to run on

VMware hypervisors although it is possible to run it on other platforms that

support the same format. The laboratory has a web interface where you can

see the current topology and edit the device settings. In the interface, the user

can access devices using Guacamole client-less remote desktop gateway,

which supports VNC, SSH and telnet. Guacamole uses HTML5 to operate,

that allows no need for any browser plugins. (Nurmi 2016.)

Figure 1. Virtual laboratory web interface showing the datacenter scenario topology

The web interface, shown in figure 1, is accessed using a web browser and

navigating to the login page of the virtual laboratory system. User then logs in

to the system using credentials assigned to them by the network

administrators, where the system is run. The system uses RADIUS

authentication, which makes it easy to manage users. Users with more

permissions, who are usually the teachers and other administrators, have

8

administrative functions in their laboratory. For example, they can access

other laboratories which they do not own, to assist and check the progress.

The user reserves a laboratory to work on for a time they specify in the

reservation process, and select the laboratory that they want to work with. The

progress made in the laboratory can, however, be saved before the time runs

out and it can be continued later. After loading the laboratory, a topology

needs to be loaded from a list on the footer bar of the page, which can be

seen at the bottom of figure 1. A custom made topology file can also be

uploaded. The creation of topology files will be specified later. By right clicking

the devices, it is possible to insert a CD or DVD from a dedicated laboratory

filesystem server. It is also possible to mount a personal USB memory and

some other USB devices.

Figure 2. Virtual device manager under the preferences tab

There is a preferences tab, which can be seen in figure 2, where it is possible

to manage the devices used in the laboratory. It possible to add new devices

or delete existing ones. The devices can be shut down, powered off or reset.

Shut down is a clean way to power off the devices, which means that the

software is shut down in a controlled manner. Powering off a device

immediately removes the power and shuts the device down, which can lead to

data loss. It should only be used when the device is frozen and cannot be

shutdown in a clean fashion. Reset is used when the user wants to reset the

device back to its original state. It creates the device again using the base

image removing all existing changes. The base image can be specified from a

list of devices, which are hosted on the laboratory filesystem server. The

resources reserved for the devices can be edited, but they do not give the

9

overall laboratory more resources, which needs to be taken into consideration

when adding more resources. A MAC address base, which is used to

generate the addresses according to the interface number, can be specified.

This helps in cases where the devices need to have a static MAC address.

Network interface drivers and graphics drivers can be specified from a list of

supported drivers. The access mode can be changed to specify how the

device is accessed, with the choices of telnet, VNC or XVNC.

Figure 3. Cable tap tool in action performing packet capture

Cable tap is a tool that directs a copy of the traffic from a specific cable to an

interface on a virtual machine running Wireshark packet analyzer. The traffic

flow can be analyzed to troubleshoot and study the network performance. The

cables are chosen from a list that automatically contains all the connected

cables of the scenario, as seen on figure 3. Monitoring more than one cable at

a time can cause loops.

The devices are installed using an installation file that is created on the

laboratory filesystem server. The installation files use the following syntax:

 TOPIC [Topic of the scenario]

DEVICE [Name] [REMOTE/filename] [Memory] [CPUs] [Number

of interfaces] [Interface driver] [MAC-address base] [Access

mode] [Graphics driver] [Snapshot mode]

 TOPIC Datacenter Training Scenario

10

DEVICE ADC1 REMOTE/BIGIP.qcow2 4096 2 8 e1000

00:34:B2:23:12 Xvnc 5902 vmware-svga 0

The topologies are created using a topology file. The devices are positioned

with the topology file using simple syntax:

 [Type of the device] [Name of the device] [X axis] [Y axis]

 ROUTER R1 600 270

ADC ADC1 200 400 hidden

Basically, the type field tells the laboratory to use a specific icon when render-

ing the topology. The name field is important, because it assigns the icon to a

device with the same name. The X and Y axis fields are used to position the

icon on the screen. The last example above shows that devices can be hidden

by adding ‘hidden’ at the end of the line.

The cables between the devices are also configured and attached using the

topology file. The syntax is similar with the positioning of the devices:

 CABLE [Source device] [int #] [Destination device] [int #]

CABLE ADC1 1 S1 1

The source and destination device fields should contain the exact name of the

device. The cable is attached between these devices by connecting it to avail-

able interfaces. The interfaces are inputted to the interface field using a num-

ber. The interfaces usually start from the number 0, however there may be

some exceptions. An example of a functional topology can be seen on figure

1. The cables are rendered based on the connections, but are hidden if either

of the devices is hidden.

Text can also be added to the topology file to instruct users. Text uses the fol-

lowing syntax:

TEXT [X axis] [Y axis] [Font size] [Background color] [Foreground

color] [Text]

TEXT 1300 200 16px #ffffff #000000 ADC & BIG-IQ Management

11

The font size is defined in pixels and the colors are defined using hexadeci-

mals.

3 CYBER ATTACKS

Denial-of-service attacks are an effective way to render a web service unavail-

able. These attacks are usually done by flooding a service with legitimate traf-

fic, but in such a volume that the system does not have enough resources to

handle all the arriving data. This will leave the service unstable for normal us-

ers. Commands such as ping, which are available on most systems, can be

used to attack against servers. When executed using a big group of clients, it

can generate a lot of traffic to exhaust the bandwidth of the server. There are

also attacks that exploit vulnerabilities in the systems such as configuration er-

rors or other exploitable features or bugs. An example of an attack that is not

trying to exhaust the bandwidth of the server, but is instead trying to exhaust

the computational resources of the server, is SSL renegotiation attack. (Sha-

karian, Shakarian, Ruef 2013, 12-13.)

SSL renegotiation attack exploits vulnerability where by default the server al-

lows the client to initiate an infinite number of renegotiations. The attacker initi-

ates a SSL secure connection and renegotiates the handshake until it can ex-

haust the resources of the server. SSL handshake takes 10 times more re-

sources from the server than from the client, which means a client with

enough processing power could take a small, unprotected server down easily.

More powerful servers need to be attacked using a botnet to exhaust the com-

putational power of the server. Since only a tenth of the resources are needed

in comparison with the server, the botnet does not necessarily need to be that

big. (Holmes 2011.)

Slowloris attack is another application layer attack. It is a type of slow HTTP

attack, that works by sending HTTP requests to the web server in a slow fash-

ion. A HTTP header is send to the server just before timeout to keep the con-

nection alive, but the request is never completed. This type of attack creates

very little traffic and should not be detectable by looking at the bandwidth us-

age. In the end, the server cannot accept more connections and the service

goes unavailable. (Holmes 2013.)

12

4 APPLICATION DELIVERY CONTROLLERS

Content delivery networks are used on the Internet to support content delivery

in a scalable fashion. They are used to cache and optimize traffic flow using

sophisticated technologies. The traffic is cached near the users to reduce traf-

fic between links. This provides faster download speeds, lower latency and

high availability. CDNs are often combined with application delivery controllers

to form application delivery networks. ADCs are used to optimize application

traffic in and out of data centers. This is done using application acceleration

technologies and load balancing using layer 4-7 switching capabilities.

(Boucadair & Jacquenet 2015, 71.) OSI model layers 4-7 consist of transport,

session, presentation and application layers, while 1-3 are physical, data link

and network layers (Jönsson & Iveson 2014, 33). Unlike CDNs, which work

using multiple sites, ADNs are usually operated in a single data center

(Boucadair & Jacquenet 2015, 71).

The need for ADCs has arisen due to the rise of new type of networks. The

need for dynamic workspaces and workers bringing their own devices to work,

has brought the need for better optimization and security in networks. Work-

places need to ensure that the network has high availability. Networks need to

function 24 hours a day, so that the workers can work at any time of the day.

ADCs can help to offer this, by optimizing traffic, load balancing between serv-

ers and offering protection against cyber-attacks. (Citrix 2016.)

Load balancing is the key part of ADCs as they grew from load balancers to

serve more advanced functions (Salchow 2012). When using load balancing,

traffic is balanced between different servers to manage the load on the serv-

ers. If one of the servers goes down, the service will still be available, which

offers for high availability. Load balancing can also be done to servers that are

in a different physical location. (Citrix 2016.) This allows for protection against

physical threats such as fires and natural disasters.

Round robin is a method of load balancing, that works with a simple tech-

nique. When a client contacts the load balancer, it directs the traffic to the first

server on the list of servers. When another client contacts the load balancer, it

is directed to the second server. When every server has been used, the load

balancer goes back to the first server on the list. This makes round robin one

of the easiest load balancing methods to implement, but it is not necessarily

13

the best. Unless application level health checking is implemented, the servers

that are unavailable will still receive connection requests, which could affect

the quality of service. (KEMP 2016a.)

Source IP hash load balancing, or other type of session persistence, needs to

be implemented to ensure that clients stay connected to the server while their

session is on. When using source IP hash load balancing, a unique hash is

generated for every client. This is done using the source and destination

addresses. The hash ties the client to a specific server until the session has

ended, which ensures that if the client disconnects and needs to reconnect,

the session will still be available to them. However, when a new session is

initiated, new hash is generated. (KEMP 2016b.)

