

Implementation of Continuous

Integration and Continuous

Delivery in Scrum

Case study: Food ‘N Stuff and WebRTC

Applications

LAHTI UNIVERSITY OF APPLIED
SCIENCES LTD
Degree programme in Business
Information Technology
Bachelor’s Thesis
Autumn 2016
Phan Dinh Huy Trinh
Minh Hieu Doan

Lahti University of Applied Sciences

Degree Programme in Business Information Technology

TRINH, HUY: Title: Implementing Continuous
Integration and Continuous Delivery
with Scrum

DOAN, HIEU Case study: Food ‘N Stuff and
WebRTC Application

Bachelor’s Thesis in Business

Information Technology 72 pages, 3 pages of appendices

Autumn 2016

ABSTRACT

Scrum, which is the most popular practice of Agile Methodology, has been
increasingly growing in popularity over the past decade. The
implementation of Scrum brings various positive benefits to software
development teams and enable them to adapt quickly to changes in the
requirements and business environment. However, there are always
opportunities for further improvement.

The goal of this study is to identify the benefits adapting Continuous
Integration and Continuous Delivery in Scrum by comparing the
development processes of two artefacts, which are small-scale projects
conducted at Lahti University of Applied Sciences. The first is a food
management application and social platform managed only by applying
Scrum. The second one is a real-time web communication application
implemented with Scrum and the support of Continuous Integration and
Continuous Delivery.

The results of the study revealed that the adaptation of Continuous
Integration and Continuous Delivery offers three major improvements in
terms of time, quality and portability. By implementing these into Scrum
during the development process of the second application, the authors
were able to save time, improve the application’s quality throughout the
development process and improve the portability of the application.

Keywords: Agile Software Development Methodologies, Scrum,

Continuous Integration, Continuous Delivery, Docker.

CONTENTS

1 INTRODUCTION 1

1.1 Background 1

1.2 Motivation of the Study 2

1.3 Thesis Structure 2

2 RESEARCH DESIGN 4

2.1 Research Method 4

2.2 Data Collection and Analysis 6

3 THEORETICAL BACKGROUND 8

3.1 Methodologies 8

3.1.1 Agile and Scrum Methodology 8

3.1.2 Continuous Integration 13

3.1.3 Continuous Delivery 18

3.2 Technologies 21

3.2.1 Version Control 22

3.2.2 Docker 25

3.2.3 Web Real-Time Communication 26

3.2.4 MEAN Stack 28

3.2.5 Amazon Web Services 30

4 DEVELOPMENT PROCESS OF THE FOOD MANAGEMENT
APPLICATION 31

4.1 Introduction 31

4.2 Project Goals and Software Specification 31

4.3 Development Team 31

4.4 Project Coordination 32

4.5 Development Phases 33

4.6 Development Process 33

4.7 Results 34

4.8 Drawbacks and Limitation 34

5 DEVELOPMENT PROCESS OF THE WEBRTC APPLICATION
AND THE IMPLEMENTATION OF CI AND CD 36

5.1 Introduction 36

5.2 Project Goals 36

5.3 Software Specifications 36

5.4 Development Team 39

5.5 Project Coordination 39

5.6 Development Phases 40

5.7 Development Process 40

5.7.1 Installation, Setting Up and Implementation of CI and
CD 40

5.7.2 Development Workflow Demonstration 57

5.8 Result 63

6 THE STUDY 65

6.1 Evaluation Criteria 65

6.2 Comparison and Evaluation 65

6.2.1 Time 65

6.2.2 Quality 66

6.2.3 Portability 66

6.3 Benefits and Drawbacks during the Development
Process 67

7 CONCLUSIONS 69

7.1 Summary of the Thesis 69

7.2 Answering Research Question 69

8 DISCUSSION 71

8.1 Limitations 71

8.2 Reliability and Validity 71

8.3 Further Research 72

REFERENCES 73

APPENDICES 77

LIST OF ABBREVIATIONS

API Application Programming Interface

ARN Amazon Resource Name

AWS Amazon Web Services

CD Continuous Delivery

CI Continuous Integration

CVCS Centralized Version Control System

CVS Concurrent Version System

DVCS Distributed Version Control System

EC2 Elastic Compute Cloud

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

IAM Identity and Access Management

IP Internet Protocol

Lahti UAS Lahti University of Applied Sciences

LXC Linux Containers

MVC Model-View-Controller

NAT Network Address Translation

SSH Secure Shell

SSL Secure Sockets Layer

SVN Subversion

TFS Team Foundation Server

URL Uniform Resource Locator

VCS Version Control System

WebRTC Web Real-Time Communication

LIST OF FIGURES

Figure 1 Relationship between development work and thesis (Kananen

2013) .. 4

Figure 2 Deductive Research Approach (Burney 2008) 5

Figure 3 Process diagram for qualitative research (Kananen 2013) 7

Figure 4 Deployment Pipeline (Humble & Farley 2011, 4) 18

Figure 5 Workflow without Version Control System (Somasundaram 2013)

 ... 22

Figure 6 Workflow with Version Control System (Somasundaram 2013) . 23

Figure 7 Development phases of Food Management Application 33

Figure 8 A screenshot of Talky.io and its features 37

Figure 9 Development phases for the WebRTC project 40

Figure 10 Droplet information on DigitalOcean ... 42

Figure 11 Creating an A record on DNSimple .. 43

Figure 12 Prompt with SSL certificate issued successfully 44

Figure 13 Result when accessing https://fxckyou.xyz:8888/socket.io/...... 45

Figure 14 Directory structure of the server folder 46

Figure 15 Directory structure of the client folder 47

Figure 16 GitHub repository for the WebRTC application 48

Figure 17 Question prompting to configure Karma 49

Figure 18 The result when starting Karma with the failed test case.......... 50

Figure 19 The result when starting Karma with the correct test case 51

Figure 20 Specify environment variables in TravisCI 53

Figure 21 Joining AWS with Docker Cloud ... 54

Figure 22 Redeploy trigger activation ... 56

Figure 23 Adding trigger URL to Docker Hub Webhooks page 57

Figure 24 Test case to check the existence of CopyToClipBoard function

 ... 58

Figure 25 H1 tag is added for verification ... 58

Figure 26 Test is being built in TravisCI ... 59

Figure 27 Test fails in TravisCI ... 59

Figure 28 Email sent for build notification ... 60

Figure 29 Test passes in TravisCI .. 61

Figure 30 Image building in Docker Hub triggered by TravisCI 61

Figure 31 Web service is being redeployed .. 62

Figure 32 Web service is redeployed successfully 62

Figure 33 Front page shows 'Pass Test' indicating the workflow with CI

and CD works effectively .. 63

Figure 34 Video Conferencing Demo of the WebRTC application 64

LIST OF TABLES

Table 1 Differences between Centralized VCS and Distributed VCS …...23

1 INTRODUCTION

1.1 Background

According to the State of Agile survey in 2015, Agile Software

Development Methodologies have been growing in popularity and

implementation. Out of the 3,880 survey respondents 95 percent stated

that their organization has adopted agile methodologies in its business. In

addition, the survey also pointed out that Agile Methodologies are being

implemented especially in enterprises and large organizations. In 2006,

when the survey was first carried out, two thirds of the responses stated

that their organization has less than 100 employees. However, according

to the 2015 survey, 31% of the respondents worked in organizations that

have over 1,000 employees. Agile Methodologies include different forms

and practices, which are Scrum, Lean and Kanban, Extreme

Programming, Crystal, Feature-Driven Development (McLaughlin 2016).

According to Versionone.com’s survey, 70% of the respondents stated that

the Agile practice which they have been using is Scrum or a hybrid version

of Scrum. Clearly then, Scrum is the most popular of the Agile Software

Development methods. (VERSIONONE.com 2015, 2.)

Scrum and other Agile Methodologies, in general, have several limitations.

One of them is the low frequency of code integration of the project. The

same is true with other traditional approaches: developers practice Agile

methods separately for a long period of time without being aware of the

increasing number of conflicts as time goes by. Therefore, after each

merge and build of the application, developers often spend more time on

debugging new bugs and conflicts, which costs unnecessary extra effort

and time. (Continuous Integration in Agile Software Development 2016)

Another limitation of Scrum is the release of the software. The release

phase of a modern software development cycle is still similar to traditional

software development methods. The preparation and work for the release

are postponed until the very end of the project and it creates an

overwhelming tension during that period. A great number of critical risks

2

are created since a lot of things can go wrong and it is extremely difficult or

even impossible to fix any problems that pop up in this phase due to the

pressure of the deadline. (Humble & Farley 2011, 5-6.)

1.2 Motivation of the Study

After having worked in various software development projects and applied

Scrum as the main project management approach, the authors have

realized and experienced the existing limitations of Scrum Methodology

and set out to find a solution.

During the research process, the authors discovered Continuous

Integration (CI) and Continuous Delivery (CD) and noticed that the

implementation of CI and CD in Scrum projects can bring many benefits

that can improve the software development process

With this objective in mind, the authors decided to carry out further

research and came up with the following research question:

What are the benefits of implementing CI and CD in Scrum-related

projects, and how can CI and CD improve these projects?

1.3 Thesis Structure

The thesis includes eight chapters. The first chapter includes a short

introduction to the topic, and introduces the reason for conducting the

study and the research question. The second chapter demonstrates the

design of the research process. It includes research methods, data

collection and data analysis of the research.

The third chapter provides a theoretical background. It covers the theory of

all three software development methods, which are Scrum, CI and CD,

and related technologies, which are Version Control, Docker, Web Real-

Time Communication (WebRTC), MEAN stack and Amazon Web Services

(AWS).

3

The fourth and fifth chapter demonstrate development methods and the

development process of two artefacts. Chapter four describes the

development process of an application which only adopts Scrum. The fifth

chapter proceeds to describe the development process of another

application which was developed by adopting Scrum, CI and CD. Next,

chapter six, summarizes the differences between the project using only

Scrum and the project using Scrum with the support of CI and CD.

Chapter seven introduces conclusions. It summarizes the study and

provides answers to the research question. Finally, chapter eight

discusses the limitations of the study, its reliability and validity, and

presents suggestions for further research and development.

4

2 RESEARCH DESIGN

Research design covers the research method and approach for this study.

Moreover, it also discusses the way data is collected and analyzed.

2.1 Research Method

Design science research or design research is the method applied in this

study. According to Barab and Squire (2004, 18), the purpose of design

science research originated from the need for a change towards

something better. A study applying the design science research method

contains a strict process of constructing artefacts to undertake the

mentioned problems, measuring the pattern and explaining the project

results to the pointed audience (Peffers, Tuunanen, Rothenberger &

Chatterjee 2008, 6).

Development work aimed at improving a product, service, process or

action, and doing research represent the two processes related to design

research. (Kananen 2013, 50). Figure 1 shows the relationship between

these two processes.

Figure 1 Relationship between development work and thesis (Kananen 2013)

Deductive and inductive are usually referred to as the two distinct research

approaches. According to Blackstone (2012, 19-20), the inductive

5

approach starts from specific observation and proceeds to broader

generalizations and theories, and is informally called as the “hill-climbing”

approach. On the other hand, the deductive approach applies theory to a

particular situation to acquire evidence that is utilized for a specific

conclusion. This method can also be called the “waterfall" approach.

