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Työn valmistumislukukausi ja -vuosi:  Syksy 2016             Sivumäärä: 35 + 1 liite 
 
 
Opinnäytetyön tilaajana toimi Oy LM Ericsson Ab:n Oulun yksikkö.  
Työn tavoitteena oli toteuttaa vanhan TTCN-3-pohjaisen testijärjestelmän tilalle 
uusi testijärjestelmä käyttäen Python-ohjelmointikieltä sekä Robot Frameworkiä. 
 
Testijärjestelmän käyttötarkoituksena on mitata RF-suorituskykyä 
piensolutukiaseman tuotekehityksessä. 
 
Käytössä olevalle TTCN-3-pohjaiselle järjestelmälle ei ollut saatavilla enää 
käyttötukea, joten sen korvaamiselle etsittiin vaihtoehtoja.  
 
Pythonista ja Robot Frameworkista oli aiempaa kokemusta yrityksessä 
erityyppisessä testauksessa, jolloin myös työn jatkokehitys olisi helpompaa. 
Robot Framework mahdollistaa myös testijärjestelmän paremman integroinnin 
CI-järjestelmiin, jos se nähdään tarpeelliseksi. 
 
Järjestelmän perusominaisuudet saatiin onnistuneesti toteutettua aikarajan 
sisällä sisältäen tarpeelliset Robot Framework-kirjastot, dokumentoinnin, 
käynnistysskriptit sekä lähdekoodin paketoinnin asennuspaketiksi. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Asiasanat: Python, Robot Framework, Ericsson 



 

 4 

ABSTRACT  

Oulu University of Applied Sciences 
Information Technology, Wireless devices 
 
 
Author: Joni Ollanketo 
Title of thesis: RF performance testing using Robot Framework 
Supervisors: Antti Seppälä, Pete Pietilä, Kari Jyrkkä 
Term and year of completion: Fall 2016            Pages: 35 + 1 appendix 
 
 
This thesis was commissioned by Oy LM Ericsson Ab R&D site in Oulu. 
 
The objective of this thesis was to develop a proof-of-concept of a new testing 
system to replace the previous TTCN-3-based system using Python and Robot 
Framework. 
 
The test system was used for measuring and validating the RF performance in 
a small cell base station development. 
 
The motivation behind replacing the used TTCN-3 system was that the TTCN-3 
platform did not have the product support anymore. 
 
Robot Framework and Python are used in other types of testing inside the com-
pany thus finding developers for maintaining and developing new system would 
be easier. 
Robot Framework allows also a better integration with continuous integration 
tools if needed. 
 
The basic functionality of the system was successfully implemented before the 
deadline, including the needed Robot Framework libraries, documentation, exe-
cute-scripts and packaging of the code for an easy installation and deployment. 
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VOCABULARY 

3GPP  3rd Generation Partnership Project 

API  Application Programming Interface 

BW  Bandwidth 

CLI  Command-Line Interpreter 

DUT  Device Under Test 

E-ARFCN  EUTRA Absolute radio-frequency channel number 

ETSI  European Telecommunications Standards Institute 

FCC  Federal Communications Commission 

GPIB  General Purpose Interface Bus 

HTML  HyperText Markup Language 

JVM  Java Virtual Machine 

LTE  Long Term Evolution 

MTC  Main Test Component 

PTC  Parallel Test Component 

reST  reStructuredText 

RBS  Radio Base Station 

RF  Radio Frequency 
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RX  Receiver 

SUT  System Under Test 

TSV  Tab-separated Values 

TTCN-3  Testing and Test Control Notation version 3 

TX  Transmitter 

UARFCN  UMTS Absolute radio-frequency channel number 

VISA  Virtual Instrument Software Architecture 

WCDMA  Wideband Code Division Multiple Access 

XML  Extensible Markup Language 

XSL  Extensible Stylesheet Language 

YAML  YAML Ain't Markup Language 
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1 INTRODUCTION 

Conformance testing is used to verify that a product meets the minimum re-

quirements set for it in a standard or a specification (1). 