Another important part of ADCs is optimizing application performance. A great

example is SQL database load balancing which works in a similar way to load

balancing TCP traffic, but the device uses its knowledge to work with the ap-

plication on the database level. It is also possible to offload tasks that are re-

source intensive for the servers. For example, SSL offloading does this by

handling certificates, encrypting traffic leaving the servers, and decrypting traf-

fic that is arriving at the servers. (Citrix 2016.)

Websites are often designed for connections offering high-speed and band-

width, but this can deteriorate the user experience for mobile users (Citrix

2016). Mobile networks are not as resilient, which can make loading heavy

pages slow for mobile clients. Application delivery controllers can convert im-

ages into formats that are more efficient, and they can optimize scripts and

cascading style sheet files by removing unnecessary characters and white

spaces. This helps to compress the data into a more efficient size. (Citrix

2016.) Compression techniques of this kind might add latency for users with a

high-speed connection, because the compression takes time. This means that

the need for compression should be considered carefully. (Salchow 2012.)

Protection against cyber threats is a key part of modern networks. Application

delivery controllers can offer protection against threats coming in many differ-

ent forms. They offer ways to protect against application layer attacks and can

be used to mask sensitive data. The devices can even offer ways to identify

new attacks. (F5 2016d.) As the devices are used as the entry points to the

network, they can be used to authenticate and validate users, which protects

14

the network from intruders. It is also possible to weaken the effects of distrib-

uted denial of service attacks, since the devices can for example limit the in-

bound requests. (Citrix 2016.)

4.1 F5 Networks

F5 Networks, Inc. is the leading manufacturer of application delivery controller

hardware and software, with 52 percent revenue share in the market in 2014

(PRNewswire 2014). They released their first web server load balancer in

1997 (Jönsson & Iveson 2014, 18). They aim at providing their customers

software to enhance the delivery of application services in modern networks,

but also the necessary hardware to process the tasks (F5 2016f).

4.1.1 F5 BIG-IP

F5 BIG-IP refers to a line of products that use F5’s Traffic Management Oper-

ating System (F5 2016a). The products are available as either F5 branded

hardware or virtual editions (F5 2016b). Traffic Management Operating

System is not a standalone operating system, but instead a collection of

software, which consists of all of the software used in BIG-IP platforms. This

means that the name TMOS is used for the software suite instead of the

platform. There is also a separate platform called BIG-IP Virtual Edition, that is

run on a virtual hypervisor. (Jönsson & Iveson 2014, 23.) Some of the sup-

ported virtual hypervisors are VMware ESXi, Linux KVM and Citrix XenServer

(F5 2016b).

The main elements of TMOS are Traffic Management Microkernel, Host

Management Subsystem, Always On Management, Maintenance Operating

System and End User Diagnostics. TMM is used to handle all the network

activities and communication to the switch hardware. HMS is running a

modified CentOS GNU/Linux system that provides tools and interfaces for

system management. AOM is present on almost all BIG-IP hardware

products. It allows for remote power management and access to the HMS

through a serial console port or SSH through a network management port.

MOS is run on RAM and used for disk and file system maintenance. It can be

15

accessed through the serial port by interrupting the normal boot sequence and

entering the TMOS maintenance on GRUB. It can also be accessed with a

bootable USB drive. EUD is capable of doing hardware tests, and can also be

accessed through GRUB or USB drive. (Jönsson & Iveson 2014, 23-24.)

BIG-IP has a lot of different modules which can be activated to enable more

functions. For example, there is Local Traffic Manager, which provides the

basic functions to use load balancing, offloading and to achieve high availabil-

ity. It also provides some protection against denial-of-service attacks. (F5

2016c.) Another example is the Application Security Manager, which provides

even more in-depth protection against denial-of-service attacks and many

other types of cyber threats. It protects against session hijacking, SQL injec-

tion and can even protect sensitive data by masking it. (F5 2016d.) There are

many more modules and the modules have a great number of different func-

tions. The choice of modules depends on what is needed, what the hardware

can run, and what the license allows to be activated.

BIG-IP products have their own scripting language which can be used to cre-

ate scripts called iRules. It comes with the local traffic management system

and can be used to manage network traffic. It makes it possible to customize

the way the traffic is handled, which makes it a powerful tool in traffic manage-

ment. It uses the industry-standard Tools Command Language syntax as its

base. (F5 2016e.)

The configuration and controlling of the devices can be done by using either

the web interface or the traffic management shell. There is also a ZebOS

Command Line Interface to configure more advanced routing options (IP

Infusion Inc 2013).

4.1.2 F5 Virtual Editions & BIG-IQ

In addition to selling hardware, F5 offers virtual editions on its BIG-IP and BIG-

IQ systems. They are virtual versions of almost the same devices that you

would get if you bought the hardware. The devices can be run locally on a hy-

pervisor such as VMware ESXi or on a cloud service such as Amazon Web

Services. (F5 2016i.)

16

BIG-IP Virtual Edition appliances are designed to support the growing cloud

and software-defined market. The key selling points are that they are easy to

deploy and migrate, which is great for cloud and software-defined

environments, since they allow for adaptability and automation. This also

means that they are easily deployed for existing servers. The virtual editions

also offer more licensing choices, compared with the hardware, to suite the

needs of a certain environment. The appliances are usually managed,

deployed and licensed using BIG-IQ. (F5 2016i.)

BIG-IQ is a centralized management platform to manage all deployed BIG-IP

devices. It is often used to license BIG-IP devices and can handle the licens-

ing of up to 5000 devices. (F5 2016g.) It is capable of monitoring BIG-IP de-

vice resource usage, the status of high availability and SSL certificates. De-

ploying updates on all devices can be also done through BIG-IQ. It is possible

to backup device configurations, which makes fallback easy in case of a mis-

configuration. (F5 2016h.)

5 TINY CORE LINUX

Tiny Core is a Linux distribution aiming to be as small as possible. It is highly

modular and has all the basic functions of a typical Linux distribution. How-

ever, it does not come with any unnecessary software and the users install

what they need. (Tiny Core Team 2007.)

By default, Tiny Core is not designed to be installed onto a hard drive, instead

it is loaded from a storage device to RAM. This makes the system run fast and

it protects the files from changing, which ensures that the system is running

properly every time you run it. Installing Tiny Core to a hard drive is still possi-

ble, but it is not an original goal of the project. Applications are also installed

and loaded on RAM by default, and thus wiped after a reboot. (Kasanen

2013.)

In the default mode, cloud/internet, Tiny Core loads on RAM, and Apps tool is

used to download the applications the user wants to use. This is done after

every reboot since the applications are not stored in a hard drive. This makes

the system and applications run fast, because everything is loaded on RAM.

Mount mode is the recommended mode for using Tiny Core. In this mode,

17

persistent storage is used to store the applications the user wants to use. A

supported partition is needed on a disk to use this mode. Supported partitions

types are ext2, ext3, ext4 and vfat. The applications are stored in a directory

called tce on the partition, and can be configured to be mounted when booting

the system. There is also copy mode, where the applications are not mounted,

but instead copied from the partition to RAM. This mode takes longer to boot,

because of the applications need to be copied, which takes more time than

mounting. However, this way the applications run faster. (Kasanen 2013.)

A persistent install is possible using the Tiny Core installation tool, which

comes with the default release image. There is a graphical installer and a

command-line installer available. After installing, the system applications can

be installed using Apps tool, which has an option for persistent installation. If a

graphical user interface is not used, Tiny Core Extension: Application

Browser, can be used to browse and install applications. The tool is accessed

with the command tce-ab. A command called tce-load can be also used to in-

stall applications. This is a non-interactive version of the application installer,

and the user needs to know the name of the package they want to install. In

order to keep persistent files in the system, they need to be listed in /opt/.file-

tool.lst file. By default, the file has the /home/tc directory listed. There is also a

file /opt/.xfiletool.lst to exclude files from the filetool utility. Backups are written

in a file called mydata.tgz. The /home/tc/.xsession, /home/tc/.profile and

/opt/bootlocal.sh files can be used to store and execute configurations. Addi-

tional scripts can be created to the /opt/ directory. (Kasanen 2013.)

6 IMPLEMENTATION

The implementation covers the process of creating a working data center sce-

nario for the virtual laboratory environment and creating a basic case study for

that environment. The focus of the implementation was the application deliv-

ery controllers, but some server and client machines were created to serve the

needs of the scenario. The configuration of the other network devices for the

case study is also covered within the implementation.

18

6.1 Licensing the software

The work on the laboratory scenario began with activating the F5 BIG-IP Vir-

tual Edition license. The Virtual Edition image was run as standalone on a

VMware Workstation hypervisor. The reseller provided two licenses, but it was

not known what they were for. At first, the licenses were inputted to the initial

configuration wizard at the web interface, but there was an error message tell-

ing that the license was not a valid F5 license. After contacting the reseller, it

became clear that one of the licenses was a pool license, which allowed for 25

instances of BIG-IP VE to be activated. The pool license needed to be acti-

vated on a BIG-IQ Virtual Edition, which would then provision the licenses to

the BIG-IP devices. The other license provided would activate the BIG-IQ VE

system.

