
 

 

 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Juuso Koskenseppä 
 

iOS game development 
 
Mobile game development with Swift programming language and 

SceneKit framework 

Helsinki Metropolia University of Applied Sciences 

Bachelor of Engineering 

Media Technology 

Thesis 

Date 13.11.2016 



 Abstract 

 

 

Author(s) 
Title 
 
 
Number of Pages 
Date 

Juuso Koskenseppä 
Mobile game development with Swift programming language 
and SceneKit framework 
 
44 pages 
13.11.2016 

Degree Bachelor of Engineering 

Degree Programme Media Technology 

Specialisation option Digital Media 

Instructor(s) 
 

Kari Salo, Principal Lecturer 
 

The purpose of the thesis was to create an iOS game that could be deemed complete 
enough, so it could be published in Apple’s App Store. This meant fulfilling different guide-
lines specified by Apple. 
 
The project was carried out by using Apple’s new Swift programming language and 
SceneKit framework, with an intention to see how they work for iOS game development. 
 
The immaturity of Swift programming language led to several code rewrites, every time a 
newer Swift version was released. There could have also been a reason to consider using 
protocol oriented programming instead of object oriented programming, to make the code 
simpler. The results of an user testing that was performed for the project revealed that it 
still needs better instruction before it can be considered to fulfil all Apple’s guidelines. 
 
The thesis showed that Swift programming language and SceneKit framework could be 
used to program an iOS game that fulfils Apple’s guidelines without a big challenge. Also 
no compromises with the game design were required because of them. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Keywords iOS, game development, Swift, SceneKit  



 Tiivistelmä 

 

 

Tekijä 
Otsikko 
 
 
Sivumäärä 
Aika 

Juuso Koskenseppä 
Mobiilipelin kehitys Swift-ohjelmointikielellä ja SceneKit-
sovelluskehyksen avulla 
 
44 sivua 
13.11.2016 

Tutkinto Insinööri (AMK) 

Koulutusohjelma Mediatekniikka 

Suuntautumisvaihtoehto Digitaalinen media 

Ohjaaja 
 

Yliopettaja Kari Salo 
 

Insinöörityön tarkoituksena oli luoda iOS-peli, jota pystyttäisiin pitämään tarpeeksi valmii-
na, että se voitaisiin julkaista Applen App Storessa. Tämä tarkoitti erilaisten Applen 
määrittämien ohjeistuksien täyttämistä. 
 
Työ toteutettiin käyttäen Applen uutta Swift-ohjelmointikieltä ja SceneKit-sovelluskehystä, 
ja siinä tutustuttiin niiden toimintaan iOS-pelinkehityksessä. 
 
Swift-ohjelmointikielen epäkypsyys johti useisiin koodin uudelleenkirjoituksiin aina, kun 
kielestä julkaistiin uusia versioita. Työssä olisi myös voinut olla syytä harkita protokolla-
ohjelmoinnin käyttöä olio-ohjelmoinnin sijaan, jolloin koodista olisi voinut saada vielä 
yksinkertaisempaa. Pelille tehty käyttäjätestaus paljasti, että se kaipaa vielä parempia 
ohjeistuksia, ennen kuin sen voidaan todeta täyttävän kaikki Applen ohjeistukset. 
 
Insinöörityö osoitti, että Swift-ohjelmointikieltä ja SceneKit-sovelluskehystä voidaan käyttää 
ilman suuria haasteita Applen ohjeistuksien mukaisen iOS-pelin ohjelmointiin. Niiden takia 
ei tarvinnut tehdä kompromisseja peliä suunniteltaessa. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Avainsanat iOS, pelinkehitys, Swift, SceneKit  



 

 

 

Contents 

 

1 Introduction 1 

2 Project background 2 

2.1 Project goals 2 
2.2 Game design 3 

2.2.1 Game graphics 4 
2.2.2 How the design was tested 6 

2.3 Swift or Objective-C? 7 
2.4 Game development frameworks for iOS then and now 8 
2.5 Best fitting framework for the project 9 
2.6 Game project architecture 10 

3 Developing with SceneKit 14 

3.1 Basic knowledge about SceneKit 14 
3.2 Game view and game scenes 15 
3.3 Game map and scenery 15 
3.4 Building a flying first person shooter controller 19 

3.4.1 Rotation and Euler angles in SceneKit 20 
3.4.2 Quaternions and how to use them 21 
3.4.3 Adding the shooter element to the controller 23 

3.5 Game models 24 
3.6 Animating in SceneKit 27 
3.7 Using SCNActions 30 
3.8 Collision detection 32 
3.9 Adding SpriteKit overlay 32 

4 Testing 34 

4.1 Testing procedure 34 
4.2 Testing results and analysis 34 

5 Project Summary 37 

5.1 Summary of what was done 37 
5.2 The challenges faced 39 
5.3 Future for the game 39 

6 Conclusion 41 



 

 

References 42 

 



1 

 

 

1 Introduction 

 

The ways in which iOS games can be developed have evolved a lot recently. First with 

Apple releasing SpriteKit and SceneKit 2D-and 3D game frameworks with iOS 7 to 

make it easier to develop games, and now most recently with the release of Swift-

language to make writing applications easier. 