Figure 2 describes how the deductive approach works according to Burney

(2008):

Figure 2 Deductive Research Approach (Burney 2008)

Developing new concepts or theories is not in the scope of this study since

this would require too much time and knowledge. Moreover, the authors’

purpose is to do research based on an existing solution, Agile

Methodology, and apply knowledge from experience and observation into

to the development process in order to finally solve the research problems

and answer the research question. Hence, this study applies the deductive

research approach.

In addition, when using the design research approach as a research

framework, a qualitative research approach appears to be the most

suitable approach since it is required at all phases of this framework

(Kananen 2013, 102). Additionally, Rogelberg (2004, 162-164) also states

that the qualitative approach helps to get a deep understanding of a

phenomenon and inclusive knowledge on processes. Therefore, the

authors decide to apply qualitative approach in this study.

According to Kananen (2013, 102), data collection methods and data

analysis are combined when using qualitative research methods. He also

states that in order to analyze material using qualitative analysis methods,

6

data must be collected by using qualitative data collecting methods. Data

collection and analysis are discussed next.

2.2 Data Collection and Analysis

According to Kananen (2013, 103), observation, theme interview, and

literature references are three most crucial data collecting methods of

qualitative research. They can be used depend on the kind of

phenomenon subject to research, its distinction and the information

accuracy and authenticity.

This is a practice-oriented study that aims to explore how to improve

Scrum by comparing and studying two application development

processes. The study applies observation as its data collecting method

because it is a suitable method when collecting data on processes

(Kananen 2013, 104).

Research diary is a basic method used during the research stage in order

to record the observations regarding a phenomenon (Kananen 2013, 108).

The authors decided to write a research diary during the development

tasks since this is helps in answering two crucial questions that can be

used to evaluate the results of this study: what kind of information does the

material provide and what findings can be made from it (Kananen 2013,

108).

The project applying the Scrum method will be described in detail in

chapter 4 in order to explain the related drawbacks. As a result, these

drawbacks are then used to establish the evaluation criteria that helps the

authors to focus on what should be noted during the development process

of the proposal solution. The solution be described in chapter 5. The

criteria will be described in chapter 6.

After finishing the project with the proposal solution, the authors collect all

the notes and discussion reports for content analysis. The purpose of the

content analysis is to acknowledge the core of the text and make a

concise statement out of it (Kananen 2013, 128). The criteria drawn based

7

on the drawbacks of the project that only applied Scrum will be used to

compared with the new development process. The aim is to find

improvement suggestions. Furthermore, other benefits and weaknesses of

each technology used during the development process will also be

described in chapter 5. Finally, the authors provide a conclusion to

summarize the thesis and answer the research question arisen in the

introduction. Figure 3 illustrates the diagram of this process, which is

adapted for qualitative research by Kananen (2013, 103).

Figure 3 Process diagram for qualitative research (Kananen 2013)

8

3 THEORETICAL BACKGROUND

The theoretical background gives an insight into what methodologies and

technologies will be applied in this study and during the development

process.

3.1 Methodologies

This subchapter discusses the following three project-management

methods: Scrum, CI and CD.

3.1.1 Agile and Scrum Methodology

Agile Software Development Method is a modern approach to project

management. It pays attention to collaborating closely with the customer,

continuous development and improvement throughout the project, and

quickly response to changes in the requirements of the customer. (Rico,

Sayani & Sone 2009, 1-2.)

Agile Manifesto and the Declaration of Interdependence

It is certain that Agile Manifesto and the Declaration of Interdependence

are the basis of the Agile Software Development and modern project

management. While Agile Manifesto establishes a list of values and

principles for software development, the Declaration of Interdependence

provides a collection of results that the user of Agile Software

Management can expect if the adaptation of Agile is implemented

successfully. (Pham & Pham 2012, 3.)

Agile Manifesto was first drafted in 2001 by a team of experts in software

engineering. The ambition of the team was to create a better software

development process After the meeting, four values for the modern

software development were established:

 Individuals and interactions over processes and tools

 Working with software over comprehensive documentation

9

 Customer collaboration over contract negotiation

 Responding to change over following plan

(Pham & Pham 2012, 3.)

Furthermore, Agile Manifesto also includes twelve principles:

1. Creating customer’s satisfaction through early and continuous

delivery of the software is the most important aspect

2. Improving customer’s competitive edge by quickly adapt to changes

in every stage of the development process

3. Providing the customers with working software within a short period

of time, which varies from two weeks to one month

4. Collaboration between the business team and technical team is vital

during the whole development process

5. Motivating and trusting each member to provide great results for

their work

6. Encouraging face-to-face communication within the team

7. The measurement of progress is how well the software functions

8. The necessary of thinking about maintainability during development

process in Agile

9. Paying attention to the quality of technical and design continuously

improves agility

10. Simplicity is a vital aspect

11. Self-organizing team provides the best idea of architecture,

requirements, and designs

12. Self-reflection during each interval is essential since it provides

solution to become more effective

(Pham & Pham 2012, 4.)

Then, in 2005, a group of project managers established six expected

result of a successful implementation of Scrum and how to achieve them.

The list was called Declaration of Interdependence:

 Increase return on investment by making continuous flow of value

10

 Deliver reliable results by engaging customers in frequent

interactions and shared ownership

 Expect uncertainty and manage for it through iterations,

anticipation, and adaptation

 Unleash creativity and innovation by recognizing that individuals are

the ultimate source of value, and creating an environment where

they can make a difference

 Boost performance through group accountability for results and

shared responsibility for team effectiveness

 Improve effectiveness and reliability through situationally specific

strategies, processes, and practices.

(Pham & Pham 2012, 4-5.)

Current situation and history of Scrum

The term “Scrum” was first mentioned in an article named “The New New

Product Development Game” by Hirotaka Takeuchi and Ikujiro Nonaka in

1986 (Takeuchi & Nonaka 1986, 4). In their article, the two authors

provided a new approach to project management. In this approach, the

team is small but each member of the team possesses a unique skill set

and the team shares the same goal. The term and approach were

originated from rugby, which the authors used as a comparison. Then, in

the next decade, Jeff Sutherland, VP of Engineering at Easel, Inc, and

Ken Schwaber, who is working for Advanced Development Methods,

continued to work on the improvement of their project management

methods and productivity in the own company based on the initial theory

by Hirotaka Takeuchi and Ikujiro Nonaka. In 1995, Sutherland and

Schwaber teamed up and created a new methodology based on their

findings and successful projects and named it Scrum. (Pham & Pham

2012, 5-6.)

Scrum in Practice

Firstly, in term of roles and responsibilities, a basic Scrum team consists of

three main roles: Scrum Master, Product Owner, and the development

11

team. The development team is small but cross-functional including

coders, designers, and testers. (Pham & Pham 2012, 6.)

A Scrum project is usually started with a meeting between the Product

Owner and the stakeholders. During this meeting, the Product Owner’s

responsibility is to receive ideas from the clients and put them in a product

backlog. This product backlog is a collection of requirements that have

been prioritized based on the negotiation between the Product Owner and

the customer. In this backlog, the requirement is ranging from business to

technology requirements to simply a bug fix to changes in the design.

Furthermore, the requirement is often rewritten into short user stories and

is vital to be ready before the release and sprint planning meeting. (Pham

& Pham 2012, 7.)

Next, the whole team organizes a release and sprint planning meeting.

Although the release meeting is not compulsory at first, it is proven

extremely helpful and essential since it enables not only the Product

Owner to understand more about the products for later meetings with the

customer but also the team to establish an estimated delivery schedule of

the software. Furthermore, it is vital for the team to conduct a sprint

planning meeting. The best practice for the sprint meeting is to divide it

into two parts: “What” and “How”. During the first part, the development

team and the Scrum Master go through all the existing requirements in the

product backlog with the Product Owner. The aim is to decide which

requirements will be carried out in which sprints and what the goals of that

sprint are. Later, during the “How” part, the team estimates how much it

will take to complete each task and put all that information into a tracking

system, which can be a project management software or a simple

whiteboard, before working in the actual sprint. (Pham & Pham 2012, 8.)

In most cases, a sprint’s duration ranges from one to four weeks. In

addition, the requirement in the Sprint backlog will be kept as a constant.

Changing the Sprint backlog is extremely rare and negative. Then, a daily

stand-up is carried out during every sprint for the Scrum Master to keep

track of the progress of the sprint. When the sprint is about to end, the

12

team has a Sprint review for inspection of the previous sprint and further

adaption and improvement for next sprint. In this meeting, the team

discusses the completed task as well as uncompleted tasks. The Product

Owner gains an overview of the status of software and provides feedbacks

for the team. Furthermore, the product owner can provide additional

information about the new changes in requirements and direction of the

market. (Pham & Pham 2012, 8-10.)

Lastly, a retrospective meeting is carried out in the very end of the sprint.

The team discusses what went well and what went wrong in the previous

sprint in order to find a solution to improve the productivity of team before

next sprint. (Pham & Pham 2012, 11.)

These sprints are executed repetitively until the end of the project. The

goal of Scrum and Agile, in general, is to improve the effectiveness of the

development process by constantly reviewing and satisfying the customer

by offering an adaptive version of the product as fast as possible.

Benefits of Scrum

Although the implementation and practice of Scrum seem complicated and

difficult to carry out, it is proven that a successful adaptation of Scrum

leads to various advantages. The outcome includes

 A risk reduction system

 A lean software development cycle

 An adaptive project management process

 A framework based on team self-organization, motivation,

ownership and pride

(Pham & Pham 2012, 15.)

Possibility for improvement

At the moment, one of the biggest setbacks of Scrum is the interval

between each release and delivery of the software to the customer. Due to

how the team is organized in Scrum, it is possible for a team to take from

13

one to four weeks to gather every member’s work and put them into a

release version. It results in the fact that it is unavoidable for the clients or

the end users to wait for that period to see a new and working version of

the application. Although it has been a huge improvement comparing to

the traditional Waterfall Project Management Methods, which the

customers only see the products in the last stage of the project, shortening

the time between each release is still necessary. The top priorities of Agile

Software Development have always been to satisfy the customer through

the early and continuous delivery of well-functional software and quick

adaption to changes and problems.

Then, another issue is the conflicts after each integration by developers in

a group. It is common for the developers to work on their own, do the unit

test, build the application locally and see that the application works

completely as expected. However, when the developers start to submit the

changes with the rest of the team, unexpected conflicts and problems may

occur. In addition, the longer the developers work separately, the more

complex the problem gets and the more difficult it is for them to be solved.

However, these problems can be solved by adapting of CI and CD into

Scrum.

3.1.2 Continuous Integration

In this part, the authors provide the audience with the definition, evolution,

benefits of CI as well as how CI is implemented in theory. In the end, the

authors explain how the adaptation of CI support and improve Scrum.

Definition

CI is a development approach where each developer of a team commits

the code for integration daily. During the integration, the software goes

through an automated test and build. After that, the system gives

immediate feedback about the state of the software. Thanks to this

process, the team is capable of detecting bugs or defects and dealing with

them quickly. (Duvall, Matyas, & Glover 2007, xx.)

14

Evolution of CI

Firstly, it is essential to be clear that CI is not a completely new software

development approach but only an advancement in the development of

integration process. The practice of executing builds frequently has always

been considered as one of the best practices for years and been

mentioned in several books about software development processes.

Moreover, the development and raising the popularity of CI is also closely

related to the development of Agile Methods. Thanks to Agile Methods,

software teams has started to pay more attention to continuous builds.