Work continued after downloading the image for BIG-IQ VE. It was also run on

a VMware Workstation hypervisor and was activated with the license pro-

vided. The licenses were accepted by the device and then it was the matter of

activating the BIG-IP image. An activated BIG-IP base image would be ideal

for the virtual laboratory, since then the users do not activate the images

themselves. The activation with BIG-IQ would not work on the VMware Work-

station, and it was thought that it might be an issue with the routing in the hy-

pervisor. The BIG-IQ image was moved to the virtual laboratory, running on a

VMware ESXi hypervisor, along with the BIG-IP image. The devices were con-

nected to a bridge that allows all traffic to pass through, so there should be no

problems with routing. However, there was a problem with the BIG-IQ license

since it had gone inoperative.

Following logs were from the actual devices TMOS command line, when the

problem was troubleshooted:

admin@bigiq ModuleNotLicensed:LICENSE INOPERATIVE
/Common tmos# Apr 26 02:06:08 bigiq emerg mcpd[4976]:

01070608:0: License is not operational expired or digital signature
does not match contents.

admin@bigiq ModuleNotLicensed:LICENSE INOPERATIVE
/Common tmos# show /sys license

Can't load license, may not be operational

19

admin@bigiq ModuleNotLicensed:LICENSE INOPERATIVE

/Common tmos# install /sys license registration‐key *license om-
mitted*

License server has returned an exception.

Fault code: 51092

Fault text: Error 51092, This license has already been activated
on a different unit. Please contact technical support for assistance

A show command used to show the license activated on the device returned

an error telling that the license cannot be loaded. To fix the problem, reactivat-

ing the license was tested with a command used to install licenses, but it re-

turned an error that the license was already activated elsewhere, and that help

from technical support would be needed to reactivate the license. The reseller

was contacted about the license and they contacted F5 support to get the li-

cense deactivated. A new BIG-IQ VE image for KVM hypervisors was down-

loaded to compliment the virtual laboratory running KVM. After working with

the reseller, the BIG-IQ VE was finally activated on the virtual laboratory, but

the pool license needed to be reset, since it was activated on the old image.

After deactivating the license and activating in on the new BIG-IQ VE, an acti-

vated BIG-IQ VE base image was ready to be used to activate the BIG-IP de-

vices.

Apparently, the licenses are linked to a certain MAC address of the network

adapter. When you move the image from one hypervisor to another, the MAC

address changes, since there is only a virtual MAC address on a virtual net-

work adapter. It had to be made sure that the MAC address would not change

and this could be achieved by using the virtual laboratory device files. The de-

vice files tell the KVM hypervisor a specific command to run each device and

these files can be used to specify the MAC address of the network interfaces.

These files with the correct addresses were preserved, because at this point it

was the only way to make sure that the addresses stay the same. When you

made changes that needed to be applied on the virtual laboratory web inter-

faces device manager, it would always regenerate new MAC addresses. This

meant that you would then need to overwrite or fix the device file for the BIG-

IQ by hand. In a later version of the virtual laboratory, this issue was fixed and

you can now specify the MAC address in the web interface.

20

The BIG-IP VE image still needed to be activated to make a working base im-

age. The BIG-IP was added to the devices managed by the BIG-IQ, but when

the activation the device was tested, it was not successful. After looking at the

/var/log/restjavad.0.log file, which contains many logs for troubleshooting, it

was clear that something was wrong with the system. Both devices, BIG-IQ

and BIG-IP, had a message saying that the license was an invalid F5 license.

After providing logs and qkview files for the reseller that was in contact with F5

support, it was found out that this was due to a bug in the BIG-IP VE. The bug,

numbered with the code 565137, affected mainly hosts running on a KVM hy-

pervisor. When the file /var/log/ltm is accessed, there will be an error “Dossier

error 16”. This is due to the output of dmidecode -s system-uuid differing from

the value provided in the /sys/class/dmi/id/product_uuid. In this case, the

value was nonexistent in both cases. The bug was fixed in the version 12.1.0

HF1, but had yet not been released. The problem was escalated by the re-

seller to a F5 escalation engineer, whose job would be to provide a patch to fix

the problem. The patch never arrived, which meant that the project was on

hold until the official update was released.

After the new version was released, a whole new image of BIG-IP Virtual Edi-

tion, version 12.1.0.0.0.1434, was downloaded and installed on the virtual la-

boratory. The licensing was now successful on the first try. After two BIG-IP

devices were activated, the BIG-IQ was removed from the laboratory to save

resources. This turned out to be a problem since the licenses would fail after a

while. It meant that the BIG-IP needs to contact the BIG-IQ after a while, so it

was reintroduced to the laboratory.

21

6.2 Creating a working scenario

6.2.1 Networking

Figure 4. The full scenario topology and addressing

After licensing issues were sorted out, it was the matter of creating a working

network. A virtual laboratory topology, illustrated on figure 4, was created dur-

ing the licensing phase. The network contains two Cisco IOSv routers on the

edge of the network which would connect the network to a wide area network.

Two routers were used to ensure redundancy. A wide area network would be

simulated using an ethernet bridge that would pass all the traffic through. The

traffic would travel from the routers to one of the two switches also running

Cisco IOSv software. The links between the routers and switches were config-

ured as access ports using the external VLAN 101.

The switches were attached with each other through two interfaces with a

port-channel, using the link aggregation control protocol. This would make the

interfaces work as one logical interface, sharing the configurations made on

the link. This would also allow load balancing between the interfaces. How-

ever, there were a couple of problems when using this technique between the

link. First problem was that the protocol would sometimes fail during the nego-

tiation phase and the link would never go up. Tweaking the delay, for the links,

22

on the virtual laboratory settings helped a bit, but it was not as consistent as

you would hope it to be. Another problem arose when packet storms started to

form between the link. It is not known why this started to happen, since there

were no clear loops. The spanning tree protocol, which job is to prevent loops,

seemed to be working as it should be. The MAC addresses of the interfaces

were checked to ensure there were no duplicates, but none were found. Up-

dating to a newer version of IOSv did not help either. After this it was decided

that the port-channel should be abandoned and a single trunk link between

the devices was to be used.

The ADCs were to be attached to the switches using link aggregation control

protocol and trunking, to ensure high availability and load balancing. This was

soon abandoned since the BIG-IP VE does not support link aggregation (F5

2016). The link used was configured as a trunk to allow several VLANs. Four

servers were attached to the switches using access ports on the internal

VLAN 102. The servers have two interfaces with one connected to each

switch and each of the interfaces have their own IP address. This would allow

better availability and load balancing. An HTTP virtual server with basic load

balancing was configured on the ADC. The configuration of the ADC will be

looked at in more detail at a later stage, but basically each of the server inter-

face addresses are listed on the BIG-IP virtual server and it should perform

load balancing between these interfaces. The server can be accessed by us-

ing a separate address assigned to the virtual server.

After the configuration, there was a problem because the ADC was not able to

communicate with the servers in the internal VLAN. The ADC monitors the

availability of the servers using configurable monitors. These monitors are

chosen or created by the needs of the type of server used. They need to be

accurate so that they confirm that the service on the server is working

properly, if the availability cannot be confirmed, the service will be marked as

unavailable. Using an ICMP monitor, the status was unavailable. Looking at

the ARP table of the ADC, it seemed that the addresses were not resolving.

By monitoring the traffic using the cable tap feature of the virtual laboratory, it

became clear that the ARP request packets were leaving the ADC without

dot1q tags. This meant that the packets would not be directed to the access

ports using the internal VLAN. At first it seemed this might be a misconfigura-

tion on the interface VLAN settings, but this was not the case. After trying

23

some different configurations on the interface, it was an idea that maybe

changing the virtual network adapter would fix the problem. It seems that the

E1000 network adapter that was used for the devices would not work with

dot1q tagging. This was discovered to be true, after changing to VMXNET3

adapter. With the adapter, the ARP requests would leave as tagged and re-

solve without any problems. Now the ICMP monitor would show the server as

available, however the HTTP monitor confirmed that the HTTP service was

unavailable. Virtio network adapter was also tested on the ADC, but the inter-

faces would just flap up and down. BIG-IP Virtual Edition should support the

virtio adapter on KVM hypervisor (F5 2016j).

The HTTP monitor sends a simple HTTP GET request, which the server

should reply with an ACK packet. Cable tap was used to monitor the traffic

and it was noticed that the ACK package was never received from the server.

Tcpdump was used to monitor the traffic arriving at the network adapter of the

server and the traffic arrived without problems. However, the adapter would

not accept the packages. Further inspections revealed that the frames were

considered too short. Analyzing the ethernet frame on Wireshark seemed that

it was the right length and nothing out of ordinary could be seen. The server

adapter was also changed to VMXNET3, but this did not change anything.