 

This thesis studies how to use SpriteKits, perhaps a lesser known and used sibling, 

SceneKit framework in combination with the new Swift language for game develop-

ment. This is based on a game project that I started and completed by using the said 

technologies. The goal for this game project was to develop a full-fledged iOS game 

that is publishable to Apples App Store. 

 

iOS games can currently be developed with multiple different frameworks and with a 

couple of different programming languages. The first chapter of this thesis answers 

why SceneKit and Swift were chosen as the graphics framework and programming 

languages for the game projects. The chapter also tells about the games actual design 

and how it was tested. 

 

The following chapters show, with examples taken from the project, how the game was 

eventually programmed. This involved the usage of most of SceneKits features and 

thus the thesis can be used to learn some basics of how to use the framework with 

Swift. The chapter four lists actual testing results that were needed for perceiving if the 

projects objectives were reached. 

 

The game has also been refactored a couple of times: first from Swift 1.2, which was 

the current version back when the project was started, to Swift 2.0 and then most re-

cently to version 3.0. This constant refactoring was a major inconvenience that the final 

chapters cover, along with reflections that the project generated. 

 

 

 

 



2 

 

 

2 Project background 
 

2.1 Project goals 
 

The main goal of the project was to create a game that is mature enough that it can be 

published in Apples App Store. This goal demands that the application should be com-

plete enough to get through Apple’s application review process. To get through the 

review process the game should follow all the guidelines and requirements listed in 

App store review guidelines. The listed guidelines include some highly relevant parts 

for the project that are either clearly visible or indirectly visible to the user. (App Store 

Review Guidelines, 2016.) 

 

A directly visible guideline for the potential user is iOS Human interface Guidelines that 

essentially tell how an application should look and feel when used. This means that the 

projects interface should be designed according to these guides. For example some 

important parts in the guide tell that any graphics and buttons should be clear on what 

they do, the application should use right terminology and give control to the user in 

choices. (iOS Human Interface Guidelines, 2016.) 

 

Some guidelines that might not be as directly visible, but the project should follow, are 

App Programming Guide and iOS Data Storage Guidelines that ensure that the project 

works well and any possible data persistence is done in a right way (App Store Review 

Guidelines, 2016). The former entails that the application should run efficiently and use 

life cycle correctly (App Programming Guide for iOS, 2016). The guide also has several 

strategies of how to run specific tasks like state preservation properly (App Program-

ming Guide for iOS, 2016). The latter guide tells what data should be saved and where 

(iOS Data Storage Guidelines, 2016).  

 

The project also should not fall to the list of common rejection causes such as being 

buggy and crash prone, nor should it include any placeholder content (Common App 

Rejections, 2016). This meant that the project should be finished in its content and its 

delivery. 

 

Some of the first warnings introduced in the App store review guidelines state “If your 

app looks like it was cobbled together in a few days, or you're trying to get your first 

practice app into the store to impress your friends, please brace yourself for rejection. 



3 

 

 

We have lots of serious developers who don't want their quality apps to be surrounded 

by amateur hour” (App Store Review Guidelines, 2016.). This means that even though 

the project was done independently, the project was also taken highly seriously and 

perfection was aimed for in everything.  

 

2.2 Game design 
 

The plan for the game design started from an idea where I wanted to do a game where 

player floats in space while trying to finish some kind of a mission. I also wanted to dif-

ferentiate from the crowd and make the game in 3D instead of the easier 2D. For this 

purpose I deemed only first-person and third-person perspectives as a working alterna-

tives on how the game is viewed. In the end I preferred first-person view as a better 

choice because it meant that I needed less graphics and because screen size was also 

limited. This is because the chosen perspective does not need a model for the player 

that would then constantly block part of the already small and easily crowded screen 

that smart phones have. This idea eventually split in to two different game modes: the 

main game and stripped down side game. 

 

In the main game the player moves in space and, as was already decided, in first-

person perspective. The mission for the player is to save the world from meteors, while 

also being chased by comets that try to destroy the player. Each round, an ever-

increasing amount of meteors will spawn around the Earth and the player will be 

moved to starting position, with one comet spawning behind and in front of the player. 

The player has finite amount of ammunition to destroy the meteors before they hit the 

Earth that, however, can survive a total of five hits from meteors before the player loses 

the game. After a successful round a shopping screen is shown to the player, who can 

use it to purchase more ammunition, more movement speed, more armour to survive 

collisions with meteors and more health for Earth with credits that the player earns by 

destroying meteors. The comets that chase the player will increase with speed every 

round so player usually needs to at least purchase more speed and ammunition to sur-

vive further. 

 

There are three kinds of meteors to destroy, with varying difficulty. The ratio of the 

more difficult to destroy ones to spawn against the easier ones increases with rounds. 