During the development cycle of a product, it usually goes through various dif-

ferent types of testing. One fundamental difference between usual testing and 

conformance testing is that the conformance tests criteria for passing the tests 

must be specified in the standard or specification. 

Conformance testing aims to ensure the compatibility and interoperability be-

tween different systems. 

This thesis work was commissioned by Ericsson’s Oulu R&D site. The site was 

established in 2012 mainly to focus on the research and development of a small 

cell base station (2).  

The object of this thesis was to develop an alternative system as a proof-of-con-

cept for replacing previous TTCN-3 based RF performance testing system. This 

test system is used for testing RF conformance in a small cell base station de-

velopment.  

The TTCN-3 based system did not have product support anymore and due to its 

exotic programming language, finding new developers for maintaining it in the 

future might be challenging. 

Robot Framework and Python were considered for replacing the previous sys-

tem because of Python's popularity and experience using Robot Framework in 

different type of testing inside the company. 
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2 RF CONFORMANCE TESTS 

RF conformance tests aim to ensure that all RF parts of the SUT work accord-

ing to the specifications and standards. 

One of the organizations which create these standards is 3GPP (3). 

The requirements for multi-standard radio base station RF conformance testing 

are specified in the ETSI TS 137.141 document. This document provides speci-

fications for the RF conformance testing of base stations which supports multi-

ple radio standards, e.g. LTE and WCDMA. (4.) 

 

2.1 TS 137.141 

The document includes general test condition information, requirements and RF 

conformance test cases, which are divided into transmitter and receiver tests. 

(4.) 

Some of these test cases and configurations have also regional specifications, 

which might provide additional limits to test cases. 

Specified test cases follow a standard format which contains the following parts: 

 Definition and applicability 

 Minimum requirement 

 Test purpose 

 Method of test 

 Test requirements 

The document has examples of measurement system setups for different test 

cases.  

One of the simplest setups is a transmitter setup for base station output power, 

transmitter ON/OFF power, modulation quality, transmitter spurious emissions 

and operating band unwanted emissions tests (figure 1). 
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FIGURE 1. Measuring system setup for various base station transmitter tests 

 

The test document can specify a test environment as normal or extreme. 

The normal environment has defined minimum and maximum limits for a baro-

metric pressure, temperature and relative humidity. 

In the normal environment the power supply condition is defined as nominal, 

which means a normal operating voltage defined by the manufacturer. Vibration 

is specified as negligible. 

 

2.1.1 Base Station maximum output power 

This test measures the maximum output power delivered to a load with the re-

sistance equal to a nominal load impedance of the transmitter (4). 

The purpose of this test is to verify the accuracy of the maximum carrier output 

power in normal and extreme conditions. 

The initial test condition is normal, but a test should also be run with an extreme 

power supply condition on one ARFCN (GSM), UARFCN (WCDMA) or E-

ARFCN (LTE). 

The minimum requirements for passing this test are specified in the ETSI docu-

ment TS 37.104 subclause 6.2.1: 

In normal conditions, the maximum carrier power should be within ±2 dB com-

pared to the configured carrier power declared by the manufacturer. 
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In extreme conditions the limit is ±2,5 dB. 

These are minimum limits which do not take test tolerance value (TT) into ac-

count. This value is added to a minimum requirement.  

In this test case TT is specified as follows for UTRA and E-UTRA: 

0,7 𝑑𝐵       𝑓 ≤ 3,0 𝐺𝐻𝑧 

1,0 𝑑𝐵      3,0 𝐺𝐻𝑧 < 𝑓 ≤ 4,2 𝐺𝐻𝑧 

Thus, the maximum carrier power in normal conditions should be ±2,7 dB when 

using the carrier frequency below 3,0 GHz and ±3,0 dB when using the carrier 

frequency between 3,0 GHz and 4,2 GHz. 

In extreme conditions these values are ±3,2 dB and ±3,5 dB. 