Changing the adapter back to E1000 on both ends fixed the problem. After

setting the interfaces to send the traffic as untagged, a handshake could be

seen using cable tap, but this meant that VLAN tagging could not be used on

the ADC. The VMXNET3 adapter would seem to be best supported by F5, as

it is the one used on ESXi hypervisors, which makes the problems unusual.

Later the virtio adapter was further tested by including it in the installation file

of BIG-IP and BIG-IQ. New scenario was installed and licensing the BIG-IP

devices was tested. However, when trying to connect to the BIG-IQ web

interface using the ADC client machine, the site was never reached. When

analyzing the traffic using cable tap, the machines seemed to be talking with

each other. A lot of TCP retransmissions were seen between the devices.

When looking at the interface on the ADC client using ethtool, a climbing

number of packages of wrong length could be seen. The problem seemed

similar to the one with VMXNET3, but a clear reason for it could not be seen.

24

Since VLANs could no longer be used, the ADCs needed to be attached to the

switches using three interfaces, one for each VLAN. Each of the interfaces

was configured as access VLANs on the switch. The HTTP monitor status

was still offline, so telnet was used to test the connection.

Figure 5. Attempting a telnet connection to the HTTP port of the server

On figure 5, telnet connection to port 80 of the server returned a message tell-

ing it was a bad request. The HTTP connection was now working, but the

monitor was somewhat wrong. The server did not answer HTTP 1.0 GET re-

quests, which meant that a custom monitor needed to be done, to support

HTTP 1.1. The custom monitor had a couple of more parameters, as opposed

to the default one.

Default monitor send string:

 GET /

Custom HTTP 1.1 monitor string:

 GET / HTTP/1.1\r\nHost: 192.168.102.112\r\n

The difference is that the custom send string tells the server that it is using

HTTP 1.1 and it has a line telling the host it is meant for. A real-life scenario

would use the domain of the server, rather than the IP address for the host.

25

After creating and taking the monitor in use, the HTTP server access log was

checked.

Figure 6. Successful HTTP GET requests seen on the access log file

On figure 6, successfully received GET requests can be seen. They arrive

from the address of the ADC 192.168.102.11 to the server located in

192.168.102.112. The status message ‘200’ implies that the request has been

successful (Fielding 1999). The connection from a client to the servers was

still not working. The traffic between the devices was monitored using cable

tap.

26

Figure 7. TCP handshake of a standard virtual server with layer 7 functionalities (F5 2007)

Figure 8. Captured TCP handshake.

In figure 8, the connection between the ADC and the client seemed to be

working, as the 3-way TCP handshake was successful. HTTP GET request

was received and acknowledged by the ADC. Figure 7 tells that after receiving

the ACK package, the ADC should choose a pool member to establish a TCP

connection with. However, the ADC would not try to establish a connection to

a pool member and the connection was reset. After some investigation, this

was due to secure network address translation, or SNAT, not being enabled

on the virtual server. It had been turned off at an earlier stage when trouble-

shooting connection problems. Auto-map setting for SNAT was enabled and

the connection worked without problems.

27

6.2.2 Hypervisors and servers

At the beginning of the project there was an idea of running a hypervisor in-

side the virtual laboratory. The servers would run inside the hypervisor thus

simulating a real data centers which usually use hypervisors to run the serv-

ers. VMware ESXi would not boot up inside the virtual laboratory, or at least

not by default. After this an open-source hypervisor, XenServer, was tested.

The hypervisor booted up inside the virtual laboratory, and the management

interface worked. However, the boot times for the machines inside the hyper-

visor were too long. A machine, which normally booted in a minute, took over

an hour to boot up. Since the main focus of the project is application delivery

controllers, the idea of running a hypervisor inside the virtual laboratory in the

confines of this project was abandoned, since it would have most likely been a

project of its own.

A CentOS 7 server was created to use as a base image for the servers. An

Apache HTTP server was installed to serve a webpage, which was a default

Wordpress page. MariaDB SQL database software and PHP were installed,

because they were needed for the Wordpress to run correctly. After the server

base image was deployed to the laboratory, the Wordpress site did not load

correctly. Wordpress has some issues if the IP address of the server changes.

Modifications to the Wordpress configuration need to be done to fix this, so

Wordpress was removed. This would not serve the purpose of easily deploya-

ble web servers in an environment where the IP addresses might often

change. A basic webpage with some text was created to serve something

from the HTTP server. An Ubuntu server running Lighttpd HTTP server was

also used when troubleshooting issues with F5 HTTP monitors. Neither of

these servers worked with the default HTTP monitor of the BIG-IP, and

needed to use a custom HTTP 1.1 monitor.

To save resources, it was decided that Tiny Core would be used to create

some basic servers. When creating the image on VMWare Workstation hyper-

visor, it was important to use IDE as the hard disk type, since Tiny Core only

supports IDE (Buys 2012). The installation was done using the official graph-

ical installer, which is can be accessed from the desktop after booting up the

graphical user interface. A disk named sda was chosen on the first menu and

other settings were right by default. Ext4 was used as the file system type and

28

nodhcp boot option code was added to disable the use of DHCP. The server

was installed as Core Only, which means installing the system without a

graphical interface, since there was no need for a graphical interface.

After installation, before rebooting, the Apps tool was launched. An Apache

HTTP server was installed by installing the httpd package. PHP and MariaDB

were installed in case they would be needed in the future. A TCPdump tool,

which can be used to analyze data arriving in a network interface, was in-

stalled for troubleshooting purposes. In the Apps tool, it was important to se-

lect the On-Boot option to ensure that the packages were saved on the disk

and automatically loaded on the boot process. After installing the needed

packages, the image was ready to be deployed into the virtual laboratory. The

servers needed to be set up to serve a webpage using HTTP.

All the text file modifications had to be done using the vi editor, which usually

comes with almost every GNU/Linux distribution. What is important to know

about the editor is that the i key is used access the insert mode, which allows

to insert and manipulate the text. After the changes are made, the escape key

is pressed to leave the insert mode. To write the changes and quit, :wq! is

typed. If the user wants to discard the changes they made, they can quit by

typing :q!. To run some setup commands on boot up, /opt/bootlocal.sh script

was modified. The following lines were added to the script file:

The first two lines setup the IP addresses to two network interfaces and the

third line starts the Apache HTTP server. The network interfaces on Tiny Core

start with eth0 and they increase in the increments of one. It was important to

use the sudo command to run these commands as a super user, since other-

wise the commands would not work.

A basic HTML site was created in the /usr/local/apache2/htdocs/index.html

file, after removing the default index.html file. The following design was used

for the site:

sudo ifconfig eth0 192.168.102.111 netmask 255.255.255.0
sudo ifconfig eth1 192.168.102.121 netmask 255.255.255.0
sudo apachectl start

29

Very little content was added, but the most important thing is that every server

had a different line telling which server they were. This would help to check

and illustrate working load balancing. In order to have the Apache configura-

tion and HTML files stored persistently after a reboot, the /opt/.filetool.lst file

needed to be edited. Following lines were added to the end of the file, to en-

sure that the changes would be stored:

First line would store the contents of the directory holding the site content files,

and the second line would ensure that the Apache configuration files would be

stored. However, the Apache configuration was not modified, but the action

was to ensure that if some modifications would be done in the future, they

would be stored persistently. The following actions had to be done on all four

servers manually, but after doing so working servers were ready. It would not

be sensible for the users to create these configurations themselves, which

meant that the servers needed to be made into base images. Since the im-

ages are split into a base image and a linked clone, they were to be com-

bined. This was done using a QEMU feature called convert. QEMU has a disk

image utility that can be used to manage images, and it has a convert feature

which can be used to combine the images into a new base image. The serv-

ers needed to be shut down before attempting the operation, since changes

happening while they are running could corrupt the images. An example of the

command that was used:

The -c option is used for the compression of the image, -f option is for the orig-

inal format of the image, -O is the format of the output file, then the name of

the file that is to be converted is inputted, and last the name of the output file.

<h1>CYBER CORPORATION</h1>

Welcome to DCLAB server C1A!

/usr/local/apache2/htdocs
/usr/local/apache2/conf

qemu-img convert -c -f qcow2 -O qcow2 C1A.img DCLAB-
C1A.img

30

After creating working server images, an attacker client image needed to be

created. The attacker client would be used to attack the servers using tools to

test for denial-of-service attack vulnerabilities. A new Tiny Core installation

was created without a graphical interface. The attack tools needed to be com-

piled, since they were not available in the Tiny Core repository. This was done

before rebooting the image after installation. Using Apps tool wget, compicetc

and openssl packages were downloaded, and the first two were run only on

RAM, since they would not be needed in the final image. Openssl package

would, however, be needed for one of the attack tools. The wget tool is used

to download the source code of the tools and compiletc has all the dependen-

cies needed to compile the tools. The attack tools that were installed were

slowhttptest and thc-ssl-dos. Slowhttptest can be used to test for slow HTTP

attacks, while thc-ssl-dos is a proof of concept tool for SSL renegotiation flood

attack.