The easiest meteors to destroy will simply move towards Earth in straight line from their 

spawning position, while more difficult ones will do a little zigzag, making aiming at 



4 

 

 

them harder. The hardest meteors will move in straight line, but will be invulnerable for 

half a second for every second of being vulnerable. This almost always means that 

more than one ammunition is needed to destroy them successfully, because from long 

distances it is very difficult to estimate the time to shoot correctly. 

 

As for the controls, the player is always moving forwards at set velocity and the player 

can turn by sweeping the phones screen. The player can also shoot projectiles that will 

move directly forwards from the player by tapping the screen. The map has invisible 

walls to limit the player’s movement and a warning is displayed before the player col-

lides with them: a collision means instant game over for the player. These walls are 

also used to remove any missed ammunition, to limit the amount of models and 

graphics in the game. 

 

The simpler side game is basically a turret-game version from the main game. The 

player is now placed in the middle of the map where Earth was and the meteors will 

move towards the player at high velocity. The player can only turn by the Y-axis to look 

around, unlike in main game where the player can also rotate by the X-Z-axis to look 

up and down. The turret version has no shopping mechanics and the player has infinite 

amount of ammunition. The idea is just to try to survive as many rounds of the ever-

increasing meteor onslaught as possible.  

 

2.2.1 Game graphics 

 

The game needed several custom graphics that were created either with Blender (3D 

models), Pixelmator (images) or Adobe Illustrator (logo) and most of these images re-

quired three different scales for different device screen sizes. There were multiple 

choices for applications that could have been used for these purposes as the personal 

requirements were if I had experience with the application and if I had access to it. The 

former requirement was usually the most decisive requirement as most graphics appli-

cations are quite expensive. For the 3D models Blender was the only free 3D graphics 

software I had former experience with so it was chosen for this task. For image ma-

nipulation I could have also used Adobe Photoshop, but as the image manipulation 

needs were really light in nature, Pixelmator was enough to deal with them and there 

was no need for the heavier Photoshop.  

 



5 

 

 

However, with Adobe Illustrator that was used for the vector graphics, the exportation 

to bitmap images was a bit tedious task, as was the task of creating multiple images of 

different scales with Pixelmator. These scaled images are needed by iOS so it can use 

image of the right size for different screen resolution. If I had to do this part of the pro-

ject again, I would use Sketch for all the bitmap and vector images because the appli-

cation can be used easily to export all the wanted scales of an image. This would have 

saved a lot of time when I was working on the projects graphics. 

 

 
Image 1. Starting menu background image 
 

Image 1 displays several of these created graphics. Showcased in the middle is the 

meteor model that is also used in the game that was created with Blender. Like the 

larger meteor, the smaller meteor fractures surrounding the image were similarly mod-

elled in Blender. The logo was created with Illustrator and exported into different sizes 

with Pixelmator. 

 

The icons for buttons were designed according to the iOS Human Interface Guidelines. 

The icons were kept simple and common recognizable patterns for the images were 

used such as “X” mark for closing. They were also used consistently throughout the 

application. (iOS Human Interface Guidelines, 2016.) 

 



6 

 

 

2.2.2 How the design was tested 
 

A light testing was done throughout the developing phase to improve the design. These 

tests were done by letting people play the game with test device and then by asking 

how they would improve the game. This testing was not specifically planned nor was it 

documented because the acknowledged issues found in these tests were usually rem-

edied right after the test. The intention of these small tests was to find out the most 

obvious issues and bugs before a real user testing for the game could be done. 

 

A big issue that was out in these developing phase tests was how dark the game was. 

At first the games background was black to emulate space. This, however, meant that 

it was really hard for people to see anything from the screen when they were outside in 

a sunny weather. To alleviate this problem, the background colour was changed to this 

dark blue seen on image 1. This was mostly a compromise, because going for even 

lighter shades of colours meant that the illusion of flying in open space was mostly lost, 

the chosen colour, however, is on the edge that it is possible to see something even in 

sunny conditions but it still feels like floating in space. 

 

Another issue found in these tests was the lack of an alert dialog when quitting the 

game. This was also deemed a big issue, because Apples iOS Human Interface Guide-

lines talk about how the application should not make the choices for the user and the 

goal of the project was to adhere to these best as possible (iOS Human Interface 

Guidelines, 2016). So as a fix, an alert asking for confirmation, that is triggered when 

player touches the quit button to leave the running game back to the menu screen, was 

added to the game.  

 

When the application was deemed mature enough a more complete and planned user 

testing was performed. For this test, the supposed user group for the game was 

thought to be a young adult aged 18-35. This age group, according to a study, is the 

most active in playing mobile games, presenting 30% of mobile gamers. The same 

study indicates that the gender of the tester should not matter, as both men and 

womed seem to play almost as much. Because of the age group and that basic 

knowledge about smart phones is needed to finding and installing an application on 

phone, it was decided that the potential user has at least some experience with modern 

smart phones and mobile games. (Myth Busting: Mobile Gaming Demographics, 2015.) 