The basic testing procedure itself is fairly simple: 

 Start the Base Station transmit using maximum power defined in the test 

configuration using defined test models or a set of physical channels 

 Measure the mean power for each carrier 
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3 TTCN-3 

TTCN-3 is a scripting language developed and standardized by ETSI and it is 

used typically for the protocol, service, module and API testing (6). 

The main building block of TTCN-3 is a module, which contains a definition part 

and an optional control part as seen below. 

 
module MyTestSuite { 

 // This module contains a definitions part... 

 : 

 const integer MyConstant := 1; 

 type record MyMessageType { ... } 

 template MyMessage { ... } 

 : 

 function MyFunction1( ... ) { ... } 

 function MyFunction2 { ... } 

 : 

 testcase MyTestcase1 { ... } 

 testcase MyTestcase2 { ... } 

 testcase MyTestcase3 { ... } 

 : 

 control { 

 // ... and a control part 

 : 

 var Boolean MyVariable := true; // local variable 

 : 

MyTestCase1; 

 MyTestCase2; 

 if (MyVariable) MyTestCase3;  

 : 

 } // End control 

} 

// End module 

 
Modules can be parametrized and they can import definitions from other mod-

ules.  

 

The control part in the module executes the test cases specified in the definition 

and called inside the control partition. 

  

The parallel execution can be achieved by using parallel test components 

(PTC). This is one of the three different types of components (7): 

 

 Main Test Component (MTC) 

 Parallel Test Component (PTC) 
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 PTC that defines Abstract Test System Interface 

 

Components communicate by using communication ports, which can have di-

rection in, out or inout (6). 

 
 

  
FIGURE 2. Communication between components 

 

Ports can have three different types: 

 Message-based 

 Procedure-base 

 Mixed 

 

MTC is automatically created when the test execution starts, but PTCs must be 

explicitly created by calling create operation. 

 

Components can be connected inside the test system by calling a connect oper-

ation: 

 
connect(PTC_1:P1, mtc:P1) 

 

The map operation is used for connecting components to an abstract test sys-

tem interface: 

 
map(PTC_1:P2, system:PCO) 
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4 ROBOT FRAMEWORK 

Robot Framework is an open source keyword-driven test automation framework 

based on the Python programming language. It uses a keyword-driven ap-

proach to testing. Robot Framework runs on Python, Jython (JVM) and IronPy-

thon (.NET). (8.) 

The high-level architecture of the Robot Framework test environment is shown 

in figure 3. 

 

 

FIGURE 3. Robot Framework high-level architecture 

 

The test case execution starts by calling Robot Framework with test data as in-

put arguments. Robot Framework parses test suites to run from test data and 

starts executing them. (9.) 

The controlling of the test tools and other needed subsystems inside the test 

suite is done through test libraries. These libraries can be used, for example, to 
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start a process on the test machine, to start remote connections and to parse 

data. 

After the execution ends, report and log files are normally created in the XML 

and HTML format. (9.) 

 

4.1 Keywords 

The testing functionality in a test case is created using ‘keywords’, which is the 

main idea behind the Robot Framework concept (9).  

Keywords can be implemented as methods inside test libraries or test data files. 

Library keywords provide lower level functionality to Robot Framework, thus us-

ing them directly inside the test case might impair understandability of the test 

case flow. 

The keywords implemented in test data files can wrap multiple keyword calls as 

one higher level keyword (10). This can improve the test case readability and 

provide a higher level functionality for test cases. 

 

*** Settings *** 

 

*** Test Cases *** 

Keyword Test 

 Echo And Timestamp  Hello, World! 

  

*** Keywords *** 

Echo And Timestamp 

 [Arguments]  ${arg} 

 Log To Console ${arg} 

 ${Time} =   Get Time 

 Log To Console  ${Time} 

 

This is a test case, which has a keyword definition with one input argument. 
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4.2 Test data 

Test data can contain test suites, resource and variable files (10). 