The source for slowhttptest was downloaded using wget and extracted using

tar -xzvf <package filename>. The directory was accessed and ./configure

command was used to configure before compiling. The command make was

used to compile the source code into working binary. After this, the tool was

installed using sudo make install. The thc-ssl-dos tool was installed in the

same way, except make all install was used instead of make and sudo make

install. It was then made sure that the files would be saved by filetool.

6.3 Creating a case study

The goal for the case study was to provide a practice that would get the user

started working with the laboratory. It was important to introduce the user to

the basic functions and tools of the laboratory and BIG-IP. This was done by

creating a basic configuration practice, which would make the network func-

tional, introduce the user to how the devices are managed and to where the

configuration options are located. The goal was to configure the basic net-

working functions for the switches and routers, license the BIG-IP device us-

ing BIG-IQ, create a basic configuration for the BIG-IP, create load balancing

between the servers and implement a couple of security features. The final

case study can be found in appendix 1.

31

6.3.1 Basic network configuration

To enable basic networking, the routers and switches were configured. The

routers were configured with Hot Standby Routing Protocol, which makes the

gateways redundant by having the gateway of the other router in a standby,

when it sees that the other gateway is down it switches to the active mode.

Both router interfaces are configured with an address, but instead of using

these addresses to access the gateway, a virtual gateway address is used be-

tween the routers to access the gateway. (Li, Cole, Morton & Li 1998.) Both,

the inside and outside gateways, were configured redundantly using HSRP.

The switches needed to be configured with the appropriate VLANs, which

were the external and internal VLANs. External VLAN, is the one that is next

to the outside network, which means the interfaces facing the routers were

configured as access ports using external VLAN. The interfaces facing servers

were configured as access ports using internal VLAN, since they are in the in-

ternal network. Since the ADC device needs to have its own dedicated inter-

faces for each VLAN, because the dot1q tagging does not work with the

E1000 network adapter, the interfaces facing ADC on the switch were config-

ured as access ports using the appropriate VLANs. The link between switches

was configured as a trunk port to support multiple VLANs.

6.3.2 ADC management and licensing

The ADC needs to be assigned a management address, before it can be li-

censed using BIG-IQ. This is done using the traffic management operating

system shell on the command line, which can be accessed with the command

tmsh. The user needs to login to the command line using root as username

and default as password. These are the default values, which can be changed

if needed in the initial setup of the device. The setup is done after licensing.

First the management DHCP service is disabled using modify sys db dhcli-

ent.mgmt value disable command. Management address is added using cre-

ate /sys management-ip [ip address/prefixlen] command. The changes are

saved using save /sys config partitions all command. It is to be noted that

when using Nordic keyboard, the forward slash needs to be inputted using the

minus key next to the shift key. This is due to not being able to find a way to

32

change the keyboard layout to a Nordic layout. The regular methods of chang-

ing the keyboard layout on GNU/Linux systems seem to not work. The config-

uration can be checked by leaving the shell using quit command, and using

ifconfig eth0 command on the bash shell. The first interface is the manage-

ment interface, which means it should always be the eth0 interface.

The BIG-IP devices need to be licensed before they can be used, which is

done using a BIG-IQ device. Using the ADC client machine, the BIG-IQ web

interface can be accessed. The licensing and addressing for the BIG-IQ was

done in an earlier stage and they are automatically available on the base im-

age. The BIG-IQ can be accessed from the IP address 192.168.100.20, but if

needed, the address can be changed in exactly the same way as in the BIG-

IP devices. To log in to the BIG-IQ web interface, username admin and pass-

word admin are used.

Figure 9. Adding a new device to BIG-IQ

The devices are licensed by navigating to Device > Provisioning. Next to De-

vices there will be a + button, which can be used to add a new BIG-IP device.

Figure 9 shows an example of the filled New device form. The management

address and credentials of the BIG-IP are filled. Device Group is chosen as

Managed BIG-IPs. Everything else can be left to their default values. After dis-

covering the device using the Discover button, the device is ready to be li-

censed. This is done by right clicking the device on the list, and choosing Li-

cense device. Pool licensing and the appropriate pool is selected and the de-

vice is then licensed.

33

6.3.3 Basic ADC configuration

After the licensing is done, the BIG-IP device is ready to be configured. The

web interface of the device is accessed using the ADC client machine by navi-

gating to the management address of the device. However, unlike BIG-IQ, the

BIG-IP does not automatically redirect the user to the SSL secured connec-

tion. Since there is no unsecured connection available, the user needs to add

https:// in front of the address. For example, if the management address of the

device is 192.168.100.11, the user needs to connect the address

https://192.168.100.11 to reach the web interface. The default credentials for

the device are username admin and password admin. On log in, the user is

first prompted to a setup utility to configure all the basic settings for the device.

Figure 10. Importing device certificates

Navigating through the setup, in Resource Provisioning more modules can be

activated, but the default modules are enough for the case study. In Device

Certificates, new device certificates should be imported. A self-signed certifi-

cate was created earlier on the ADC client machine and can be found on the

home directory of the Root user. Figure 10 shows that Import Type of Certifi-

cate and Key should be chosen, and the correct files are selected using the

Browse button. The certificate source file ends with cert and the source key

ends with key. After importing, the certificate user is logged out of the device,

because the certificate for the connection has changed. Since it is a self-

signed certificate, the browser tells that the connection is untrusted. This does

not matter in a laboratory environment, but in real world applications a signed

34

certificate should be acquired. After logging back in, the applied certificate

should be seen, showing that it was successfully imported.

Figure 11. Filled platform settings

Next platform settings are configured. As seen on figure 11, the management

port settings should be correct, since they were configured using the traffic

management shell. A management route could be added if needed, but since

the traffic is directed through a bridge it is not necessary. The host name of

the device needs to be a fully qualified domain name, which means that for

example adc1.dclab.fi could be used. It is also desirable to change the time

zone to UTC. The credentials can be changed or the default values can be in-

putted to keep using them. In real-world applications, the credentials should

always be changed, but since the laboratory is not connected to any public

network, it does not matter.

35

Figure 12. Example configuration for external VLAN

Network settings are configured by creating internal, external and high availa-

bility VLANs. The addressing is done using the designed addressing plan. The

floating IP address is the default gateway that the devices in the network use,

which means the traffic is directed to the ADC. As seen on figure 12, the ex-

ternal VLAN needs its own default gateway, which is the HSRP floating IP ad-

dress of the routers on the same network. The VLAN ID tag is the same tag

that is used in the switches. However, the traffic is not tagged since VLAN tag-

ging does not work. The VLAN interface wanted is chosen and tagging is set

untagged. Only one VLAN per interface can be used. The interface should be

connected to the switch port which has been configured as an access port for

the same VLAN. NTP or DNS are not configured, but ConfigSync, Failover

and Mirroring are set to use high availability VLAN. However, failover or con-

figuration synchronization are not configured in this case study, because they

do not seem to work reliably. Using configuration synchronization might have

been a cause of some boot loops and other problems on the ADCs. Some-

times the synchronization works for a while, but after some time the link starts

36

working unreliably. The ADCs start telling that the high availability is offline,

and because of this they do not synchronize. The connection might come

back up, but this has caused some boot loops after a while. This is most likely

due to corrupted configurations. Because high availability cannot be used, it

means that after the settings are ready and the Finished button can be

pressed to finish the setup.

6.3.4 Load Balancing

To start load balancing between the HTTP servers, a server pool and a virtual

server need to be created. The load balancing happens between the config-

ured pool members. By navigating to Local Traffic > Pools > Pool List, it is

possible to create a new pool.

Figure 13. Example server pool configuration

Figure 13 shows an example where all server interfaces have been added to

the pool members. The information for each specific interface is filled and the

Add button is used to add them to the pool. The load balancing method used

37

is left as Round Robin. The pool is named and health monitors are added.

Since the servers are HTTP servers, the http monitor is used to monitor of

availability of the HTTP service. Additionally, gateway_icmp monitor is used to

monitor the availability of the interface. After finishing the settings, the pool

members should all be available, which is indicated by a green dot next to the

member in the members list.

Figure 14. Part of the virtual server settings

After the pool is created it needs to be associated with a virtual server. By

navigating to Local Traffic > Virtual Servers > Virtual Server List, it is possible

to create new virtual servers. Figure 14 shows a part of the settings needed

for the virtual server. The server is named and standard type of server is used.

The source address is 0.0.0.0/0, which means that the inbound traffic can

originate anywhere. The destination address is the address that is used to ac-

cess the virtual server. This is the address the client connects to. Default

HTTP service port is used, protocol used is TCP and HTTP profile is set as

http. It is important to set the source address translation to Auto-map to en-

sure that address translation works correctly. The server pool created earlier

is selected as the default pool. Now the server should be accessible by the cli-

ent machine using the virtual server IP address.

38

Next a pool for gateway load balancing is created. The router interfaces on the

external VLAN are added to a pool and used as a gateway pool. First HSRP

must be removed from the interfaces, which happens with the no standby

<process number> command on the router interface. As before, a new pool

was created with the gateway addresses as members. This time only gate-

way_icmp monitor is used to monitor the gateway status.