 



7 

 

 

The focus of this user testing was to find out if the game can be thought to be finished 

and how it could be further improved. Any possible problem in using the application 

also gives hints on how well iOS Human Interface Guidelines are fulfilled and thus, how 

App Store ready the project is: as was the main goal of the project. The user tests and 

its results are discussed further in chapter four. 

 

2.3 Swift or Objective-C? 
 

The first question when starting the project was which programming language to use. I 

had some experience with both Swift and Objective-C, which are used for writing iOS 

applications. Though the languages are used for same purposes, they differ a lot from 

each other. 

 

Swift’s syntax is generally simpler than what is found in Objective-C and this can make 

maintaining the code easier. A major feature in Swift is its optional system that guides 

programmer to do safer code. In both Objective-C and Swift values can be in nil state, 

meaning that value is empty. When something in code can be nil, Objective-C will not 

run it, nor will the compiler enforce the programmer to do anything about it. This behav-

iour can, however, lead to all kinds unpredictable errors and software bugs if one is not 

careful. In Swift its optional system forces unwrapping any possible nil values to make 

sure the value exists. It guides to write safer code where it is clear to see when a value 

can be nil and how the applications should react to it. This can also simultaneously be 

a drawback as Swift enforces a lot more rules for the developer than Objective-C. 

 

 
import UIKit 
 
class ViewController: UIViewController { 
 
    var str: String? 
 
    override func viewDidLoad() { 
        super.viewDidLoad() 
                 
        guard let str = str else { 
            return 
        } 
         
        print(str) 
    } 
} 

 
Listing 1. Swift optional example 



8 

 

 

 

An example of how Swift’s optionals can be used is shown in listing 1. In the example 

variable named str was declared optional with adding a question mark after its type, 

meaning that it will not need to be initialized with a string and that its value can be nil. 

When the ViewController loads, the variable is checked in guard statement, if it has a 

value it is copied to similarly named constant that overrides the name usage from then 

on and can be used safely. However, if the variable is nil, the guard-statement will re-

turn the function stopping the execution to avoid problems with nil values. It is also 

worth mentioning that Swift’s print function can print optionals, meaning that the appli-

cation would not actually crash without the guard statement. It is used purely as an 

example here. 

 

Memory management has been completely automated with Automatic Reference 

Counting (also known as ARC) in Swift, unlike Objective-C where it has been only par-

tially automated – mostly lacking in the low-level APIs. Swift has also been reported to 

be quite fast at running certain algorithms, even closing on C++ level of performance. 

(Solt Paul, 2015.) 

 

Objective-C still has some merits such as it being a superset of C programming lan-

guage makes interacting with C and C++ libraries much easier compared to Swift. Be-

ing an older programming language also means that there is much more discussion 

and info about it around. Also being older it is less subject to serious changes that 

would require huge amounts of refactoring the project’s code.  

 

Eventually, however, the more modern Swift was chosen for the project’s programming 

language, mainly because of the overall cleaner code it can produce. A major issue 

caused by this decision was Swift’s low maturity at the time. This led to large amounts 

of refactoring the code every time a new major version of Swift was released.  

 

2.4 Game development frameworks for iOS then and now 
 

Game development frameworks are split into two categories: there are low-level APIs 

that are meant to communicate with the hardware and then there are high-level frame-

works or game engines that are built upon them. The line between what is a framework 

and a game engine is, however, blurry and mostly just down to semantics. (Game-

FromScratch.com 2015) 



9 

 

 

 

When iOS was opened for applications in 2008, the only way to create graphics and 

games was by using one of the supported OpenGL ES versions. However, OpenGL is 

a low-level API, meaning that creating anything is usually difficult and time consuming: 

even a simple tutorial to create a shaded box in OpenGL is pages long and involves a 

lot of mathematics to get it done (Wenderlich Ray, 2011). Because of that, several sim-

pler to use frameworks have been built upon it. Even for iOS there are currently plenty 

of these high-level frameworks like Unity, Sparrow and Cocos2d-x. There can be a lot 

of differences between them, for example Unity and Cocos2d are cross platform but 

only Sparrow is programmed with Objective-C (Create games, connect with your audi-

ence, and achieve success, 2016; What is Cocos2d-x, 2016; Sparrow, 2016). 

 

With iOS 7 Apple released its own high-level graphics frameworks: SpriteKit and 

SceneKit (Tabini Marco, 2013). SpriteKit is focused on 2D graphics while SceneKit 

focuses on 3D. These two can also be combined together: SpriteKit scenes can be 

used to create 2D overlays for SceneKit scenes and vice versa. 

 

Apple has also released its own low-level API named Metal with iOS 8 that is meant to 

be more efficient than OpenGL ES. Apple is promising somewhere about 10 times the 

rendering speed with game engines built on Metal compared to OpenGL ES (Cohen 

Peter 2014). With iOS 9 both SpriteKit and SceneKit will use Metal for rendering as a 

default setting and some third party game engines such as Unity 5 also supports Metal 

(Apple, 2015; Zibreg Christian, 2015).  