Test cases can be arranged in a hierarchical structure using directories that 

contain test case files. Test suite directories can also contain sub-directories, 

which create lower level test suite and this nesting can continue as deep as 

needed. 

Test case files provide the lowest level of the test suite hierarchy. These files 

can contain one or more test cases. (10). 

Data files are written as tables using HTML, TSV, reST or plain text formats. 

The used format is recognized by a file extension. These files can contain four 

types of test data tables: settings, variables, test cases and keywords. (9). 

The following example shows the basic structure of a test data file. It is written 

in a plain text format using spaces as a column delimiter. The plain text format 

would also allow the use of pipe character with spaces as column delimiter. 

 

 *** Settings *** 

Library       OperatingSystem 

 

*** Variables *** 

${MSG}    Hello, world! 

 

*** Test Cases *** 

TC1 

    [Documentation]    Example test 

    Print Message      ${MSG} 

 

*** Keywords *** 

Print Message 

    [Arguments]    ${IN_MSG} 

    Log            ${IN_MSG} 

 

4.3 Libraries 

Libraries provide an interface to test suites for interacting with the system under 

test and test tools. This interacting is done through library keywords, which are 

called from the test case or higher level keywords. 
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Robot Framework includes several standard libraries for basic operations and 

its functionality can be extended with external third-party libraries. 

 

Standard libraries provide a basic functionality for interacting with the operating 

system, modifying data, creating telnet connections, running processes, modify-

ing XML files and more (8). 

 

Extending the Robot Framework functionality further can be done by writing 

your own test libraries. These libraries can be written using Python or Java. In 

case of Java libraries, the running environment is limited to Jython. 

 

4.4 Support tools 

The Robot Framework package contains four different built-in support tools, 

which can help achieving different tasks before and after the test execution. (9). 

 Rebot tool is used for post-processing output XML files after the test exe-

cution. 

 Libdoc is a tool used for generating the HTML documentation of the key-

words in test libraries and resource files. 

 Testdoc tool is used for generating a high level documentation of the test 

case files. 

 Tidy can be used for cleaning up test output data and changing output 

file formats. 
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4.5 Test case styles 

Robot Framework test cases can be written using many different test case 

styles, which all have their pros and cons. 

Keyword-driven and behavior-driven styles are basic test case styles that de-

scribe the test case workflow. 

The data-driven style uses a test template as one keyword with inputs thus the 

same test can be run with multiple inputs. 

 

4.5.1 Keyword-driven style 

Keyword-driven tests use keywords to describe their execution flow. The exam-

ple below shows basic keyword driven test case. This case uses keywords 

‘Evaluate’ and ‘Should Be Equal’ to set and verify variable values. 

*** Test Cases *** 

Keyword-Driven Test 

    [Documentation]    Keyword-Driven Test 

    ${ANSWER} =      Evaluate ${2} + ${1} 

    Should Be Equal  ${ANSWER} ${3} 

 

4.5.2 Data-driven style 

In the data-driven test case style, the test case is created as a template with dif-

ferent variables as input data. 

This approach can be very useful when the test case must be tested with multi-

ple inputs and outputs. (2) 

  

4.5.3 Behavior-driven style 

The behavior-driven style implements executable requirements, which are 

known from ATDD (Acceptance Test Driven Development). 
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These executable requirements can be written in a Given-When-Then style like 

in BDD (Behavior Driven Development). 

*** Test Cases *** 

Valid Login 

    Given login page is open 

    When valid username and password are inserted 

    and credentials are submitted 

    Then welcome page should be open 

 

As can be seen from the example above, this test case style is easily under-

standable also to persons without a technical background. 
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5 SYSTEM ARCHITECTURE 

Since this was a major rework on a large existing system with a totally different 

language with its own features and qualities, the architecture had to be carefully 

planned. 

The system architecture was designed to be easily extendable to different test 

systems and equipment by adding test libraries and changing the used resource 

files. 

One requirement for the new system was to keep output report files identical 

compared to the existing system. This required writing of my own listener-li-

brary, which generates output XML-files according to the XSL-file, which speci-

fies the XML format. 