Figure 15. Using pool as an external default gateway

By navigating to Network > Routes, the user can manage the external_de-

fault_gateway. Figure 15 shows that the resource has been changed to Use

pool, and that the pool created for gateways has been selected as the pool.

By updating the settings, the load balancing between pool members is acti-

vated. It is to be noted that the load balancing only happens between the gate-

ways when leaving the ADC. Traffic coming from the outside network comes

through the active HSRP interface and through the same device. It would

most likely make more sense to use HSRP on both gateways instead of mix-

ing up technologies, but this is something that was tested and included in the

case study, since there are cases where using load balancing between gate-

ways makes sense.

39

6.3.5 SSL offloading

To implement SSL offloading, the certificates need to be imported into the sys-

tem. This means navigating to System > File Management > SSL Certificate

List to import the needed files. The certificate and key need to be imported

separately.

Figure 16. Importing the certificate file

As seen on figure 16, the import type Certificate is selected, the certificate is

named and the certificate file is selected using the Browse button. In this case

study, the same self-signed certificate that is used for the device certificate, is

used also for the servers. The certificate is located on the home directory of

the root user of the ADC client machine. The key is also imported using the

same method, but import type Key is selected.

Figure 17. Adding SSL certificate to the key chain of a client SSL profile

40

A new client SSL profile needs to be created, to use the certificate with a vir-

tual server. The profile can be created by navigating to Local Traffic > Profiles

> SSL > Client. First the profile is named and clientssl is used as the parent

profile. The certificate needs to be added to a certificate key chain, which is

done as seen in figure 17. By clicking the Add button the user is prompted

with a window where the right files are selected. The Certificate, key and chain

are selected and they are added to the key chain. After saving the changes,

the profile is ready to be used.

Figure 19. Creating an HTTPS virtual server

A new virtual server is created to SSL. Like shown on figure 19, this time the

service port 443 for HTTPS is selected. The SSL client profile is selected to

use SSL offloading using the certificate. All the other settings are the same as

in the HTTP server and the same address can be used. After saving the set-

tings, SSL offloading is functional. This can be confirmed by navigating to the

41

address of the server using the HTTPS protocol, for example

https://192.168.101.111.

Redirecting the HTTP traffic to HTTPS is done by creating a policy. The policy

can be created by navigating to Local Traffic > Policies > Policy List and using

the Create button. The policy is named to describe the contents of the policy,

for example HTTPtoHTTPS. The strategy setting is left at Execute first match-

ing rule. After the policy is created a rule is added by using the Create button

next to Rules. It is also named to describe the contents of the rule, which can

in this case be the same name as the policy itself. The match conditions are

left as All traffic to match all traffic. By using the + next to Do the following

when the traffic is matched, a task is created to execute when the traffic

matches the conditions. A redirect task is added from the drop-down menu

and the following line is added as the location:

tcl:https://[getfield [HTTP::host] ":" 1][HTTP::uri]

The changes are then saved, and using the policy is saved and published the

drop-down menu next to the Save Draft button in the policy overview. The pol-

icy is then activated on the HTTP virtual server to enable redirection. By navi-

gating to the virtual server settings and accessing the resources tab, a policy

list can be found. By using the Manage button, a list of available policies can

be seen and the desired policy is moved to the enabled policies. After finishing

the settings, the policy is active and should work right away. If the redirection

fails, the most likely cause is a typing error in the location line and should be

double checked. It was also noticed that it can sometimes take a moment to

get active.

6.3.6 Mitigating slowloris attack

A slowloris denial of service attack was tested against the virtual server of the

ADC. The attack was conducted using a tool called slowhttptest, which can be

used to test slowloris attack and other derivatives. The test proved that the vir-

tual server was easy to knock down using one client slowloris attack. Next it

was the case of mitigating the attack. Mitigating the attack would be done us-

ing iRule provided by F5. New iRule can be created by navigating to Local

Traffic > iRules > iRule List. The iRule is named and the rule itself is provided

42

in the Definition section. The following iRule is used to mitigate a slowloris at-

tack:

 when CLIENT_ACCEPTED {

 set rtimer 0

 after 1000 {

 if { not $rtimer} {

 drop

 }

 }

 }

 when HTTP_REQUEST {

 set rtimer 1

 }

(F5 2009)

The way the iRule works is that, when an HTTP request is not completed in

one second, the connection is dropped. This could also affect users with a

slow connection if the request cannot be completed within a second. iRules

are activated on a virtual server basis by navigating to virtual server settings

and Resources tab. There is a list of iRules that can be managed. The iRule is

then moved from the list of available iRules to the enabled iRules. After finish-

ing the configuration, the iRule is active. Now the slowloris attack should be

unsuccessful. However, when trying out the attack again it was still success-

ful. Even though slowloris attack does not generate a lot of traffic, because of

the limitations of running virtual switches and routers, it seemed that lines

were getting excessive amounts of traffic. The attack needed to be toned

down, so that the network before the virtual server could cope with the traffic,

but it would still knockdown the virtual server. The following command with the

settings toned down was found to be good for the purpose, and would be used

in the case study to demonstrate a slowloris attack:

slowhttpstest -c 10000 -H -i 5 -r 50 -t GET -u https://www.dclab.fi

To break down the command used, the -c value is the number of connections,

-H tells the program to run in slowloris mode, -i value is the interval until the

43

program follows up with the follow up data, -r is the number on connections

per second, -t is the used verb and -u is the url of the site that is tested. The

program can be interrupted with the regular keyboard combination used to

cancel running commands CTRL + C.

Figure 20. Slowhttptest running slowloris attack without mitigation

Figure 21. Slowhttptest running slowloris attack with mitigation

The command was tested with the iRule disabled and it knocked down the vir-

tual server, but when the iRule was again enabled the server stayed available.

This was confirmed from the status monitor of the slowhttptest program and

can be seen in figures 20 and 21. The service was also confirmed to be una-

vailable using the browser of the client machine. When the attack began, the

site became quickly unavailable for the client, but when the iRule was enabled

the site remained available for the client. In figure 21, A fast rising number of

closed connections can be seen on the slowhttptest statistics, which indicates

that the iRule works correctly. When using an HTTP profile on the server a

real BIG-IP device should be able to block a single client slowloris attack, but

in the virtual laboratory environment it could not be confirmed. The HTTP pro-

file resets the connection when the maximum header size is exceeded by the

attack. (F5, 2009.) In a real-life situation where an HTTP profile is not used,

the HTTP servers should be correctly configured to render slow HTTP attacks

44

useless, but the iRule could be used to mitigate the attack if needed. For ex-

ample, if the attack is distributed or when the servers are not in the care of the

network administrator.

6.3.7 Mitigating SSL renegotiation flood attack

Vulnerability to SSL renegotiation flood attack was also tested against the vir-

tual server. The principle is that if the server allows the client to renegotiate

the SSL handshake indefinitely, the server is vulnerable to the attack. The fol-

lowing command was executed from the user client machine to test for the

vulnerability:

openssl s_client -connect www.dclab.fi:443

An HTTP GET request was executed by typing GET / HTTP/1.0 and pressing

enter. After this, the connection was renegotiated five times by typing R and

pressing enter. The server did not reset the connection, but instead the pro-

gram lets the user to renegotiate five times before the session needs to be re-

started. However, it was possible to do this indefinitely, which meant that the

server was vulnerable. With an automated tool that repeats the renegotiation

process, the attack would be successful. It needs to be noted that the slow-

loris iRule needed to be disabled to do this test, because the connection

would otherwise reset before the commands could be typed. The iRule would

not, however, protect from this attack, because the process would be faster

with an automated attack tool. Like the slowloris attack, the attack could be

mitigated using iRule endorsed by F5. The following iRule was created and

activated the same way as before, but only on the HTTPS virtual server:

when RULE_INIT {

 set static::maxquery 5

 set static::mseconds 60000

}

when CLIENT_ACCEPTED {

 set ssl_hs_reqs 0

}

when CLIENTSSL_HANDSHAKE {

 incr ssl_hs_reqs

45

 after $static::mseconds { if {$ssl_hs_reqs > 0} {incr
ssl_hs_reqs -1} }

 if { $ssl_hs_reqs > $static::maxquery } {

 after 5000

 log "Handshake attack detected, drop-
ping [IP::client_addr]:[TCP::client_port]"

 drop

 }

}

(Holmes 2011b)

Figure 22. SSL renegotiation flood attack countermeasure iRule workflow (Holmes 2011a)

After implementing the iRule, the renegotiation could be performed five times

and the connection was stalled and dropped after a while. Another connection

was not possible within a minute after the attack was detected. The iRule

sends a notice to the BIG-IP logs that an attack was detected and dropped. In

figure 22, the workflow of the iRule can be seen. After a successful hand-

shake, the number of requests is counted and when the maximum number is

reached, the connection pauses for 5 seconds before dropping it. If the limit is

not reached, the connection will continue to work normally. (Holmes 2011a.)