 

2.5 Best fitting framework for the project 
 

Because of the simplistic game design that did not require any really special features, 

there really was not any reason to even start to consider creating an own game engine 

with a low-level API like Open GL ES or Metal. This would have also taken much more 

time and could have even been an overwhelming task for a one-person team to finish. 

 

Discarding the low-level APIs left me with bunch of high-level framework choices and 

the choice between them was mostly just to personal preference. Game engines such 

as Unity would have made it easy to import the game to android and would have been 

more feature complete: as I was to find out when programming the game. Free version 

of Unity, however, comes with some handicaps and because the project had a zero 



10 

 

 

budget, this would have been the version I would have needed to use. (Create games, 

connect with your audience, and achieve success, 2016.) 

 

Most of all I was also interested to use the new Swift language, which at the time was 

not in use in Unity. This excluded Unity from my consideration and left me with frame-

works that can be used with Swift. From these I preferred Apple’s own SceneKit as I 

saw a good opportunity to learn it and SpriteKit simultaneously, giving me a really good 

insight into Apple’s own ecosystems. 

 

2.6 Game project architecture 
 

When coding the project I tried to minimize the amount of logic in view controllers to 

increase readability and possibility for re-use. The game has two view controllers: 

MenuViewController that manages the menu screen and GameViewController that is 

used for both of the games. The AppDelegate is used for persisting data that is shared 

between all the classes. This data includes the player’s high scores for both of the 

games and sound settings. The data is persisted to <Application_Home>/Documents 

directory as is recommended by the iOS Data Storage Guidelines for things that can 

not be recreated by the application (iOS Data Storage Guidelines, 2016). 

 

Because the project was started with swift 1.3 that did not yet have the capability to 

extend protocols with default behaviour, Swift’s protocol system as is currently availa-

ble is not utilised to its fullest. Instead traditional object oriented patterns were used. 

 



11 

 

 

 
Image 2. Application architecture. 
 

As illustrated in image 2, all the gaming related actions are run in GameViewController. 

To make it possible for it to communicate with two different games, there is a Com-

monGameCore named protocol that includes methods that both games share.  

 

The GameViewController also holds a SCNView object that holds the SpriteKit overlay 

scenes that the game scenes use. The SceneKit and SpriteKit scenes then have their 

own related game models that they hold. The BothynusScene and TurretScene, shown 

in image 2, both subclass a SCNScene class, which will be talked more about later in 

this thesis. 

 
internal protocol CommonGameCore: SCNSceneRendererDelegate, 
SCNPhysicsContactDelegate { 
    var gameStatus: Bool {get set} 
    var gameControllerDelegate: GameControllerDelegate? 
{get set} 
    func handlePan(_ translation: CGPoint) 
    func handleTap(_ location: CGPoint) 
    func spawnMeteors() 
    func updateRadar() 
    func addParticleSystem(_ targetNodePosition: SCNVec-
tor3) 
    func winRound() 
    func gameOver() 
    func removeNodes() 
} 
 
internal protocol GameControllerDelegate: class { 
    func controllerWithCase(_ controllerCase: ControlCase) 
} 

GameViewController 

CommonGameCore 

BothynusScene SCNModels 

GameControllerDelegate 

TurretScene SCNModels 

OverlayScene 

BothynusOverlayScene SKModels 

TurretOverlayScene SKModels 

MenuViewController 

AppDelegate 



12 

 

 

 
 
internal enum ControlCase { 
    case exitButtonPressed 
    case audioControllerPressed 
    case retryButtonPressed 
} 

 
Listing 2. CommonGameCore protocol, its methods and related delegate protocols and enu-
merations. 
 

As shown in listing 2, CommonGameCore also implements two SceneKit related dele-

gates. The SCNSceneRendererDelegate protocol gives access to SceneKits renderer 

methods that can be used for timed events, physics simulation and game logic, while 

SCNPhysicsContactDelegate protocol is for collision detection between the game 

models. 

 

However, the biggest need for the CommonGameCore protocol is to make it possible 

to set the gameControllerDelegate property of a game scene when there are two dif-

ferent possible game classes, as was shown in image 2. The delegate also needs to be 

set to get information about any of the possible ControlCase cases show in listing 2. 

Without this the GameViewController would never know when to mute music or when 

to restart or quit the game. 

 

One solution was to make both of the game scenes implement the CommonGameCore 

protocol, which has the gameControllerDelegate property, and cast to it in GameView-

Controller. This way I could set the delegate property, making it possible for two slightly 

different games to share the same view controller and also to have the game logic out 

from the view controller in separate scene classes. 

 

But why not just create a custom class that would subclass the SCNScene so no cast-

ing to protocol would be needed? Because of the game design, both of the games are 

a little different and thus, they differ also in their methods and what they do. To avoid 

unneeded clutter, this is an excellent case to use protocols. In GameViewController we 

only have to know that the needed variables and methods exist and not how they actu-

ally work. In this way it is possible to create methods that work differently but still have 

access to them. 