(Duvall et al 2007, 36.)

How CI works and key features

In order to fully understand CI, its processes, and features, the authors

figure that the best approach is to go through every step in a CI process

and explain the details and a related component of each step. Here is

what a basic CI process looks like:

 A developer completes a small task in his local machine and

commits the changes to the version control repository

 The CI system picks up the last changes in the repository as soon

as possible. The maximum advisable time is a few minutes.

 The CI system carries out a build of the software based on a build

script.

 After the build, the CI system provides the developer the

information of the person who has made the changes and the result

of the build immediately.

(Duvall et al 2007, 5.)

Next, the authors explain each step of the process in details for better

understanding.

In the first step, the three most important factors are the frequency and the

size of the commit as well as the existence of version control. Up until this

15

point, the application of version control repository is undeniably vital for

every software development. It is essential for programmers to keep a

record of the changes of the source code and other assets. At the

moment, there is a few number of existing version control systems

supporting CI, such as CVS, Subversion, and Git. For the both projects,

Git is chosen. Description and the reason why the authors choose Git

among other components are provided later in the chapter 3. (Duvall et al

2007, 7-8.).

For the frequency and the size of commit, it is recommended that the

programmer commits small tasks as early and frequent as possible. The

reason behind this practice is to make it easier and more convenient for

developers themselves to keep track of the problems in case of a failed

build. The more complex each change is, the more difficult it is for the

developers to identify the problems and deal with it. (Duvall et al 2007, 39-

40.)

After the developers have committed their works to version control

repository, the rest is up to the CI system. The role of the CI system is to

get the latest copy of the repository and build the application. The

developer is capable of setting the server to scan the repository for

changes every few minutes or even every hour, although this practice will

not be considered as CI. (Duvall et al 2007, 8-9.) Nowadays, there are

many free and open source CI systems such as CircleCI, TravisCI, and

Jenkins. Based on the authors’ experience and research, TravisCI has

been chosen for the CI systems.

After retrieving all the changes in the repository, the system builds the test

based on build scripts. The build script can be only one or a collection of

scripts. Their function is not only to compile but also to test, inspect and

deploy the software. Although it is a common practice for developers to

build their software on their local machine and integrated development

environment (IDE), it has not been strongly recommended since a build is

only appropriate if the same build can be executed without the IDE. That is

16

the reason why the use of CI and build script is necessary for the quality

management of the software. (Duvall et al 2007, 10.)

The last and most vital step in every CI system is the feedback process.

Nowadays, email is the most common practice for feedback. After building

and testing the software, the system will generate the result of the build as

well as feedback and send it the developer via email. The key factor in the

feedback mechanism is time. It is essential that the developers receive the

outcome of the latest build as soon as possible since the earlier a problem

is identified, the easier and quicker the programmer can fix it. (Duvall et al

2007, 10.)

The Benefits of CI

If CI is correctly utilized and implemented, it provides the development

team with the following benefits:

 Reduction of risks

 Automate repetitive manual process

 The software is deployable anywhere and anytime

 Better project visibility

 Greater confidence from the team about the quality of the software.

(Duvall et al 2007, 29.)

Firstly, the most popular benefit that CI offers is the risks reduction. By

making the software integrate many times per day, the developer can

identify and fix problems rapidly and the team is able to keep track of the

quality of the application frequently. It also avoids assumption by the

developers by providing real-time and accurate feedbacks after each

integration. (Duvall et al 2007, 30.)

Then, the automation of the repetitive processes is also a major benefit.

The automated system and processes save time, costs and effort. Thus, it

enables the team to concentrate and work on other activities. (Duvall et al

2007, 30-31.)

17

Next, from the customer’s point of view, the fact that software is always

available for deployment is the greatest benefit. Thanks to CI, the software

can be easily updated with small changes and ready to deploy

immediately. The changes range from bug fix to a new feature and the

customer will be delighted by how a recent requested small change is

quickly dealt with. (Duvall et al 2007, 31.)

Furthermore, CI provides developers with greater visibility of the project as

a whole. In the past, in order to make a decision about innovating an

improvement, the developer is required to collect the data manually or

even worse, make a guess. As a result, it takes a lot of time as well as

energy and the required information might not be collected at all. However,

thanks to the application of CI, the process has become a lot easier.

Continuous System provides real-time data about the latest build such as

the defect percentage and completion progress. In addition, the trends of

the software involving the success rates of total builds or overall quality of

the software is accessible thanks to the system. (Duvall et al, 2007, 31.)

Lastly, since the system runs the software through a thorough series of

automated test and inspection, the team is certain that the quality of the

product is qualified for deployment if the build was successful. Besides, if

the build failed, the developer is immediately informed of the problems and

where the causes are. (Duvall et al 2007, 32.)

How CI improves Scrum

CI supports Scrum in two aspects: the quality of the software after each

integration and the possibility to deploy the application anytime and

anywhere. Thanks to the automated testing and automated build, the

developers are encouraged to integrate their works as many times per day

as possible and they are provided with feedback immediately by the

system. This process reduces risks of conflicts when too many developers

are working on the same project separately. Furthermore, CI enables the

possibility to deploy the software anytime and anywhere. This feature is

extremely valuable for the customer since it leads to the fact that a working

18

and quality version of the product is ready to be deployed and delivered to

them.

Now, the only issue left is how to deliver this quality version of the product

as quick as possible to the customer. Fortunately for the development

team, CD provides the solution to the problem.

3.1.3 Continuous Delivery

Definition and the relationship between CD and CI

CD is a software development practice that enables software to be ready

for deployment into production anytime and anywhere (Fowler 2013). The

main goals of CD are to implement the build, test, deploy and release

process of the application automatically. This implementation is called

deployment pipeline which is illustrated in figure 4. (Humble & Farley 2011,

3.)

Figure 4 Deployment Pipeline (Humble & Farley 2011, 4)

According to the above figure, it is clear that some of the processes are

similar to CI. It is because CI is a part of CD. In CD, the process includes

frequently automated builds of the software, automated testing, and

inspections in every build and a feedback system which enables

developers to detect and deal with bugs as soon as possible. Then, the

last step is to release the software into a production-like environment. The

idea of CD is to also automate the release process and this step is the one

that turns CI into CD. (Fowler 2013.)

19

How CD works in the release phase

Due to common project management methods and software development

practices, the release day of an application is usually stressful and

intensive. First, the host environment is required to be prepared. Then, a

third-party software is required to be installed. Next, the configuration files

are also required to be created and copied to the host server and if the

project includes a database system, all of them is needed to be transferred

to the production. In short, there is a lot of vital activities needed to be

carried out on the release day. However, they are usually done manually,

which makes the whole process is prone to human’s error, and one

mistake can cause the software to not function as expectation although it

had passed all the testing before releasing. (Humble & Farley 2011, 5.)

However, by applying CD, the development team is able to improve the

release phase of the application by automating all of the required activities

during delivery. During the release phase, these automation processes

include dependencies and production environment managements. First is

to automate the management system of dependencies. A dependency

appears when a part of an application is relied on another software to

function properly. A common type of dependencies is third-party libraries.

It is a piece of software that is developed outside the organization and is

rarely updated. In order to manage the supported libraries automatically,

using version control or declaring them and using tools like Maven and

Ruby to download them from the internet are the two main practices at the

moment. Using version control, which is to pushing every library along with

the software into the repository, is the simple approach and is

recommended for small projects. It ensures that the team is using the

exact same pieces of code from the libraries. However, if the size and

number of libraries grow, the size of the repository also increases and it

makes the build-time during integration longer. Therefore, it is considered

preferable to use dependencies management tools like Maven and Ruby.

The tool enables developer their required libraries and their version. The

tool will then download that version of libraries whenever there is a build or

a deployment. The drawback of this practice is that developers are

20

required to configure both the tool and the libraries carefully in order to

execute the repeatable build. However, the effort is worthy because it

maintains the size of the software and makes sure that the team is working

on the same code simultaneously. (Humble & Farley 2011, 351 – 355.)

Then, automating the configuration and creation of a production-like

environment is another essential step in CD. The application’s

environment, which includes hardware, software, infrastructure and

external system, is important for an application’s functionality and quality.

One change in one of these things might cause failure of the product.

Nowadays, the common practice for this process is to install every piece of

software and rewrite the configuration files manually. Although the practice

is simple and straightforward, there are too many problems and risks that

go along with it. These risks are:

 One change is able to break everything

 The amount of configuration information is too great to manage and

handle

 Difficulty in recreates the environment for testing purpose

 Identifying and fixing a problem in the environment is difficult and

time-consuming

Therefore, it is recommended to automate these processes in order to

save time, reduce risk and make the environment establishment be easy

and convenient. In CD, the common practice is to apply version control to

the configuration files and take advantage of environment management

tools like Puppet to create the environment based on the configuration

files. It is essential to keep the files in version control because it allows the

team to keep off the changes of the configuration. Whenever a build based

on a new configuration goes wrong, version control enables the team to

revert to a previous and working configuration. Then, same as the

management system for dependencies, the management system for

environment allows developers to declare all the related information about

the operating system and software, which is the purpose of all the

configuration files. Based on the information provided in the configuration,

21

the system is able to download and install the needed dependencies. This

process enables the development team to recreate the environment

quickly for both testing and deploying purpose. (Humble & Farley 2011,

49-53.)

The benefits of CD

As mentioned above, since CI is a part of CD, CD inherits all the benefits

of CI. These advantages include the decrease in risks, the increase in the

team’s level of confidence and deployment flexibility. (Humble & Farley

2011, 17-21.)

Further, CD also offers the development another benefit, which is stress

reduction. By automating every repeated and manual processes, the team

avoids errors and is always certain that the software and the production

environment is stable, well-configured and ready for deployment and

delivery. It results in the release day being much less tense and

overwhelming for developers. (Humble & Farley 2011, 20.)

Lastly, since the release process become smoother and more convenient

for developers, it enables the team to deliver the software to the customer

faster. As mentioned in the CI section, the question is how to deliver the

quality and deployable version of the software to the customer immediately

after integration. CD solves the problem by automatically configuring the

production environment and it ensures that the software is truly ready to

be deploy anywhere and anytime. This practice is extremely supportive in

Agile in general and Scrum in particular because based on the Agile

Manifesto principles, delivering an early version of the product frequently is

always the top prior of every Agile development team.

3.2 Technologies

Technologies covers the general definition of concepts and tools used for

developing the web application. Furthermore, the explanation as to why

those technologies are chosen is also included in this chapter.

22

3.2.1 Version Control

Loeliger and McCullough define Version Control System (VCS) (2012, 1)

as “a tool that manages and tracks different versions of software or other

contents”. They also address some of the critical roles of VCS such as

developing and preserving a repository of content, offering admission to

historic versions of each datum, and storing all modifications in a log. In

short, the purpose of VCS is that whenever developers would like to make

an abundant of modifications to the existing content, they can perform an

action as marking those changes as a stage. This stage could be seen as

a failsafe mechanism in case that things go wrong and are not as they

expected, they can easily revert to the states that things were still in

control. Somasundaram (2013) discusses this sort of issue through the

demonstration of the content creation with and without a VCS. Figure 5

and 6 show his demonstrations.