46

Figure 23. BIG-IP logs after using an attack tool for the iRule testing

A proof of concept SSL renegotiation flood attack tool called thc-ssl-dos was

also tested against the unprotected virtual server. The tool was created by a

French hacking group The Hacker’s Choice. It can be used to perform an

attack against any server that allows SSL renegotiation. (Holmes 2011a.)

When the attack was launched against the virtual server, the service became

not as responsive, but it never went unavailable. There were many

handshakes happening and the tool was working, but it seemed that the

switches could not keep up with the amount of packets being transmitted by

the tool. A growing number of input errors could be seen on the switch

interface as runts. Number of connections was limited from the default 400,

but the input errors were still happening. It did not seem that the renegotiation

itself was the cause for the slow responses, but the connection to the virtual

server instead. Hardware BIG-IP should be able to withstand an attack from a

single client, because of its crypto-processors (Holmes 2011a). It was not

known if there is some software that would also do the trick of blocking an

attack from one client, or it is just that the attack was weakened by the

connection between the attacker and the ADC. The server was protected

using the iRule and the logs were showing blocked attacks. As seen on figure

23, the connections seemed to be dropping as they should be, but the page

47

was still not as responsive, which would indicate that the cause is the

connection instead of the renegotiation.

7 IDEAS FOR FURTHER PROJECTS

There are a great number of things that can be done to develop this scenario

further, since not all features work yet. The troubleshooting of the VLAN and

synchronization issues of the ADCs, and looking in to the switch LACP issues,

could be done as a project. The virtio network adapter should be functional,

but the reason why it does not work is not known. It might be because all the

links are not using the same adapter. It was not tested if the IOSv switches

and routers support virtio adapter. One idea would be to replace the IOSv

switches with OpenSwitch virtual appliances. This was something that would

have been tested, if there were enough time within this project.

Creating more advanced case studies should also be a possibility since this

project only scratches the surface of what the ADCs are capable of. An entire

thesis work about iRules would most likely be a possibility and would provide

a great resource for further development of the data center courses.

One of the more interesting projects would be trying to run a hypervisor inside

the virtual laboratory. It could be used to simulate a more realistic data center

server environment and would serve the purpose of this scenario perfectly. In

theory, this should be possible but needs more advanced settings to be ena-

bled to run properly.

Some ideas for the Cyberlab ADCs came to mind while doing this project. SSL

offloading has been preliminary implemented into Cyberlab, but it has not

been fully tested to be working with the servers needed. HTTP to HTTPS redi-

rection could be implemented if needed. Advantages of different HTTP profiles

could be studied. Server-side SSL traffic could offer more protection for the

traffic. The hardening of the ADCs is one thing that could be considered.

48

8 CONCLUSIONS

Overall the project had a lot of variety. It was not just the implementation of

application delivery controllers as one might have thought, but instead there

were many things involving troubleshooting, servers and other network de-

vices as well. Valuable troubleshooting experience was acquired from the pro-

ject as there was much to troubleshoot, so much that everything could not be

resolved within this project.

Working with the support to resolve the licensing issues was a great experi-

ence on what to look for when trying to resolve issues. A lot of information and

logs needed to be provided, and it became clearer as to what kind of infor-

mation is necessary. The licensing issues, however, were a bit of a disap-

pointment since they took up a lot of time from the implementation. Because

of that, many of ideas had to be left untested. It would have been great to get

to know one of the more interesting features iRules better, because it seems

like a powerful tool. Because of the lack of experience, it would most likely

have taken some time to create your own scripts.

A lot of knowledge about application delivery and ADCs was learned while

studying for and carrying out the project. At present, the knowledge about ap-

plication oriented networking is valuable and will only grow to be more valua-

ble in the future.

Even though there were several problems, the project can be considered suc-

cessful. A working scenario and case study was created to serve the datacen-

ter courses. Most of the basic functions so far have worked without problems,

at least the ones that are necessary. Some functions such as VLAN tagging

and synchronization between ADCs had to be left out since a fix for either one

could not be found.

49

REFERENCES

Boucadair, M. & Jacquenet, C. 2015. Handbook of Research on Redesigning

the Future of Internet Architectures. 1st edition. Hershey: Information Science

Reference.

Buys, J. 2012. Thinking Small With Tiny Core Linux. Available at:

http://ostatic.com/blog/thinking-small-with-tiny-core-linux [Accessed: 5 October

2016].

Cisco Systems, Inc. 2014. Data Center Technology Design Guide. Available

at: https://www.cisco.com/c/dam/en/us/td/docs/solutions/CVD/Aug2014/CVD-

DataCenterDesignGuide-AUG14.pdf [Accessed: 5 October 2016].

Citrix. 2016. What is an Application Delivery Controller (ADC)?. Available at:

https://www.citrix.com/products/netscaler-adc/resources/what-is-an-adc.html

[Accessed: 18 September 2016].

F5. 2007. sol8082: Overview of TCP connection setup for BIG-IP LTM virtual

server types. Available at: https://support.f5.com/kb/en-us/solutions/pub-

lic/8000/000/sol8082.html [Accessed: 2 October 2016].

F5. 2009. sol10260: Mitigating Slowloris DoS attacks with the BIG-IP system.

Available at: https://support.f5.com/kb/en-us/solutions/pub-

lic/10000/200/sol10260.html [Accessed: 24 October 2016].

F5. 2016a. F5 Products. Available at: https://f5.com/products/big-ip [Ac-

cessed: 17 September 2016].

F5. 2016b. F5 Virtual Editions. Available at: https://f5.com/products/plat-

forms/virtual-editions [Accessed: 17 September 2016].

F5. 2016c. F5 Local Traffic Manager. Available at: https://f5.com/prod-

ucts/modules/local-traffic-manager [Accessed: 17 September 2016].

F5. 2016d. F5 Application Security Manager. Available at: https://f5.com/prod-

ucts/modules/application-security-manager [Accessed: 17 September 2016].

F5. 2016e. Writing iRules. Available at: https://support.f5.com/kb/en-us/prod-

ucts/big-ip_ltm/manuals/product/ltm_configura-

tion_guide_10_0_0/ltm_rules.html [Accessed: 17 September 2016].

50

F5. 2016f. Why Choose F5?. Available at: https://f5.com/about-us/news/arti-

cles/why-choose-f5 [Accessed: 24 September 2016].

F5. 2016g. BIG-IQ and ADN Management. Available at: https://f5.com/prod-

ucts/big-iq [Accessed: 24 September 2016].

F5. 2016h. Centralized Management and Your Devices. Available at:

https://f5.com/products/big-iq/big-iq-device [Accessed: 24 September 2016].

F5. 2016i. BIG-IP Virtual Editions Datasheet. Available at:

https://www.f5.com/pdf/products/big-ip-virtual-editions-datasheet.pdf [Ac-

cessed: 24 September 2016].

F5. 2016j. Deploying BIG-IP Virtual Edition. Available at: https://sup-

port.f5.com/kb/en-us/products/big-ip_ltm/manuals/product/bigip-ve-kvm-setup-

11-3-0/2.html [Accessed: 28 September 2016].

Holmes, D. 2011a. SSL Renegotiation DOS attack – an iRule Countermeas-

ure. Available at: https://devcentral.f5.com/articles/ssl-renegotiation-dos-at-

tack-ndash-an-irule-countermeasure [Accessed: 5 October 2016].

Holmes, D. 2011b. SSL Renegotiation DOS iRule - Updates. Available at:

https://devcentral.f5.com/articles/ssl-renegotiation-dos-irule-updates [Ac-

cessed: 24 October 2016].

Holmes, D. 2013. Mitigating DDoS Attacks with F5 Technology. Available at:

http://www.igxglobal.com/wp-content/uploads/2013/03/mitigating-ddos-at-

tacks-tech-brief.pdf [Accessed: 25 October 2016].

IP Infusion Inc. 2013. ZebOS Network Platform IMI Command Reference.

Available at: https://support.f5.com/content/kb/en-us/products/big-ip_ltm/man-

uals/related/arm-imi-commandreference-7-8-4/_jcr_content/pdfAttach/down-

load/file.res/arm-imi-commandreference-7-8-4.pdf [Accessed: 18 September

2016].

Jönsson, P. & Iveson, S. 2014. F5 Networks Application Delivery Fundamen-

tals Study Guide. 1st edition. Self-Published.

Kasanen, L. 2013. Into the Core - A Look at Tiny Core Linux. Available at:

http://tinycorelinux.net/corebook.pdf [Accessed: 5 October 2016].

51

KEMP. 2016a. Round Robin Load Balancing. Available at: https://kemptech-

nologies.com/load-balancing/round-robin-load-balancing/ [Accessed: 22 Octo-

ber 2016].

KEMP. 2016b. Source IP Hash load balancing. Available at: https://kemptech-

nologies.com/glossary/source-ip-hash-load-balancing/ [Accessed: 22 October

2016].

Kettunen, M. 2016. CyberLab-datakeskus. Available at: http://www.ictlab.ky-

amk.fi/index.php/fi/kyberturvallisuus/etusivu/oppimisymparisto/100-cyberlab-

datakeskus [Accessed: 25 October 2016].