The TTCN-3 based test system required the Windows operating system, but 

this is not the case when running tests with Robot Framework since it runs also 

on Linux and Mac OS X. 

There might be some restrictions in the device specific libraries (e.g. the device 

does not work in the Linux environment), but the basic VISA-device libraries 

and other standard functionality should be able to run on Linux, Windows and 

Mac OS X. 

A generalized high-level picture of a typical test place can be seen in figure 4. 

Test devices could represent e.g. power meters, signal analyzers and signal 

generators. 
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FIGURE 4. General test place. 
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The high-level architecture of the testing system is described in figure 5. This 

picture shows the main components that are needed for executing the test 

suites.  

Most of the functionality is implemented inside test libraries, which interact with 

lower levels of the system. 

These libraries include the controlling of the DUT, test equipment and other re-

quired devices and systems. 

 
 

  
FIGURE 5. High-level architecture of the test system 

 

Some higher-level functionality is also implemented in resource test data files 

by using keywords.  
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5.1 Devices 

The RF performance testing requires the use of various test equipment, and all 

of these devices require test libraries for controlling them. Similar devices usu-

ally share some common methods and commands which should be imple-

mented only in one place. 

This is achieved through the use of inheritance and abstract base classes. 

The abstract base class can be used to define the type of the device and what 

methods it must implement.  

Figure 6 shows an example of an inheritance tree with three abstract base clas-

ses which define the methods and properties for a VISA device, signal analyzer 

and signal generator. 

 

FIGURE 6. Inheritance tree example 
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The R&S Signal Analyzer class must implement abstract methods and proper-

ties defined in the Abstract Visa Class and Abstract Signal Analyzer class. 

R&S FSV and R&S SMA100A classes are test libraries which Robot Framework 

can import.  

Test equipment is mainly controlled through the PyVISA-library which wraps 

VISA controls inside Python libraries. 

 

5.1.1 PyVISA 

PyVISA is an open source Python package used for controlling devices using 

VISA (11). 

It works on multiple operating systems and VISA-backends. It can even use a 

simulated PyVISA-sim backend which is used to simulate the test equipment. 

This could be useful while developing new test cases and libraries since expen-

sive test equipment does not have to be reserved for developing purposes. 

PyVISA-sim simulated devices which are defined in a YAML-file (12). 

Simulated devices provide basic responses to queries and can have properties 

with different data types and value ranges. 

These properties can have setter and getter methods which can be used to re-

quest and modify the property values.  

            sense_avg_count_auto_nsratio: 

                default: 0.01 

                getter: 

                    q: 'SENS:AVER:COUN:AUTO:NSR?' 

                    r: '{:.2f}' 

                setter: 

                    q: 'SENS:AVER:COUN:AUTO:NSR {:.2f}' 

                specs: 

                    min: 0.0 

                    max: 1.0 

                    type: float 
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The example above defines one property for a simulated device. The value for-

matting in the setter and getter response uses the PEP 3101 formatting.  

A full example of a simulated device is given below. This is a reduced version 

with only few dialogues and properties, but it shows the basic structure of the 

device.  

 
spec: '1.0' 

devices: 

    NRPZ: 

        eom: 

            GPIB INSTR: 

                q: '\r\n' 

                r: '\n' 

        error: ERROR MSG 

        dialogues: 

            - q: '*RST' 

            - q: '*IDN?' 

              r: 'ROHDE&SCHWARZ,NRP-Z23,MOCK' 

            - q: '*TST?' 

              r: '0' 

            - q: 'INIT:IMM' 

            - q: 'FETC?' 

              r: '46.8325462e+000;46.8234552e+000;46.8123472e+000' 

 

              #SYSTEM INFO 

            - q: 'SYST:INFO? MANUFACTURER' 

              r: 'Rohde & Schwarz GmbH & Co. KG' 

            - q: 'SYST:INFO? TYPE' 

              r: 'NRP-Z23' 