Figure 5 Workflow without Version Control System (Somasundaram 2013)

The flow of the above figure is one-way, which means that developers

cannot go back to any previous phases from the final stage to create a

new direction with new purpose without any data loss. The only alternative

approach developers could do in order to preserve data is utilizing the

“save as” option which is giving the file a different name and starting any

modification from that file.

23

Figure 6 Workflow with Version Control System (Somasundaram 2013)

In contrast, utilizing a VCS can make the workflow look like the previous

figure. Developers now can mark each and any alteration that they think

important as a new stage and go on with further development. They now

can go back to any previous stages that they have marked whenever they

want.

Santacroce (2015, 1) points out two different types of VCS, which are

Centralized Version Control System (CVCS) and Distributed Version

Control System (DVCS). Table 1 compares their differences and some

examples for each VCS.

Table 1 Differences between Centralized VCS and Distributed VCS

 Centralized VCS Distributed VCS

Description Developers can access the

files that are kept on a remote

server from their local

machines.

Developers can have or

not a single server or more

and they can work offline

despite internet connection

24

Git

Git is an open-source, high-performance, flexible and hard-to-corrupt

DVCS utilized in the Linux kernel project (McQuaid 2014, 3). It was

created by Linus Torvalds in 2005 and now is maintained by Junio C.

Hamano (Gajda 2013, 1). There are several factors that make Git become

more and more popular and set Git apart from other VCSs. First, atomicity

guarantees the avoidance of partial completions when handling content

with Git, which ensures there is no data loss or version disparity occurring.

Second, unlike other VCSs which storing different files among versions of

each file, Git focuses on the file relation and takes a snapshot of the entire

set of files whenever a version is created. Therefore, instead of storing

multiple versions of the same file, Git only refers to the previous snapshot

if there is no modification in the file content. This makes the operation

performed using Git takes only a couple of seconds even when handling a

lot of files. Last, Git provides a strict security for developers’ file content by

using SHA-1 hash which performs a checksum before those files are

stored, which means that no one can possibly modify the contents of any

folder or file without Git’s notice. (Somasundaram 2013, 16-18.)

GitHub

GitHub is a service that offers Git repository hosting, issue trackers, and

several other tools for collaboration teams (McQuaid 2014, 224).

According to Westby (2015, 211), GitHub is the most popular hosted VCS

for open source projects with more than nine million users in 2015. Thus,

Possibility of losing works since

there is only 1 single unit

Examples Concurrent Version System

(CVS), Subversion (SVN),

Team Foundation Server (TFS)

Bazaar, Mercurial, Git.

25

the authors decide to use Git and GitHub for version controlling in this

project.

3.2.2 Docker

In order to understand Docker, the definition of containers should be

mentioned first. Mouat (2016, 3) defines containers as “an encapsulation

of an application with its dependencies.” While they are considered

mistakenly as virtual machines at first glance due to the fact that they also

contain a separate instance of an operating system which can be used to

install and run applications, there are several benefits that developers can

only find when they are working with containers instead of virtual

machines. First, the elimination of environment transition could help

developers avoiding lots of errors and bugs thanks to the portability of

containers. Next, the lightweight attribute can ensure that a single host

machine now can run multiple containers simultaneously in order to imitate

a production-ready distributed system. Last but not least, containers

deliver simplicity to end-users, which means now users can avoid the

complex configuration and installation when downloading and running

applications that cost them a huge amount of time before. (Mouat 2016, 3-

4.)

Docker is a container management system that assists developers in

managing Linux containers (LXC) in a straightforward and comprehensive

way (Gallagher 2015, 3). In more practical sense, Docker wraps and

extends LXC in numerous approaches, such as portable images and user-

friendly interface, in order to construct an entire solution for container

foundation and allocation (Mouat 2016, 6). In the scope of this study, the

purpose of the authors is not covering all the Docker concepts, but only

involving the crucial components and their brief definition for the software

development process related to this project:

 Docker images: templates for Docker containers, which are made

up of multiple layers of the read-only filesystem.

26

 Dockerfile: the basic building block of Docker containers, which

contains an instruction that can be used to create a Docker image.

 Docker Hub: the default service for hosting and distributing images,

it can also be considered a community where developers can

share, find and extend Docker images.

(Mouat 2016, 24-28.)

 Docker Hub Automated Build: Docker Hub‘s special feature which

offers developers to utilize build clusters in order to create images

automatically from a repository (GitHub or Bitbucket) containing a

Dockerfile. There are several advantages of Automated Build

compared to ordinary image creation such as images are built

exactly as indicated, the availability of Dockerfile for users and up-

to-date repository. (Docker 2016.)

 Docker Cloud: Software-as-a-Service hosted by Docker, which

provides developers the ability to manage, deploy and scale their

applications in any environment. (Docker 2016)

Docker Hub Automated Build and Docker Cloud play important roles in the

CI and CD respectively, and their utilization with related concepts and

features will be described in details in chapter 4.

3.2.3 Web Real-Time Communication

In May 2011, an open-source project for web-based real-time

communication known as WebRTC was published and released by

Google (w3.org 2011). Ericsson Labs first created a pre-standard concept,

Connection Peer Application Programming Interface (API) in January

2011, and then has expanded to the point that there are now advanced

implementations in certain modern web browsers. Browsers now are able

to communicate and exchange real-time media with other web browsers in

a peer-to-peer fashion, without any third-party software (Loreto & Romano

2014, 1.). Ristic (2015, 2) points out the difficulty of developing a real-time

communication application without WebRTC, which is having to import a

27

vast of frameworks and libraries to handle connection dropping, data loss

or Network Address Translation (NAT) traversal. And with the assistant of

WebRTC, all of those libraries or frameworks are now built into the web

browser API, making the implementation details easier. For more details,

Sergiienko (2014, 4-5.) makes a list of advantages of using WebRTC in

business in general level, which also are criteria that help the author to

consolidate the decision of choosing WebRTC to be the protocol for

developing the desired application instead of others. They are:

 Cost Reduction: No deployment software for the customers and

since WebRTC is a free and open source technology, business no

longer is required to pay for complex solutions or IT support.

 Plugin-free: Formerly, building interactive media web-based

application required users to install or use several solutions such as

Flash or Java Applets, which also led to paying attention to the

distinctness among operating systems and platforms.

 Peer-to-peer communication: No middle point server is needed

since the communication now will be established straightforwardly

between two or more endpoints.

 Simplicity: WebRTC functionality can be simply implemented into

the web services or applications by using JavaScript API and other

increasing developing frameworks, which means that there is no

longer the need for professional developers or specific knowledge.

 Cross-platform: Every operating system with a web browser can run

WebRTC application

 Open source: New errors and bugs can be discovered and solved

effectively and quickly by a growing community.

With the purpose of focusing more on the software development than on

the technology, the authors choose to use simpleWebRTC, which is a

bundle of libraries wrapping WebRTC APIs and providing code snippets,

client components, and server implementation to simplify the process of

28

developing WebRTC application. SimpleWebRTC introduction and

implementation will be described in more details later in chapter 4.

3.2.4 MEAN Stack

According to Haviv (2014, 7), MEAN stack is defined as follows

The MEAN stack is a powerful, full-stack JavaScript solution

that comprises four major building blocks: MongoDB as the

database, Express as the web server framework, AngularJS

as the web client framework, and Node.js as the server

platform.

MongoDB

MongoDB is a document database, which stores documents as binary

JSON, or BSON. Unlike relational databases, which holds the concept of

columns defining the name or type of data and rows defining entry,

document databases present the concept of rows in which each row is a

document which defining and holding the data. The following snippet

demonstrates a simple MongoDB document.

{

"firstName" : "Simon",

"lastName" : "Holmes",

_id : ObjectId("52279effc62ca8b0c1000007")

}

(Holmes 2013, 12.)

Express

Express is a web application framework for Node.js, which aiming to

establish a web server capable of listening to incoming requests and

returning appropriate responses. It also abstracts away some of the

complexities related to routing Uniform Resource Locator (URL), building

29

Hypertext Markup Language (HTML) pages and using sessions. (Holmes

2013, 10-11.) In short, Express makes the developing of web application

on top of Node.js more rapid and straightforward.

AngularJS

Over 25 years of web development, three-tier architecture has been

utilized in various technology stacks for building web-based applications.

This architecture includes three crucial layers: database, server, and client

and can be also known as Model-View-Controller (MVC) architectural

pattern (Ramirez 2000). AngularJS is a front-end JavaScript framework

designed to utilize the MVC architectural pattern for building single-page

applications or SPAs. In order to extend the functionality of HTML, which is

its fundamental purpose, AngularJS applies specific attributes that connect

JavaScript business logic and HTML elements. This allows two-way data

binding between models and views and makes DOM manipulation cleaner.

Moreover, with the utilization of MVC architecture and dependency

injection, code structure and testability are also improved significantly.

(Haviv 2014, 162.)

Consequently, the authors aim to use MEAN stack for developing the

video conferencing application with WebRTC. Each component in this

stack has many concepts and advanced techniques that will not be

covered in this study. The purpose of the authors in this chapter is only

presenting a basic definition of each technology and their advantages.

Some additional technologies and how to connect the components

together in order to build a complete application will be defined and

described later in chapter 4.

Node.js

Node.js is a software platform, which contains a built-in Hypertext Transfer

Protocol (HTTP) server library, allows developers to create their own web

server and build web applications above it (Holmes 2013, 6). Haviv (2014,

30) also defines Node.js as an uncomplicated, highly effective, and simply

scalable platform with the capability of running complex applications.

30

3.2.5 Amazon Web Services

AWS is a cloud computing service by Amazon, which offers a reliable,

scalable and low-cost cloud infrastructure to businesses (AWS 2016).

AWS provides a wide collection of global cloud-based services such as

storage, compute, backup, analytics, developer and management tools,

which assist organizations in lowering IT cost, scaling and as a result,

moving faster (AWS 2016). In this study and in the development process,

in particular, the authors merely choose to use several services of AWS,

which are Elastic Compute Cloud and Identity and Access Management.

Elastic Compute Cloud (EC2) is a web service of AWS which offers cloud-

based resizable compute capacity. Users can create and control instances

easily with web service APIs, which also provide the possibility to

customize the instances with any type, operating system, and software

packages. (AWS 2016)

Identity and Access Management (IAM) is an AWS web tool designed to

enable developers to control securely the access to AWS services as well

as resources for their users. IAM assists in creating and managing users

and groups, creating roles and permissions to allow or deny the access to

AWS resources. (AWS 2016)

31

4 DEVELOPMENT PROCESS OF THE FOOD MANAGEMENT

APPLICATION

In this chapter, the author describes the software development process

and management of the first artefact. The management method using in

this artefact is only Scrum Methodology.

4.1 Introduction

In fall of 2015, the authors and three other students studied a course

called Agile Web Application Development Project. In this course, the

students were expected to develop a quality and functional web

application called Food N’ Stuff using the knowledge that they have

learned in three other courses, which are Agile Software Development

Methods, Web Application Development, and Testing.

4.2 Project Goals and Software Specification

The project contains a few number of goals. The first is to create a

functional web application by applying the knowledge from the Web

Development Application and Testing courses. Then, it is compulsory for

the team to practice Scrum during the development process since it has

been taught in the Agile Software Development Methods course.

For the specifications of the application, it is given by the stakeholders,

which is the teacher of the course. It should allow the users to register,

login, browse the community’s recipes, select favorite, create a new one

and use them to create shopping plan.