Li, T., Cole, B., Morton, P. & Li, D. 1998. RFC 2281: Cisco Hot Standby

Router Protocol (HSRP). Available at: https://www.ietf.org/rfc/rfc2281.txt [Ac-

cessed: 14 October 2016].

Nurmi, J. 2016. Implementation of Nested Virtual Laboratory System. Availa-

ble at: https://www.theseus.fi/bitstream/han-

dle/10024/107061/Nurmi_Jaakko_Thesis.pdf?sequence=1 [Accessed: 17

September 2016].

Peltonen, A. 2016. Application Delivery Controller Implementation to Cyberlab

Data Center. Available at: https://www.theseus.fi/bitstream/han-

dle/10024/110229/antti_peltonen.pdf?sequence=1 [Accessed: 17 September

2016].

PRNewswire. 2014. Flat to Slight Growth for Application Delivery Controller

(ADC) Market in Third Quarter 2014 as Virtual Appliance Revenues Surge,

According to Dell'Oro Group. Available at: http://www.prnewswire.com/news-

releases/flat-to-slight-growth-for-application-delivery-controller-adc-market-in-

third-quarter-2014-as-virtual-appliance-revenues-surge-according-to-delloro-

group-300011171.html [Accessed: 24 September 2016].

Salchow, K. 2012. Load Balancing 101: The Evolution to Application Delivery

Controllers. Available at: https://f5.com/resources/white-papers/load-balanc-

ing-101-the-evolution-to-application-de [Accessed: 20 October 2016].

Shakarian, P., Shakarian, J. & Ruef, A. 2013. Introduction to Cyber-Warfare :

A Multidisciplinary Approach. Syngress.

52

Tiny Core Team. 2007. Introduction to Core. Available at: http://tinycoreli-

nux.net/intro.html [Accessed: 2 October 2016]

Appendix 1/1

DATACENTER APPLICATION DELIVERY

CASE STUDY

20.11.2016

Basic networking

1. Configure addressing and HSRP on the routers

2. Create the VLANs needed on the switches:

101 external

102 internal

200 ha

3. Configure switch ports as appropriate access ports and trunk between switches

4. Ping from the user client to the HSRP gateways

Management addresses and licensing

1. Access the ADC1 terminal with the credentials root/default

2. Access the traffic management operating system shell

tmsh

3. Disable DHCP on management port

modify sys db dhclient.mgmt value disable

Appendix 1/2

4. Configure the management address

create /sys management-ip [ip address/prefixlen]

5. Save changes

save /sys config partitions all

6. Exit the shell

quit

7. Check the management address

 ifconfig eth0

8. To license the ADC1, access the BIG-IQ device using the ADC client by navigating to

https://192.168.100.20 with the browser

9. Login with the credentials admin/admin

10. Navigate to Device > Provisioning

11. Add a new device using the + button

12. Right click the device and choose license device. License the device using the pool license.

Basic configuration of the ADC

1. Access the management address of the ADC1 using the browser. Remember to use

HTTPS!

2. Use the credentials admin/admin

3. Device certificate is imported using certificate and key located on the home directory of the

ADC client

Appendix 1/3

4. Navigate to platform settings

5. Name the device using a fully qualified domain name e.g. adc1.dclab.fi

6. Set the Time Zone as UTC

7. Next create the VLANs

Appendix 1/4

8. DO NOT use VLAN tagging

9. Leave Port lockdown settings to default

10. For default gateway on external VLAN, use the HSRP gateway created earlier

11. After creating VLANs the Setup Utility can be exited. Failover is not configured.

Load balancing

1. To start load balancing, first create a pool of servers start by navigating to Local Traffic >

Pools > Pool List

2. Use ‘gateway_icmp’ and ‘http’ health monitors for availability checking

3. Use Round Robin as load balancing method

4. Service port is 80 for HTTP

5. Add all the server interfaces, two on each server, eight in total

6. When finished, access the Pool list and select the pool

7. Check that all the servers are available, which is indicated by a green dot

8. Create a virtual server. Start by navigating to Local Traffic > Virtual Servers > Virtual Server

List

Appendix 1/5

9. Use source address 0.0.0.0/0 to allow all source addresses

10. The destination address is an address for the virtual server that is used to access the

service. e.g. 192.168.101.111

11. Use the HTTP port and select http as HTTP Profile

12. Under Resources, access the drop-down menu of Default Pool and select the pool created

earlier

13. After saving the settings load balancing should be active, and can be tested using the User

machines browser to access the address of the virtual server

Load balancing between gateways

1. Remove HSRP from VLAN 101 (Not from the outside network)

2. Create a pool for the router interfaces as before, but only use gateway_icmp for monitoring

3. Navigate to Network > Routes to manage the external_default_gateway

4. Change the resource to use pool and select the pool created

5. Now load balancing between the interfaces should be enabled. However, note that the load

balancing does not happen between the outside network gateways and the traffic returns

from the active HSRP interface. What is the problem with this?

SSL offloading

1. Navigate to System > File Management > SSL Certificate List and import the certificate and

key used earlier

2. The key and certificate are imported separately. Choose import type depending on which

you are importing

Appendix 1/6

3. A Client SSL Profile needs to be created. Start by navigating to Local Traffic > Profiles >

SSL > Client

4. Create a new profile and add the certificate to the Certificate Key Chain

5. Select the correct certificate, key and chain

6. Leave everything else to their default values and save the profile

7. Create a new HTTPS virtual server

8. This time select the HTTPS service port

9. Select the SSL Profile (Client) created earlier

10. Everything else is identical to the HTTP virtual server

11. SSL offloading should be active and can be tested by accessing the virtual server address

using a secure connection e.g. https://192.168.101.111

12. Next the HTTP traffic needs to redirected to HTTPS using a policy. Start by navigating to

Local Traffic > Policies > Policy List

13. Create a policy that executes the first matching rule

14. After creating the policy, add a new rule to the policy

15. Match all traffic

16. Configure the task

Do the following when the traffic is matched:

Redirect to location: tcl:https://[getfield [HTTP::host] ":" 1][HTTP::uri]

17. Save and publish the policy

18. Navigate to HTTP virtual server Resources tab

19. Add the policy under Policies

20. Check that the policy redirects the HTTP traffic to HTTPS

Mitigating denial of service attacks

Appendix 1/7

1. Use slowhttptest on the Attacker client to launch a slowloris denial of service attack on the

virtual server

slowhttpstest -c 10000 -H -i 5 -r 50 -t GET -u https://192.168.101.111

2. Test accessing the HTTP service using the User client. The service should be inaccessible

soon after the attack begins

3. You can exit the attack tool using CTRL + C

4. Effects of a slowloris attack can be mitigated using an iRule

5. To create a new iRule, navigate to Local Traffic > iRules > iRule List

6. Add the following iRule provided by F5 to mitigate slowloris attacks

when CLIENT_ACCEPTED {

set rtimer 0

after 1000 {

if { not $rtimer} {

drop

}

}

}

when HTTP_REQUEST {

set rtimer 1

}

7. After saving the iRule it needs to be activated on the virtual server on the Resources tab
8. Activate the iRule on both virtual servers
9. Use the attack earlier to again. Looking at the slowhttptest statistics, do you see a

difference?
10. Try to access the service again, and it should be accessible.
11. Note that if you launch a bigger attack, the switches and routers do not have enough

resources to cope with it. This should not happen in a real environment since the attack
does not generate much traffic.

12. Now that SSL is enabled the virtual server is vulnerable to SSL renegotiation attack
13. Disable the slowloris iRule to be able to manually test for the vulnerability
14. Use the following command on the User machine

openssl s_client -connect www.dclab.fi:443

15. Type R and press enter to renegotiate the connection. You can do it five times before you
need to reconnect. Please reconnect and try once more. You should be able to renegotiate
as before, which means that it can be done indefinitely

Appendix 1/8

16. Renegotiation takes up 10 times the resources from the server compared with the client. If
you can renegotiate the handshake indefinitely, it is a serious vulnerability to denial-of-
service attack. Using an automated attack tool, it is possible to take up a lot of resources

17. It possible to limit this by using the following iRule also provided by F5

when RULE_INIT {
 set static::maxquery 5
 set static::mseconds 60000
}
when CLIENT_ACCEPTED {
 set ssl_hs_reqs 0
}
when CLIENTSSL_HANDSHAKE {
 incr ssl_hs_reqs
 after $static::mseconds { if {$ssl_hs_reqs > 0} {incr ssl_hs_reqs -1} }
 if { $ssl_hs_reqs > $static::maxquery } {
 after 5000
 log "Handshake attack detected, drop-ping
[IP::client_addr]:[TCP::client_port]"
 drop
 }
}

18. Activate the iRule on the HTTPS server and try to renegotiate the connection again
19. It should be possible to renegotiate the connection only five times and after this the

connection hangs
20. You should not be able to connect for a minute after this
21. Look at the logs on the ADC. There should be messages saying that an attack was

detected