 

Finally, the two different overlay scenes showed in image 2, both subclass a custom 

OverlayScene class, which in turn subclasses SKScene class, for all the shared meth-



13 

 

 

ods. The overlay scenes then overrides them when needed. This too would have been 

cleaner to do purely with protocols that have their default behaviour extended, as over-

riding super classes methods can get a bit messy at times. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



14 

 

 

3 Developing with SceneKit 
 

3.1 Basic knowledge about SceneKit 
 

SceneKit works by having a hierarchy of SCNNode objects which can be made to dis-

play various graphics or animations, which can be either made with the many classes 

in SceneKit or they can be imported from external sources. (SceneKit, 2016.) 

 

The SCNNode hierarchy works by adding these nodes as children to SCNScenes 

rootNode property that works as the base. These SCNNodes can themselves have any 

number of children and so on. Every SCNNode has its own local coordinate system 

meaning that moving a node that has child nodes will also make all the children move 

in relation to this movement. The same goes to adding and removing nodes: removing 

a node from scene will also remove all the children. (SCNNode, 2016) 

 

 
Image 3. SceneKits coordinate system. Copied from SceneKit (2016). 
 

An important to know factor in SceneKit is the default direction that the camera will be 

looking. As is shown in image 3, the camera will face negative z-axis by default, x-axis 

will be to the sides as horizontal axis and y-axis will be the vertical axis.  

 



15 

 

 

SceneKit can also handle collision physics and detection, which were used extensively 

in the project. There are also multiple different objects for different kind of physics be-

haviours such as different kind of joints and vehicle behaviour. (SceneKit, 2016.) 

 

3.2 Game view and game scenes 

 

Creating the game with SceneKit started by adding a SCNView object to the 

GameViewControllers storyboard scene, this could also be done purely programmati-

cally by adding it in the GameViewController by using its initWithFrame initializer: the 

frame in the initializer basically meaning the size of the wanted view object. (SCNView, 

2016.) 

 

SCNView subclasses NSView, meaning that it has the same properties and methods 

as NSView but with few SceneKit related additions. Most importantly it has a scene 

property that takes an SCNScene object. (SCNView, 2016.) 

 

SCNScene objects are the base of a SceneKit games and animations. It has a root-

Node property that has the node hierarchy included in the scene: nodes being all the 

objects and models in the scene (SCNScene, 2016). In the project there are two 

SCNScene objects, one for each game variant, they were created as separate classes 

that would then subclass the SCNScene. These are then added to the SCNView ob-

jects scene property in GameViewController according to which game was chosen by 

the player. There is, however, some dissonance between programmers on if the 

SCNScene should actually be subclassed or not: there are at least some reports of 

serialization not working correctly when subclassing it (Trouble subclassing 

SCNScene, 2015). However, as the project did not need serialization for the scenes, it 

was deemed worth having the game logic away from cluttering the GameViewControl-

ler and to subclass SCNScene anyway. In the end this did not cause any issues in the 

game. 

 

3.3 Game map and scenery 
 

Because of the game design, creating the map was quite easy. I made a custom Map 

class that subclasses SCNNode, whose job is to create six Wall classes. These are 

then positioned and rotated to make a cube to restrict the playing area. The walls are 



16 

 

 

just simple invisible planes that are used to remove any SCNNodes colliding with them 

from the game. 

 
import Foundation 
import SceneKit 
 
internal class Wall: SCNNode { 
     
    internal init(position: SCNVector3, rotation: SCNVec-
tor4) { 
        super.init() 
         
        geometry = SCNPlane(width: 400, height: 400) 
        physicsBody = SCNPhysicsBody.static() 
        self.position = position 
        self.rotation = rotation 
         
        physicsBody?.categoryBitMask = CollisionCatego-
ry.Map 
        physicsBody?.contactTestBitMask = CollisionCatego-
ry.All 
        physicsBody?.collisionBitMask = CollisionCatego-
ry.All 
    } 
     
    internal required init?(coder aDecoder: NSCoder) { 
        super.init(coder: aDecoder) 
    } 
} 

 
Listing 3. Wall class showing basic SCNode structure. 
 

As shown in Image 3, the initializer for a Wall class creates a 400 by 400 plane that has 

physics body type of staticBody. Physics body needs to be set if collision detection with 

the SCNNode is desired. The staticBody type means that the wall will ignore all physics 

caused forces and can not be moved. The other possible physics body types are dy-

namicBody that is affected by all physics and kinematicBody that ignores any physics 

that would affect it but can cause collisions with others. (SCNNode, 2016.) 

 

After setting the walls physicsBody property, it will be rotated and positioned as is de-

cided by the Map class that is initializing the Wall class. Most importantly, no colours or 

textures are set to the wall, to make it invisible to the player. 