4.3 Development Team

The team consists of three main roles, which are Scrum Master, Project

Owner, and the development team. One author was the Product Owner

and the other was the Scrum Master. The other students form the

32

development team with three different roles, which are developer,

designer, and tester.

4.4 Project Coordination

For this project, the team executed Scrum closely to the theory. The

project was carried out in five sprints which each last for two weeks. In a

sprint, the team organized a planning meeting at the first day of the sprint,

a retrospective meeting at the last day of sprint and daily check-ups

throughout the whole development process.

In the planning meeting, the Product Owner prioritized the tasks in the

backlogs and the Scrum Master reviewed them and divided the task to the

development team.

Then, during the development process, the development team worked on

the tasks that were given to them by the Scrum Master in the planning

meeting. These tasks varied from new feature to bug fix to testing. In daily

check-ups, the Scrum Master carried out daily check-ups properly in order

to keep track with every member’s working progress. It enabled the Scrum

Master to react quickly to changes in the risk of the difficulties and

complexity of the tasks or sickness of the members. During that time, the

Product Owner’s role was to collaborate closely with the stakeholders, who

is the teachers of the course, to collect changes, feedback, and new

requirements.

Lastly, in the retrospective meeting, the team reviewed all the works that

had been done or not done in the previous two weeks. In that same

meeting, the team also met up with the stakeholders, showed them the

current states of the application and received feedbacks and

recommendation for changes and bug fixings from them.

33

4.5 Development Phases

Figure 7 illustrates the development phases of the Food ‘N Stuff

application that the authors have already developed earlier, including the

divided tasks for 5 developers, the start and end date as well as the status

of each task.

Figure 7 Development phases of Food Management Application

4.6 Development Process

According to the project coordination and development phases, the Food

‘N Stuff project has been completed with the management of Scrum

method. The development process including installation, setting up the

project as well as developing application features is described in the

development phases. The authors do not discuss these tasks in details

due to two reasons. First, the development of this project has happened

since fall of 2015 hence guiding audience through each step and taking a

snapshot for each task again for illustration are extremely difficult and

troublesome. Second, the authors have already taken notes during the

development process of this project and conclude them to find out the

34

results including drawbacks and limitation, which will be described next.

These results, as stated before, are the most important components to

establish the criteria needed for the comparison with the new proposal

solution. Therefore, the authors consider the development process of this

project is not necessary to be mentioned and covered.

4.7 Results

In the end, the project has been successful. The team has delivered a fully

functional and well-designed web application in the agreement time.

Moreover, the stakeholders have been satisfied with the team as well as

the development process of the project due the team has always delivered

the software that contains new features and adapts to every change in the

requirements well in each retrospective meeting. The software is now

published and available on GitHub as Open Source for further

development.

4.8 Drawbacks and Limitation

Although the project has been considered successful, the authors, who

were the Product Owner and Scrum Master, has identified several

limitations of Scrum during the development process of the application.

The first aspect is the interval time between each built and its quality.

During the development process, the developers have worked separately

and independently from each other. Then, since there has been no

agreement on how frequent all the developers should integrate their code

to the master branch, the development of the software has gone on

differently and separately for days. Thus, after each merge from every

member’s work, the team has had to deal with various conflicts and spent

extra time on debugging and solving the difference. Moreover, the longer

the interval has been and the more code developers have shared, the

more problematic the situation has been. Although the team has been able

to solve the problems and deliver the project on time, the team has noticed

35

that this kind of problem should not occur and should be dealt with

entirely.

Secondly, the availability of the software has been limited. Due to the

limitation of the team’s knowledge, the software has merely been tested

and deployed locally. It has led to the fact that the team has been only

capable of delivering the software to the stakeholder during the

retrospective meeting which only has happened each couple of weeks.

During that time, there has been always changes in requirements and

feedbacks that the Product Owner found that it could be found out sooner

if the team could deliver the application on a more frequently basis.

Moreover, the earlier the recognition of changes, the better it is for the

team to adapt as well as save a great amount of time and effort. Then,

whenever the team has been required to deploy the application to a new

host server such as Microsoft Azure or LAMK’s virtual machines, there has

been extra time and effort spending on setting up the new hosting

environment since each of them requires a different kind of configuration

and installation.

36

5 DEVELOPMENT PROCESS OF THE WEBRTC APPLICATION AND

THE IMPLEMENTATION OF CI AND CD

This chapter provides the readers with the development process of the

second artefact. The software development management method of the

artefact is Scrum Methodology with the support of CI and CD. Moreover,

the authors also describe the implementation and adaptation of CI and CD

in details.

5.1 Introduction

The LamkRTC is an open source project developed by the authors. The

aim of the project is to create a WebRTC application for teamwork in

LUAS and to see the benefits of applying CI and CD along with Scrum.

The project is divided into two main phases: setting up and development.

The project has started in August of 2016 and finished within the same

month.

5.2 Project Goals

The goal of this project is not only to complete a quality application within a

scheduled timetable, meeting all the project specification, but also to apply

CI and CD in Scrum while developing the software.

In the end, the final goal of this application is to see how CI and CD can

improve the Scrum Methodology.

5.3 Software Specifications

Since the development of the application is the author’s own idea in order

to learn about CI and CD as well as create a uniform communication

system for the school, the specification of the application is decided by the

authors.

For the functionalities of the application, the aim of the project is to create

a real-time communication application which meets all these following

37

specifications. These specifications include creating room for teamwork,

group conversation via video, audio, and chat, disabling and enabling

video and audio stream, inviting others to the room and locking the room

to limit the number of participants. In order to accomplish these goals, the

authors use the WebRTC APIs and SimpleWebRTC library.

SimpleWebRTC and Talky.io

SimpleWebRTC is a JavaScript library which was developed by Henrik

Joreteg and is being preserved by &yet, an IT company located in the US

(&yet 2016.). The official site of SimpleWebRTC

(https://simplewebrtc.com/) provides the reader with demos and guideline

of the library. Moreover, the website introduces Talky.io, a WebRTC

application built based on SimpleWebRTC.

Talky.io (https://talky.io/) is a real-time communication application

developed by &yet. The application is built with the help of

SimpleWebRTC library and provides the users with a great list of features.

These features include creating group video conservation for up to 15

people, screen sharing and locking the room. Moreover, the Talky.io is

also available for iOS devices such as iPhone and iPad. (&yet 2016.)

Figure 8 A screenshot of Talky.io and its features

38

Software requirements specification is a descriptive list of the goal and

expectation of the software. It is the first process of the whole development

cycle and it enables the authors to focus on achieving the desired features

and goal of the software. (Rouse 2007.)

Talky.io is used as a model for creating the software specification of the

application. However, due to the limitation of time and ability of the

authors, the application does not have the same features as Talky.io.

After discussion, the authors decide to leave out two features of Talky.io,

which are screen sharing and iOS compatibility. The screen sharing

feature requires the developers to create a separate browser extension,

which leads to extra time. Then, due to the lack of iOS development

knowledge, the authors decide not to develop the application on iOS.

However, the remaining features still fulfill the original goal of the authors

for the application. Here is the list of all the features and requirement of the

application:

 Room creation: The users can create a room and name it by

themselves.

 Video/Audio chat: The users can communicate with other, who is

also in the room, in real-time with video images and sounds.

 Instant messaging: The users can send messages to everybody in

the room via the chat box.

 File sharing: The users can share digital files with others using chat

box.

 Disable/Enable Video/Audio: The users can turn off and turn on the

webcam as well as the audio input and output if they feel

necessary.

 Invite people: The user can invite people to join them by copying

the URL and send it to others.

 Lock room: The admin of the room, who created the room, can lock

the room by himself or herself in order to limit the participants of the

conversation.

39

 Leave room: The users can leave their current room and back to

the room creation view.

 Notification system: Inform users when user joining or leaving the

room and when the user changes their username.

5.4 Development Team

Since the application is a personal idea of the developers, the developers

are the Product Owner, Scrum Master and Stakeholders of the software at

the same time.

For the development of the application, the roles are divided into two main

categories and each developer takes one:

 Front-end developer and designer

o The role of this position is to design the user interface of the

application and develop the functional features of the

application.

 Back-end developer and tester

o Responsibilities of this role are to develop the server for

signaling and writing test cases for automation test for CI and

CD.

5.5 Project Coordination

During the development process of this application, the authors have

carried out the same practices as the food application system with a few

differences. This project only lasts for four sprints and each sprint is one

week. Then, since the authors have lived in different cities during the time

of development, the daily check-ups have been replaced by constantly

updating via instant messaging service including Facebook Messenger.

Other than that, the project is coordinated in the same way as the food

management application project.

40

5.6 Development Phases

Figure 9 summarizes the development phases of the WebRTC project,

including the divided tasks for each developer, the start and end date as

well as the current status of each task.

Figure 9 Development phases for the WebRTC project

5.7 Development Process

5.7.1 Installation, Setting Up and Implementation of CI and CD

In this part, the authors explain how to setup the necessary environment

for the project, CI, and CD.

Setting up the signaling server

41

In order for the peers to find, exchange details of the contact, define the

session and finally connect to each other with the direct peer-to-peer

communication, there should be a signaling server in between for the

handshake or coordination. (Manson 2013, 15.) Signalmaster is a simple

signaling server for doing signaling for WebRTC, which was also created

by SimpleWebRTC team, is the obvious choice to be the signaling server

for the web application. There are three tasks required in order to

implement this server, they are:

1. Creating droplet on DigitalOcean for production environment

2. Creating Secure Sockets Layer (SSL) certificate for web server

3. Using Express to create the signaling server

Creating droplet on DigitalOcean for production environment

In this situation, the signaling server requires a production environment in

order to play its role in coordinating the peers. Therefore, the author spins

up a new Droplet, which is a virtual private server on DigitalOcean, to put

the server up, running and widely accessible by the peers.

The first step of creating the droplet is to access the DigitalOcean Control

Panel and press the Create Droplet button in order to access the Create

Droplets page. In the Droplet Creation page, there are several options for

developers to choose for their droplet depends on what type of server they

want. In the image categories, the authors choose the pre-installed MEAN

on 14.04 app since it meets the criteria for building a signaling server.

There is a wide range of prices, capacity and storage option for the

droplet’s size, and considering the need for just only a small web server to

handle the traffic of a small division in LUAS, the cheapest droplet size,

which is 5$/month, is chosen. Next, the London data center region is also

picked since it is the nearest place to Finland. The authors choose to use

the provided root password from DigitalOcean sent via email instead of

generating new Secure Shell (SSH) key due to the simplicity. Last, the

droplet is named meanapp and created with those above information.

42

Figure 10 shows the information of the droplet that the authors have

created along with its Internet Protocol (IP) Address.

Figure 10 Droplet information on DigitalOcean

Creating SSL certificate for the web server

Before creating the signaling server, SSL certificate for the web server

must be installed in order to secure the connection between clients and

server since this is required for all data channels (Rescorla 2014, 16).

There are many providers which can provide SSL certificates and Let’s

Encrypt is one of the most popular certificate authority, which can enable

Hypertext Transfer Protocol Secure (HTTPS) on websites or web apps

without any cost. Moreover, this service provider was chosen because

they provide powerful client software, which can automate the installation

and issuance, work on many operating systems and ease the

configuration for end-users. (Let’s Encrypt Getting Started 2016.) In order

to implement the SSL certificate for the signaling server, there are two

steps required. First of all, a registered domain should be owned and

controlled to associate with the certificate. This domain should also point

to the server’s IP address in order for Let’s Encrypt to validate the

ownership of the domain it is issuing a certificate for. Figure 11 shows the

creation of an A record for resolving the domain that the authors have

purchased earlier to the public IP address of the droplet that the server is

put on.