            - q: 'SYST:INFO? STOCK NUMBER' 

              r: '1137.7506.02' 

            - q: 'SYST:INFO? SERIAL' 

              r: '123456' 

            - q: 'SYST:INFO? HWVERSION' 

              r: '000000000' 

            - q: 'SYST:INFO? HWVARIANT' 

              r: '000000000' 

            - q: 'SYST:INFO? SW BUILD' 

              r: '<build number>' 

            - q: 'SYST:INFO? TECHNOLOGY' 

              r: '3 Path Diode' 

 

        properties: 

            sense_avg_count: 

                default: 4 

                getter: 

                    q: 'SENS:AVER:COUN?' 

                    r: '{d}' 

                setter: 

                    q: 'SENS:AVER:COUN {d}' 

                specs: 

                    min: 1 

                    max: 65536 

                    type: int 

resources: 
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    GPIB::0::INSTR: 

        device: NRPZ 

 

This simulates a GPIB device which has an address 0. 

If the above file is saved with a name ‘example.yaml’, it could be tested in Py-

thon CLI using the following commands: 

>>> import visa 

>>> rm = visa.ResourceManager('example.yaml@sim') 

>>> rm.list_resources() 

('GPIB0::0::65535::INSTR',) 

 

This shows that the resource manager is initialized successfully with the defined 

file using PyVISA-sim. The part after the @-character defines what backend is 

used. 

Simulated devices can be instantized and queries can be tested with the follow-

ing commands: 

>>> inst = rm.open_resource('GPIB0::0::INSTR', read_termination='\n') 

>>> inst.query('*IDN?') 

u'ROHDE&SCHWARZ,NRP-Z23,MOCK' 

 

National Instruments NI-VISA is a commonly used backend for real VISA de-

vices. Ideally, everything else would stay the same when using a real equip-

ment except that the ResourceManager instantiation would be modified to use a 

real backend. 

A typical module stack used for controlling a device from Robot Framework is 

presented in figure 7. 
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FIGURE 7. Test device control model 

 

5.2 Logging 

In addition to Robot Frameworks’ internal logging, an external logging service 

was introduced to create a hierarchical logging for all specified libraries. This 

logging service uses Python’s logging facility. 

The logging hierarchy is defined by library types, for example all VISA devices 

have one common ‘parent’ logger. 

The external logging service provides an additional control over logging of the 

test runs, since it uses Python logging handlers, which could e.g. send the 

logged data to a centralized server. 

 

5.3 Reporting 

Reporting is done by an external Robot Framework listener class in addition to 

existing Robot Framework reporting utilities. This class creates basic XML and 

HTML reports according to the XSL file in the same format as in the TTCN-3 

test system. 
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The HTML file can be generated from the XML file by a XSL transformation us-

ing the XSLT file (Figure 8). 

 

 

FIGURE 8. XSL Transformation 

 

Generated reports and documents are moved to a single output directory after 

the test execution.  

The reporting library can also append test data to the existing XML file, if the file 

name was specified in execute arguments. This can be useful when running 

multiple test cases at different times but wanting only one test report. 
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5.4 Installation 

The whole codebase is contained within a single repository, which contains the 

Python install script.  

The script uses Python setuptools for managing dependencies, package instal-

lation, upgrading and uninstallation. 

 

5.5 Documentation 

The basic keyword documentation is done inside test libraries using Python 

docstrings. The test library documentation is generated using the Robot Frame-

works libdoc-tool. 

The general documentation is written in the reST format and generated using 

the Sphinx documentation tool.  

This documentation style has few upsides: 

 Documentation is included in the repository 

o Easier to maintain 

o Version control 

o Easier to find 

 Sphinx can generate a documentation in various output formats: 

o HTML 

o LaTeX 

o ePub 

o Texinfo 

o Manual pages (POSIX man) 

o Plain text 
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5.6 Executing 

Test cases are started by the Python script, which parses the required parame-

ters including test place specific information, output directory for generated logs 

and output files, test suite to run and other Robot Framework specific parame-

ters. 