 

The game design meant that it should look the player is in space, but the default black 

SceneKit background was deemed not good enough for this. Eventually a skybox with 

added stars was added to the game, by setting the SCNScene background content’s 

property with an array of image paths. This background property will normally just take 



17 

 

 

one colour or image, which would then be shown always in the background but when 

the property is set with six images in an array, to make a cube, it will create skybox with 

them. (SCNScene, 2016.) 

 
import Foundation 
import SceneKit 
 
internal class Earth: SCNNode { 
     
    internal init(name: String) { 
        super.init() 
        self.name = name 
         
        geometry = SCNSphere(radius: 10) 
        physicsBody = SCNPhysicsBody.kinematic() 
 
        geometry?.firstMaterial?.diffuse.contents = 
UIImage(named: "art.scnassets/earthmap1k.jpg") 
        geometry?.firstMaterial?.emission.contents = 
UIImage(named: "art.scnassets/earthlights1k.jpg") 
        geometry?.firstMaterial?.specular.contents = 
UIImage(named: "art.scnassets/earthspec1k.jpg") 
        geometry?.firstMaterial?.diffuse.mipFilter = SCN-
FilterMode.linear 
        geometry?.firstMaterial?.emission.mipFilter = SCN-
FilterMode.linear 
         
        physicsBody?.categoryBitMask = CollisionCatego-
ry.Earth 
        physicsBody?.contactTestBitMask = CollisionCatego-
ry.All 
        physicsBody?.collisionBitMask = CollisionCatego-
ry.All 
         
        
runAction(SCNAction.repeatForever(SCNAction.rotate(by: 
CGFloat(M_PI_4), around: SCNVector3(x: 0, y: 1, z: 0), du-
ration: TimeInterval(10)))) 
    } 
     
    internal required init?(coder aDecoder: NSCoder) { 
        super.init(coder: aDecoder) 
    } 
} 

 

Listing 4. Earth class showcasing SceneKit material property usage. 
 

The main game also needed an earth-like planet that would then be bombarded by 

meteors. The planet was created with simple sphere geometry, but as shown in Image 

4, with added SCNMaterial properties. SCNMaterial is what gives SCNGeometry its 

actual rendered appearance while the SCNGeometry only gives the shape (SCNMate-

rial, 2016).  

 



18 

 

 

For the Earth, several of these material attributes were used. Normal Earth texture was 

used for the diffuse that is shown on the parts that get light and emission texture of 

dark Earth for the parts that do not. The emission material will glow in the dark and will 

not need light source to make the texture visible. This creates more realistic Earth that 

can also be distinguished from the background when the player is looking it from the 

dark non-lighted side. Specular map was then added, making only the seas reflect light 

while ground and mountains would absorb it. Specular map is basically just black and 

white picture where black parts will not reflect light while white parts will. 

 

Both the emission and diffuse materials also had their mipFilter property set to linear. 

This was made for added rendering performance and reduction in rendering artefacts 

that could appear when moving closer to the model (SCNMaterialProperty, 2016). 

 

A Cloud class that is a nothing but a simple white sphere was then added on top of the 

Earths model. The clouds use SCNMaterials transparent property with a transparency 

map to make parts of it invisible, now only showing parts of the white sphere as clouds 

and the Earth layered below between them. 

 

Finally, both the Earth and the clouds are made to slowly rotate by their y-axis, with a 

repeated SCNAction, which will be discussed about later in this thesis. This is to make 

the map seem more living and as a work a round for a problem involving the shopping 

screen, that is shown with overlay scene, stopping rendering its animations when there 

was nothing moving in the actual game scene 

 

SCNMaterial has also many other properties such as a possibility to add a normal or 

bump map that would make Earths Mountains actually stand up from the sphere. Or 

make parts of the seas always reflect more light, no matter the lights direction with am-

bient property. These were however not added to the game, because of the lack of 

proper maps to add them. (SCNMaterial, 2016.) 

 

The game scenes are lighted by a SCNLight that has four different possible types. 

There is ambient type that lights everything ignoring its position and direction, an omni 

that will shed light to all directions from it’s position, direction type that will light every-

thing from certain direction ignoring the lights position and finally there is a spot lighting 

type that will only light objects at its position and direction. For the game design the 

omni light type was deemed best as it simulates sun the best. (SCNLight, 2016) 



19 

 

 

 

Basic SCNLight setup works by setting SCNNodes light property with a SCNLight and 

then setting the SCNLights type-property with the desired type. This was also done in 

the project. The SCNNode with the light was then positioned behind the player, so 

Earth and most of the meteorites would be visible to the player in the start to make the 

start more accessible. (SCNLight, 2016) 

 

3.4 Building a flying first person shooter controller 
 

The game design stated that the game needed a first-person shooter controller and 

that the controller should rotate by swiping and shoots by tapping. Rotation was meant 

to be handled in inverted fashion, where the player’s direction will change to the oppo-

site of the swiped direction. In the main game player will move static amount every 

render loop and the speed is decided by the amount of speed-boosts purchased in the 

game. This design solves the problem of not having more natural ways of distinguish-

ing different kind of user inputs, unlike in computer games where keyboard can be 

used for movement and mouse for rotation. 

 
let panGesture = UIPanGestureRecognizer(target: self, ac-
tion: #selector(GameViewController.panGesture(_:))) 
view.addGestureRecognizer(panGesture) 
         
let tapGesture = UITapGestureRecognizer(target: self, ac-
tion: #selector(GameViewController.handleTap(_:))) 
view.addGestureRecognizer(tapGesture) 

 

Listing 5. Example of how to add gesture recognizers to view controller. 
 