43

Figure 11 Creating an A record on DNSimple

Next, the server needs to be configured in order to install Let’s Encrypt‘s

client, which is Certbot for issuing the certificate. The server on

DigitalOcean's droplet can be accessed via SSH with a simple command:

$ ssh user@ipaddress

The user in this situation is root, and the IP Address is the public IP

provided by DigitalOcean for the droplet. After executing the command,

there is a prompt asking for the user’s password. The password here is the

one sent via email when the authors have created the droplet. Once the

password is entered properly, a secure connection via SSH with the server

is set and the server now can be configured through command line

interface. There are numerous ways to install Let’s Encrypt client, Certbot,

to the server depends on what kind of system the server is running. The

authors’ choice is pulling the package from GitHub and utilizing the direct

execution file of the software in order to avoid the complexity of

installation. The following commands are executed line by line to first

pulling the repository from GitHub to the server, then accessing the

directory and running the execution file. The email using for registration is

one of the authors' emails and the domain associated with the certificate is

also provided.

$ git clone https://github.com/certbot/certbot.git

44

$ cd certbot/

$./certbot-auto certonly --email trinhphandinhhuy@gmail.com

-d fxckyou.xyz

After executing the last command, there is an interactive Graphical User

Interface guiding through the process of obtaining and installing the

certificate. After all, the authors get the congratulation prompt notifying that

the SSL certificate has been issued for the server and saved at

/etc/letsencrypt/live/fxckyou.xyz/fullchain.pem, which is

showed in figure 12.

Figure 12 Prompt with SSL certificate issued successfully

Once the SSL certificated is obtained, the signaling server is ready to be

built. The signalmaster, which is a simple server for WebRTC signaling

from andyet, abstracts all the complexities of WebRTC API, and when

combining with Express, the solution for developing a functional signaling

server only requires developers a little effort, which providing the location

of the private key and the certificate generated from Let’s Encrypt. After

the server configuration is finished, the following command is executed

inside the same directory in order to ensure the signaling server run in

Production mode.

45

 $ NODE_ENV=production node server.js

Once having executed, the signaling server is up and running properly

when accessing the domain and the port indicated in the code, which is

fxckyou.xyz and 8888, respectively. Figure 13 shows the results in the web

browser when opening a web browser to the specified domain and port.

Figure 13 Result when accessing https://fxckyou.xyz:8888/socket.io/

Setting up the web application and workflow

MEAN application foundation

In order for demonstrating the workflow when implementing Docker, CI,

and CD, first of all, a foundation of the application needs to be created.

The web application actually is combined by two parts: the back-end

server for serving static files and the front-end code for the actual

application. This is because one of the WebRTC APIs, getUserMedia will

not work by just simply open an HTML in the browser. With the purpose of

involving MEAN stack into the web development, the authors have utilized

Express for the back-end server. First, a boilerplate of Express has been

created by using the following commands

$ express thesisapp

$ cd thesisapp

$ npm install

46

In Express main file, which is app.js, the following line of code is added in

order to provide the functionality of serving static files, which contain the

code of the actual application, in the client folder.

app.use(express.static(path.join(__dirname, '/../client')));

The following figure shows the directory structure of the server folder.

Figure 14 Directory structure of the server folder

Next, the actual application has been implemented with AngularJS. There

are two views for the user interface: the room creation view and the main

view for video conferencing. Therefore, there are two controllers

associating with two above views: mainController for handling the room

creation view and roomController for handling the functionalities in the

video conferencing. The application has two services which are ClickCopy

and Notifications. The directory structure of the front-end is illustrated in

figure 15.

47

Figure 15 Directory structure of the client folder

Creating GitHub repository

Once the application has been set up in one of the authors’ computers,

which is localhost, a repository has been also created on GitHub in order

for storing the whole project in a safe place, enabling collaboration

between two developers and creating the first component in the

automated development workflow. The following commands has been

executed line by line in order to initiate a Git repository in localhost, add all

the directories and files within the project for committing, perform the first

commit, add the origin remote in the central server and push the first

commit to the master branch in the created repository on GitHub.

$ git init

$ git add -A

$ git commit -m "first commit"

$ git remote add origin

https://github.com/trinhphandinhhuy/thesisapp.git

$ git push -u origin master

48

Figure 16 shows the GitHub repository for the application. There are

several files which have not been described yet since they are created for

other purposes which will be defined later in this chapter. “2 contributors”

icon indicates there are two developers in this project and “3 branches”

icon indicates 3 branches, which are master, testing and design that the

authors have created for different intention.

Figure 16 GitHub repository for the WebRTC application

Setting up Testing platform and TravisCI for CI

Two components for a testing platform that has been chosen for this

project are Jasmine and Karma since the authors have had experience

with both of them in previous projects. Jasmine is a behavior-driven

development framework for JavaScript code testing (Jasmine 2016).

Karma, which runs on Node.js, is a JavaScript test runner from AngularJS

team (Bielski 2016). The details including comprehensive definition and

implementation of Karma and Jasmine is not defined in this study because

the purpose of this subchapter is showing how two testing components fit

into this phase of the workflow, not studying about any particular testing

frameworks since they can be replaced easily with numerous other ones.

49

In order to implement Jasmine and Karma into the project, they first have

been installed along with their dependencies. The following commands

have executed installation of Karma Command Line Interface for

configuring Karma and installation of packages needed to run Jasmine

and Karma.

$ npm install -g karma-cli

$ npm install karma karma-jasmine jasmine-core karma-chrome-

launcher angular-mocks --save-dev

After installation, Jasmine and Karma can be configured using the simple

command karma init. The following figure shows a series of questions

prompting for helping setting up the Karma configuration file.

Figure 17 Question prompting to configure Karma

50

After all the configuration has been done, a simple test case has been

included in a test file to see whether the whole testing platform works

properly, which is showed below

describe('ClickCopy Service', function () {

 it('has a dummy function to test 1 + 2', function () {

 expect(1 + 2).toEqual(4);

 });}

This sample code has been placed in the ClickCopy service, which will be

developed later, is only for illustration of the test structure. This test

contains a function to check the result of 1 + 2 is equal to 4, and since 1 +

2 = 3, this test definitely fails. In order to see the result of this test whether

it passes or fails, first of all, this test file has been included in the karma

configuration file. Next, in the terminal, the command karma start has

been executed.

Figure 18 The result when starting Karma with the failed test case

The result shows that the test has failed. In order to make the test pass,

the result in toEqual() function has been corrected as follows:

expect(1 + 2).toEqual(3);

51

The nature of Karma allows the test automatically starts again without the

need to execute the command karma start. The test result has shown the

success message in the following figure.

Figure 19 The result when starting Karma with the correct test case

Finally, the foundation of the testing platform in the local machine has

been completely set up. Next step is to involve one of the CI services for

running the test code whenever it is pushed to GitHub repository. TravisCI

is a popular CI service with can be integrated with both Karma and GitHub

to perform this task. There are two tasks needed to be done in order to

integrate TravisCI into the workflow. The first task is to enable TravisCI for

the repository with the test needs to be built in TravisCI dashboard. The

second one is to add a .travis.yml file to the repository to indicate what

tasks the developer wants Travis to do. (TravisCI 2016)

The configuration in .travis.yml is quite descriptive. The language and

version for this project are Node.js 6.0. There are several commands

needed to be executed before the installation and script test for the

environment variables and dependency installation. Next, it indicates

TravisCI to run the test runner Karma with the provided configuration file.

TravisCI also is noticed that it only builds the test if the code is pushed to

branch master of the GitHub repository. The after_success option will

execute the command after the test passed. The CI part for this project

has been integrated successfully and more details about how this part

works will be described later in the demonstration.

52

Setting up Docker Automated Build

The next component in the automated development workflow is Docker

Automated Build. This feature of Docker Hub can automatically build a

specified image based on the provided Dockerfile in the project when

receiving a remote build trigger from a CI, which is TravisCI in this case.

The Dockerfile starts with the image is built from the latest version of

Node.js, which is a base image. Next, a folder is created and all the

directories and files in the project are copied to this folder. The npm install

command then is executed to ensure all the dependencies for the project

are properly installed. Lastly, port 3000 is exposed for connections and the

command for running the application is executed. After the Dockerfile is

specified in the project, the Automated Build is ready to be implemented.

First of all, an account on Docker Hub has been created and linked to a

hosted repository provider, which is GitHub in this case. In the Docker Hub

Dashboard, the Select dropdown has been pressed and the Create

Automated Build field has been chosen. The system has shown the list of

repositories of the GitHub account associating with Docker Hub account in

the first place. The thesisapp project has been picked and the system has

continued to display the Create Automated Build dialog. This dialog has

shown several options involving repository name, visibility, short

description, code branches, and tags. All the options have been then left

as defaults and the Create button has been pressed in order to create the

repository on Docker Hub.

After the Automated Build for the project has been created, the first image

is built and the detail of the build is shown on the Build Details page.

Although there are numerous configurations for existing build setting, the

authors only have focused on the remote build triggering and webhooks.

The remote build trigger can be found in the Build Triggers section in Build

Details page. After pressing the Activate Triggers button, a trigger token

and a trigger URL have been supplied. This trigger token and URL can be

used in a CI for triggering automated image build. As mentioned earlier,

after the test build succeeds TravisCI provides the functionality of

53

executing a command, which can be used to perform the curl command

for sending a POST request to Docker Hub for triggering the image build.

The curl command with after_success option has been added at the end

of the .travis.yml file as follows.

after_success:

 - |

 curl -H "Content-Type: application/json" --data

'{"build": true}' -X POST

https://registry.hub.docker.com/u/huytrinh/thesisapp/trigger

/$DOCKER_HUB_TOKEN/

In the command above, the $DOCKER_HUB_TOKEN variable has been

substituted for the actual token for security reason. This variable can be

specified in the Environment Variables section the TravisCI, which is

shown in figure 20.

Figure 20 Specify environment variables in TravisCI

Once the .travis.yml file has been fully configured with the token for

triggering image build, the link between TravisCI and DockerHub has been

connected properly.

https://registry.hub.docker.com/u/huytrinh/thesisapp/trigger/$DOCKER_HUB_TOKEN/
https://registry.hub.docker.com/u/huytrinh/thesisapp/trigger/$DOCKER_HUB_TOKEN/

54

Setting up AWS for linking to Docker Cloud

Before moving on to the last piece of the automated workflow, which is

Docker Cloud, AWS IAM should have been configured, which involving

creating the policy and attaching it to a new role allowing Docker Cloud to

accommodate and manage resources. The detail of AWS IAM

configurations is not covered in this subchapter since it is available on

Docker Cloud Documentation, which can be found at

https://docs.docker.com/docker-cloud/infrastructure/link-aws/ . The authors

have used this article as a reference for configuring AWS IAMS as well

and the outcome of this tutorial is the Role Amazon Resource Name

(ARN) of the created role, which can be used to connect AWS with Docker

Cloud. The installation continues with the Cloud Settings page of Docker

Cloud, the system has provided the list of cloud infrastructure providers

associating with Docker. Next, the plug icon of AWS field has been clicked

to connect this provider with Docker Cloud. A dialog then has been

prompted asking the Role ARN and after this name has bene provided

and the Save button has been clicked, the connection between AWS and

Docker Cloud has been established and Docker Cloud can use AWS

resources to create node clusters and nodes, which will be described later.