The test case execution is started from Python script by using Robot Frame-

works API. 

 

5.6.1 Resource Files 

Resource files are used to define specific variables and other information which 

are needed to specify test place and test suite parameters. 

Test place parameters define the used test place. This definition contains test 

place specific parameters such as what equipment the test place contains, 

amongst other things. 

Resource files also include parameters for test case pass limits. 
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6 CONCLUSIONS 

The main objective of this thesis was to develop a proof-of-concept for replacing 

the previous TTCN-3 based RF performance test system using Robot Frame-

work and Python. 

Since my background was in the system level test automation using Java, the 

RF performance testing was altogether a different kind of environment. Python 

and Robot Framework were also mainly new to me before I started working on 

this thesis, but they proved out to be easy to learn on the go due to a good doc-

umentation and a simple syntax. 

The proof-of-concept was successfully developed inside the time limit, which 

implemented the basic functionality needed from the system.   

Although replacing the previous TTCN-3 based system would still require a ma-

jor development work, it was proven that it would be possible using Robot 

Framework and Python libraries. This implementation would also provide some 

additional flexibility to the test system, such as simulated test equipment and 

the use of centralized database for test place definitions.  

Overall, I believe this thesis work proved out to be a successful experiment 

which taught me valuable new skills and provided a solid layout for further de-

velopment. 
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APPENDICES 

Appendix 1 Memo of initial data (in Finnish) 

 



MEMO OF INITIAL DATA  APPENDIX 1 

  

 
 

 

 

 

Työn tiedot  Tekijä1 Tilaaja2 

Joni Ollanketo Oy LM Ericsson AB 

Tilaajan yhdyshenkilö ja yhteystiedot3 

Pete Pietilä 

Antti Seppälä 
Työn nimi4 

OpenTTCN-pohjaisen testiympäristön korvaaminen Robot Frameworkillä 

 Työn kuvaus5 

 OpenTTCN:llä kehitetyt testit halutaan siirtää toiseen testiympäristöön, koska OpenTTCN-työkalulle 

ei ole tukea jatkossa.  

Kehitetyt testit liittyvät pääasiassa tukiaseman RF-suorituskyvyn conformance-testaukseen. 

 

 Työn tavoitteet6 

 -Kehittää tarvittavat apuluokat Robot Frameworkillä ja Pythonillä tarvittavien testilaitteiden ja 

ympäristöjen käyttöön 

-Portata osa olemassa olevista testeistä uuteen ympäristöön 

-Tuottaa koodista selkeä dokumentointi muille testaajille ja automaatiokehittäjille 

 Tavoiteaikataulut7 

 1.5.2016 - 31.8.2016 

 Päiväys ja allekirjoitukset8 

      /     /            
Tekijän allekirjoitus 

      

     /     /            
Tilaajan allekirjoitus 

      
1. Tekijän nimi, puhelinnumero ja sähköpostiosoite. 
2. Työn teettävän yrityksen virallinen nimi. 
3. Sen henkilön nimi ja yhteystiedot, joka yrityksessä valvoo työn suoritusta. 
4. Työn nimi voi olla tässä vaiheessa työnimi, jota myöhemmin tarkennetaan. 
5. Työ kuvataan lyhyesti. Siinä esitetään muun muassa työn tausta, lähtötilanne ja työssä ratkaistavat ongelmat. 
6. Esitetään lyhyesti ja selvästi työn tavoitteet. 
7. Esitetään projektin tavoiteaikataulu. Silloin, kun työllä on välitavoitteita, myös ne merkitään aikatauluun. Tavoiteaikataulun ja oppilaitoksen 

yleisaikataulun perusteella tekijä laatii oman aikataulunsa. 
8. Lähtötietomuistio päivätään ja sen allekirjoittavat tekijä ja tilaajan yhdyshenkilö. 

LÄHTÖTIETOMUISTIO 

 

 

 

  

 

 