Figure 21 shows the Cloud Settings page with AWS connection.

Figure 21 Joining AWS with Docker Cloud

https://docs.docker.com/docker-cloud/infrastructure/link-aws/

55

Configuring Docker Cloud for Continuous Delivery and Deployment

In order for Docker Cloud to build application images from Docker Hub and

automate deploying these images to AWS, there are several tasks needed

to be done. First of all, a node cluster and at least one node have been

created to be ready for the deployment. This task has created an AWS

EC2 instance according to the provided options from Docker Cloud and all

the services needed for the application is deployed in this instance. There

is a clear instruction in Docker Cloud documentation mentioning creating

this first node cluster and node, which the authors do not discuss in this

study. The article can be found at https://docs.docker.com/docker-

cloud/getting-started/your_first_node/ . Secondly, a service has been

needed to be deployed in order to create a container that runs the web

application. A service can be easily created and deployed by a helpful

wizard which guiding developers through several configuration steps.

However, in this case, the full web application has needed more than 1

service to run properly. In order to run in HTTPS mode, which is critical for

browsers to access camera and microphone as mentioned earlier in this

chapter, the web application has to run along with a proxy server which

supporting SSL Termination. Therefore, at least 2 services should run

simultaneously and this could be done easier than using the wizard with

Docker Cloud stack. A stack is a convenient way to deploy automatically a

collection of services which are linked to each other, without the need of

separate service definition (Docker 2016). The authors have used a stack

file, which is instruction for creating multiple services, to create one service

for the proxy server and another service for running the web application. In

order to create a stack file, the Create button in the Stacks page has been

clicked and a text area for writing service create instruction has been then

displayed.

The instruction in the stack file can be described as follows:

● Create a lb service which stands for load balancing

https://docs.docker.com/docker-cloud/getting-started/your_first_node/
https://docs.docker.com/docker-cloud/getting-started/your_first_node/

56

○ The environment option contains the SSL certificate that is

obtained earlier for the application.

○ The image for this service is HAProxy, which is a load

balancer that supports SSL Termination

○ This service will link to the web service to provide SSL

Termination function.

○ Port 80 and 443, which are used by HTTP and HTTPS

respectively are exposed.

● Create a web service

○ The image for this service is the web application image that

already is built in Docker Hub earlier.

○ When triggered, this service will be re-deployed

automatically.

Once the Create & Deploy button has been clicked, the whole stack

containing two services has been deployed and the web application can

have been accessed with the domain associating with the SSL certificate,

which is https://thesisapp.ontheroof.top/.

Lastly, the redeploy trigger in the web service has been activated to

enable the redeploy function when a new image from Docker Hub is built.

Figure 22 shows the section where this trigger can be activated.

Figure 22 Redeploy trigger activation

https://thesisapp.ontheroof.top/

57

After activating the redeploy function and receiving the webhook URL from

Docker Cloud, the automated workflow has been completed with putting

this URL in the WebHook service of Docker Hub, which can be seen in

figure 23.

Figure 23 Adding trigger URL to Docker Hub Webhooks page

5.7.2 Development Workflow Demonstration

This subchapter demonstrates how all the components described above

connect together to automate the software development process, from

testing the code pushed on GitHub to deploying the containerized

application to AWS, which is one of the crucial results of this study. This

has started with developing a function, which is CopyToClipBoard - a

chosen function for this demonstration, and writing a test case for checking

whether this function exists. This test case is extremely simple compared

to other test cases of this project, but it is enough for the testing purpose.

The CopyToClipBoard is a small function utilized to copy the link of a

created conference room to the clipboard in order for sharing to other

58

peers to connect. This function first has been deleted or commented out of

ngClickCopy service to make the test, which is shown in figure 24, fails.

Figure 24 Test case to check the existence of CopyToClipBoard function

In order to prove the benefit of CI system, an H1 tag has been included in

the home.html file, which is the HTML file representing the home view.

Figure 25 H1 tag is added for verification

Once the test and the modification have been completed, the code has

been pushed to the master branch on GitHub repository with the following

commands.

$ git add –A

$ git commit –m “Demonstration: make a test fail”

59

$ git push origin master

TravisCI has got the test build trigger from GitHub and has begun to build

the test. The yellow color with 2 small circle animation indicates that the

test is being built.

Figure 26 Test is being built in TravisCI

After a few seconds to a minute, TravisCI has completed the build with the

results showing that the build has been broken due to the failure of the

test.

Figure 27 Test fails in TravisCI

60

An email with more details also has been sent to the developer’s inbox for

notifying the result of the test build, which is a remarkable feature of

TravisCI.

Figure 28 Email sent for build notification

In order to inspect that Docker has not been triggered to build an image

from GitHub because of the failed test, the Build Details of Docker Hub

has been examined and there has been no image building indeed. Finally,

the web application has been checked to see whether it shows the H1 text

included in the failed version of the application. Figure shows the front

page of the web application with no sight of the H1 text, which proves that

Docker does not build a new image when the test fails, and the working

version of the web application has been still preserved, which means that

users can still be able to use the software normally with the

CopyToClipboard and other functions.

In order to make the test passes, the CopyToClipboard function has been

added again and instead of placing a big, red ‘Fail Test’ text on the front

page, the content in H1 tag has been replaced with ‘Pass Test’ with green

color. The code has been again pushed to GitHub repository, but this time,

61

the test has passed. Figure 29 shows the result of TravisCI for this test

build.

Figure 29 Test passes in TravisCI

Because the test now has passed, the after_success option in the

.travis.yml file has been called and has executed the POST request to

trigger Docker Hub to build the application image from GitHub repository.

Figure 30 shows the build details of this image a few seconds after getting

a passed test from TravisCI.

Figure 30 Image building in Docker Hub triggered by TravisCI

62

After a few minutes, the image build has been successful and Docker Hub

has been able to operate Webhook to trigger Docker Cloud for redeploying

this image to AWS. Figure 31 indicates that the web service containing the

image in Docker Cloud has been being redeployed with a blinking small

gray square.

Figure 31 Web service is being redeployed

And figure 32 indicates that the web service has been redeployed

favorably with a static small blue square.

Figure 32 Web service is redeployed successfully

Lastly, a new green text with the phrase ‘Pass Test’ has been shown on

the front page of the web application, which is displayed in figure 33,

63

proves that the working code developed on the local machine has been

successfully deployed in the host.

Figure 33 Front page shows 'Pass Test' indicating the workflow with CI and CD
works effectively

5.8 Result

Figure 34 shows a demo video conferencing among 4 participants utilized

the WebRTC application developed by the authors.

64

Figure 34 Video Conferencing Demo of the WebRTC application

The project was successful. The authors were able to meet all the

specification of the software in the expected period of time. Moreover, the

authors succeeded in implementing CI and CD along with Scrum. As a

result, the authors identified some major improvements during the

development process. These improvements are discussed and

demonstrated further in the next chapter.

65

6 THE STUDY

This section provides the results of the study by comparing and evaluating

the development process of the two artefacts.

6.1 Evaluation Criteria

Since both projects were small and developed by the same group of

developers, it is justified to compare the two development processes. The

comparison is between the Food n’ Stuff application development process,

which only applies Scrum methodologies, and the real-time

communication application development process, which implements

Scrum with the support of CI and CD. The evaluation is based on the three

main aspects identified during the development process of the second

application. The three aspects are: time, quality and portability of the

application.

6.2 Comparison and Evaluation

6.2.1 Time

In the end of the WebRTC project, the authors agree that time is the most

influential factor that CI and CD bring to Scrum. Since the system enables

developers to submit their code daily and includes automated testing

during each integration, it is quick and convenient for the developers to

identify a bug or an error. In Food n’ Stuff’s development process, it has

been common for the team to take a few days to identify a problem and

then has spent another few days to fix them. In addition, the longer the

time is, the greater the problem is. However, it is solved with the

adaptation of CI. In the WebRTC project, by committing their work every

day, the developers have been able to identify the bug immediately and

deal with it soon before it creates other problems.

Then, after the application has passed all the tests, the new changes and

features in the WebRTC project have been immediately deployed and

66

available to deliver to the customer. Although the Food ‘N Stuff project is

quite small, it has taken the stakeholders two weeks to be able to see the

changes and give their feedbacks. Whereas it merely has taken one day in

the case of the WebRTC project to carry out the exact same actions.

Therefore, it is undeniable that shortening the time of delivery from two

weeks to one day is a significant improvement that CD has brought to

Scrum.

6.2.2 Quality

Thanks to the nature of CI and CD, the quality of the software is easily

maintained and managed. The automated testing in the CI ensures that a

defective software is not going to be deployed and delivered to the

customer. In Food ‘N Stuff case, a bug has been sometimes identified by

the stakeholders during the delivery of the software at the end of each

sprint despite the thorough testing of the team. Although all the bugs have

been minor and dealt with before the next delivery, it is unacceptable to let

the clients use a defective version of the product despite all the adequate

and better features. The case is obviously different in the WebRTC

application. If the automated testing system, which is carried out daily,

identifies a defect in the software, the CI and CD are going to keep the

software in the safe state and not apply the changes at all. It ensures the

users always receive a stable and sufficient version of the product.

6.2.3 Portability

Deployment is always one of the hardest parts to be dealt with in the

software development process. This phase requires the developers to

register for the hosting server, setup the virtual machines, install all the

dependencies and environment runtime needed to run the application and

keep it running more than 99% of the time to serve the customer.

Obviously, performing all these tasks take a great deal of time and effort,

let alone the developers have to have proficient knowledge of each

hosting server configuration. Therefore, in the Food ‘N Stuff project, the

67

team has had a very hard time trying to deal with the deployment phase.

However, in the WebRTC project, these issues have been solved with the

implementation of CD and Docker, which has been described earlier in

chapter 5. While CD ensures that the application is in the flawless state

and ready to be deployed, Docker brings the portability to the application.

By applying them into the development process, the application has been

able to be deployed anywhere and delivered to the customer at any

desirable moment.

6.3 Benefits and Drawbacks during the Development Process

While developing the WebRTC application using the proposal solution

which implements CI and CD, the authors have encountered several

problems and discover some benefits that worth mentioning in this study.

The most troublesome situation of the development process is the

coverage of the test cases. Due to the limited time and testing knowledge,

the developers have been only able to write the most basic test cases for

the application. These test cases have not ensured that the behavior of

each function can be checked comprehensively. Therefore, the automated

testing and building of the application have not been able to demonstrate

the full ability of CI.

Although the cycle time, which is the time started from the creation of user

story to the time that the customers have an adequate version of the

software, has been quite short, the setup and installation have taken a

huge amount of time.

Despite several disadvantages, the authors have gained many things

during the development process. First, the authors have an opportunity to

carry out a complete project, from planning, setting up to developing

features. This experience plays a very important role for the authors’

further study as well as profiling for the jobs. Second, the authors have

learned lots of concepts and technologies besides CI, CD, and Docker.

68

This is considered as another achievement along with the results of this

study.

69

7 CONCLUSIONS

7.1 Summary of the Thesis

The goal of this study was to show the benefits of CI and CD in Agile

Software Development Methods, more specifically Scrum. To do this, the

authors created a new artefact by applying Scrum with CI and CD. The

new artefact was then compared with an application they had created

earlier by applying only Scrum.

Chapter 3 provided detailed information about project management

methodologies and the related technologies. The project management

methods include Scrum, CI, CD and the technologies are Version Control,

Docker, WebRTC, and MEAN stack. Chapter 4 and 5 described two

projects and their development in order to point out differences in the

processes based on three criteria: time, quality and the portability of the

application.

Comparing the two development processes allows to answer the research

question of this study: What are the benefits of implementing CI and CD in

Scrum-related projects, and how can CI and CD improve these projects?

7.2 Answering Research Question

In short, integrating CI and CD into Scrum improves a software

development process significantly. As already stated, the three criteria this

affects are time, quality and portability of the application.

In terms of time, the developers are able to identify existing bugs

immediately after the daily integration and deliver the product in just one

day. During the previous project, the duration for identifying the bugs were

more than three days and it was two weeks for the development team to

deliver the software to the customer.

Next, the quality and stability of the application are maintained thanks to

the automated testing process in the CI. Thanks to CI and CD, the

70

software will never be deployed to the production environment if it is

defective.

Lastly, Docker brings the portability to the application. The developers now

are able to deploy the application to any hosting servers which support

Docker and do not have to worry about the environment runtime setup or

dependencies installation.

71

8 DISCUSSION

8.1 Limitations

The criteria used to compare the two processes is the first limitation of this

study. Based on the development process of the Food ‘N Stuff application,

only three criteria were set. Time, quality and portability may not be

enough to compare two processes, and therefore the results of the

comparison may not reflect all the differences between two processes.

The improvements, therefore, of the new solution compared to the old one

are not fully covered.

Secondly, since the WebRTC project was carried out by two IT students,

and the authors’ report and tutorial writing skills are rather restricted, some

steps in the development process may have accidentally been ignored or

missed. The description of the CI and CD implementation then may not be

precise and as comprehensive as the authors would want it to be.

Lastly, CI and CD were chosen only because of the authors’ work

experience and because the proved to work sufficiently well in the

WebRTC project. However, other systems may achieve the same goal

with better performance and shorter time.

8.2 Reliability and Validity

Technologies change and innovate rapidly. At the time of writing this

thesis, Docker Cloud was still in beta version and the MEAN stack was

introduced just two years ago. In the future, this quick development can

affect the implementation of CI and CD. The reliability and validity of this

study are measured by the results of the evaluation process between two

projects. In addition to the implementation of CI and CD, there might be

some factors affecting the results such as the skills of the authors, the size

of the project, the size of the team, the chosen technology stack and the

time period that the project is carried out.

72

8.3 Further Research

Further study may involve a larger team with different positions to utilize

other workflows in the development process for exploring more

advantages as well as disadvantages of the proposal solution.

Further research should focus on Docker. In this study, the authors

mention only the basic usage of Docker when integrating with CI and CD.

There is a great deal of Docker benefits not only for CI and CD but also for

the software development process in general that are needed to be

explored.

73

REFERENCES

Written References

Barab, S. & Squire, K. 2004. Design-based Research: Putting a Stake in

the Ground. The Journal of the Learning Sciences, 13(1), 1 – 14.

Duvall, P., Matyas, S. & Glover A. 2007. Continuous Integration: Improving

Software Quality and Reducing Risk. Boston: Pearson Education, Inc.

Gallagher, S. 2015. Mastering Docker. Birmingham: Packt Publishing Ltd.

Haviv A.Q. 2014. MEAN Web Development. Birmingham: Packt Publishing

Ltd.

Humble, J. & Farley D. 2011. Continuous Delivery: Reliable Software

Releases through Build, Test, and Deployment Automation. Boston:

Pearson Education, Inc.

Kananen, J. 2013. Design Research as Thesis Research (Applied Action

Research). Jyväskylä: JAMK University of Applied Sciences.

Loeliger, J. & McCullough, M. 2012. Version Control with Git, Second

Edition. Sebastopol: O’Reilly Media, Inc.

Lorento, S. & Romano, S.P. 2014. Real-Time Communication with

WebRTC. Sebastopol: O’Reilly Media, Inc.

McQuaid, M. 2015. Git in Practice. Greenwich: Manning Publications Co.

Mouat, A. 2016. Using Docker. Sebastopol: O’Reilly Media, Inc.

Peffers, K., Tuunanen, T., A.Rothenberger, M. & Chatterjee, S., 2008. A

Design Science Research Methodology for Information Systems

Research. Journal of Management Information Systems. Abingdon: M.E.

Sharpe, Inc.

Pham, A & Pham P.V. 2011. Scrum in Action: Agile Software Project

Management and Development. Boston: Course Technology

74

Rico D., Sayani H. & Sone S. 2009. The business Value of Agile Software

Methods: Maximizing ROI with Just-in-Time Processes and

Documentation. Florida: J. Ross Publishing

Ristic, D. 2015. Learning WebRTC: Develop interactive real-time

communication applications with WebRTC. Birmingham: Packt Publishing

Ltd.

Rogelberg, S. 2004. Handbook of Research Methods in Industrial and

Organizational Psychology. Malden: Blackwell Publishing Ltd.

Santacroce, F. 2015. Git Essentials. Birmingham: Packt Publishing Ltd.

Sergiienko, A. 2014. WebRTC Blueprints: Develop your very own media

applications and services using WebRTC. Birmingham: Packt Publishing

Ltd.

Somasundaram, R. 2013. Git: Version Control for Everyone. Birmingham:

Packt Publishing Ltd.

Tekeuchi, H. & Nonaka, I, 1986. The New New Product Development

Game. Brighton: Harvard Business Review.

Westby, E.J.H. 2015. Git for Teams: A User-Centered Approach to

Creating Efficient Workflows in Git. Sebastopol: O’Reilly Media, Inc.

Electronic References

&yet. SimpleWebRTC.js from &yet [accessed 1 Oct 2016]. Available at:

https://simplewebrtc.com

&yet. Talky [accessed 1 Oct 2016]. Available at: https://about.talky.io

Alvestrand, H. 2011. Google release of WebRTC source code [email

message]. Recipient public-webrtc@w3.org. Sent 1 June 2011 [referenced

8 October 2016.2016]

75

AWS 2016. About AWS [accessed 28 Oct 2016]. Available at:

https://aws.amazon.com/about-aws/

AWS 2016. Amazon EC2 - Virtual Server Hosting [accessed 28 Oct 2016].

Available at: https://aws.amazon.com/ec2/?nc2=h_m1

AWS 2016. AWS Identity and Access Management (IAM) [accessed 28

Oct 2016]. Available at: https://aws.amazon.com/iam/?nc2=h_m1

AWS 2016. Cloud Products [accessed 28 Oct 2016]. Available at:

https://aws.amazon.com/products/

Bielski, G. M. 2016. Karma - a Javascript Test Runner [accessed 30 Oct

2016]. Available at: http://www.methodsandtools.com/tools/karma.php

Blackstone, A., 2012. Sociological Inquiry Principles: Qualitative and

Quantitative Methods. Washington: Flat World Education, Inc. Available at:

https://open.umn.edu/opentextbooks/BookDetail.aspx?bookId=139

Burney, A. 2008. Inductive & Deductive Research Approach. University of

Karachi. Available at:

http://www.drburney.net/INDUCTIVE%20&%20DEDUCTIVE%20RESEAR

CH%20APPROACH%2006032008.pdf

Docker 2016. Automated Builds on Docker Hub [accessed 08 Oct 2016].

Available at: https://docs.docker.com/docker-hub/builds/

Docker 2016. Automated Builds on Docker Hub [accessed 08 Oct 2016].

Available at: https://docs.docker.com/docker-hub/builds/

Docker 2016. Delivering Containers-as-a-Service (CaaS) with the Docker

Cloud [accessed 08 Oct 2016]. Available at:

https://www.docker.com/sites/default/files/DK_DockerSubscription_051120

16_0.pdf

Docker 2016. Manage service stacks [accessed 08 Oct 2016]. Available

at: https://docs.docker.com/docker-cloud/apps/stacks/

76

Fowler, M. 2013. Continuous Delivery [accessed 10 Oct 2016]. Available

at: http://martinfowler.com/bliki/ContinuousDelivery.html

Jasmine 2016. Jasmine Introduction [accessed 30 Oct 2016]. Available at:

http://jasmine.github.io/1.3/introduction

Let’s Encrypt. Getting Started - Let's Encrypt - Free SSL/TLS Certificates.

Website [accessed 5 Oct 2016]. Available at:

https://letsencrypt.org/getting-started/

McLaughlin, M. What Is Agile Methodology? [accessed 10 Oct 2016].

Available at: https://www.versionone.com/agile-101/agile-methodologies/

Ramirez, A.O. 2000. Three-Tier Architecture [accessed 02 Oct 2016].

Available at: http://www.linuxjournal.com/article/3508

Rouse, M. 2007. Software Requirements Specification (SRS). Article

[accessed 1 Oct 2016]. Available at:

http://searchsoftwarequality.techtarget.com/definition/software-

requirements-specification

TravisCI 2016. TravisCI Getting Started [accessed 30 Oct 2016]. Available

at: https://docs.travis-ci.com/user/getting-started/

VERSIONONE 2015. State of Agile Report [accessed 28 Sep 2016].

Available at: http://www.agile247.pl/wp-

content/uploads/2016/04/VersionOne-10th-Annual-State-of-Agile-

Report.pdf

VERSIONONE 2016. Continuous Integration in Agile Software

Development [accessed 10 Oct 2016]. Available at:

https://www.versionone.com/agile-101/agile-software-programming-best-

practices/continuous-integration/

APPENDICES

Appendix 1. Stackfile for Docker Cloud

lb:

 environment:

 - "SSL_CERT=-----BEGIN PRIVATE KEY-----\\n PRIVATE KEY
HERE\\n-----END CERTIFICATE-----\\n"

 image: 'dockercloud/haproxy:latest'

 links:

 - web

 ports:

 - '80:80'

 - '443:443'

 roles:

 - global

web:

 autoredeploy: true

 image: 'huytrinh/thesisapp:latest'

Appendix 2. .travis.yml file for TravisCI configuration

language: node_js

sudo: false

node_js:

 - "6"

before_install:

 - "export DISPLAY=:99.0"

 - "sh -e /etc/init.d/xvfb start"

before_script:

 - npm install

 - export CHROME_BIN=/usr/local/bin/my-chrome-build

script: node_modules/karma/bin/karma start karma.conf.js --
single-run

branches:

 only:

 - master

after_success:

 - |

 curl -H "Content-Type: application/json" --data
'{"build": true}' -X POST
https://registry.hub.docker.com/u/huytrinh/thesisapp/trigger
/$DOCKER_HUB_TOKEN/

Appendix 3. Dockerfile for Docker Automated Build

FROM node:latest

MAINTAINER HuyTrinh trinhphandinhhuy@gmail.com

RUN mkdir -p /usr/src/app

WORKDIR /usr/src/app

COPY . /usr/src/app

RUN cd /usr/src/app

RUN npm install

EXPOSE 3000

CMD ["node", "/usr/src/app/server/bin/www"]