To get the swipe and tap input information gesture recognizers were added to 

GameViewController as shown in Listing 5. The action fields specify what methods 

should be called when the specific gesture is recognized. Both of the recognizers have 

their own methods specified in their appropriate classes. 

 
func panGesture(_ gesture: UIPanGestureRecognizer) { 
        guard let gameScene = gameScene as? CommonGameCore 
, gameScene.gameStatus else { 
            return 
        } 
        let translation = gesture.translation(in: 
self.view) 
        gameScene.handlePan(translation) 
         
} 



20 

 

 

     
func handleTap(_ sender: UITapGestureRecognizer) { 
    if sender.state == .ended { 
        guard let gameScene = gameScene as? CommonGameCore 
else { 
            return 
        } 
             
        let location = sender.location(in: self.view) 
        gameScene.handleTap(location) 
    } 
} 

 

Listing 6. Example of handling recognized pan and tap gestures in a view controller. 
 

Listing 6 displays the UIPanGestureRecognizers panGesture and UITapGestureRe-

cognizer handleTap methods specified in listing 5. The listing also displays the reason 

of needing a common protocol that is shared by both of the different game scenes. It 

made it possible to cast the currently used game scene to the protocol and gain access 

to a method that is now known to exist. This can then be used to share translation in-

formation of the swipe to the scene, which will use it to rotate the player accordingly. 

 

3.4.1 Rotation and Euler angles in SceneKit 

 

SCNodes can be rotated by several different ways. SCNodes have rotation, eulerAn-

gles, orientation and transformation properties that can all be used to rotate the node. 

They are all connected in a way where if one is set, all the other properties are also 

changed to reflect the new rotation. 

 

The simplest way to rotate a SCNNode is by setting the rotation property with a four-

component vector. The three first values of this vector tell the rotation direction and the 

fourth value gives the amount of rotation. This would have been enough for the turret 

game, as setting the rotation property worked well enough with just one rotation axis. 

However, this did not work well for the main game where the player needs to be able to 

rotate in multiple different dimensions this. 

 

Step up from this was to use the Euler angles. Euler angles have three components: 

pitch, yaw and roll where pitch is the rotation on x-axis, yaw on y-axis and roll on z-

axis. Together they can be used to represent rotation in multiple dimensions, which the 

controller for the main game needed.  

 



21 

 

 

Using Euler angles worked until it collided with a problem known as gimbal lock. This 

happens when one of the three components is rotated by pi / 2 radians or 90 degrees 

so that it will line up with one of the other components, thus loosing one degree of free-

dom. When this happens the SCNNode would lose its sense of rotation in the three 

dimensions, which leads to weird behaviour such as the camera quickly turning to op-

posite direction and back as it won’t anymore know which direction it should be facing. 

This meant that either Euler angles weren’t the best choice for the requirements. 

 

3.4.2 Quaternions and how to use them 
 

A solution for handling rotation in three dimensions without any gimbal lock problems 

was to use SCNNodes orientation property that uses quaternions. Quaternions howev-

er are quite a bit more complex to use, as SCNQuaternion class did not have any re-

quired quaternion math methods. To solve this deficient I either needed to create the 

methods by myself or use GLKits GLKQuaternion class. GLKQuaternion has all the 

needed math functions and the calculated results components can be used to create 

the SCNQuaternion that can set the SCNNodes orientation. For this project creating 

the functions by myself was deemed better for learning purposes and a way to avoid 

unnecessary GLKQuaternion to SCNQuaternion conversions. 

 
func handlePan(_ translation: CGPoint) { 
    let orientation = playerNode.presentation.orientation 
    let position = playerNode.presentation.position 
         
    if fabs(translation.x) > fabs(translation.y) { 
        let rotation = Float(M_PI / 180) * 
Float(translation.x / 50) 
             
        let convertedAxis = multiply(multiply(orientation, 
q2: SCNQuaternion(x: 0, y: 1, z: 0, w: 0)), q2: conju-
gate(orientation)) 
         playerNode.rotatePlayer(convertedAxis.x, y: con-
vertedAxis.y, z: convertedAxis.z, angle: rotation) 
             
         let newOrientation = play-
erNode.presentation.orientation 
         let direction = multiply(multiply(newOrientation, 
q2: SCNQuaternion(x: 0, y: 0, z: -1, w: 0)), q2: conju-
gate(newOrientation)) 
             
         var angle = atan2(-1, 0) - atan2(direction.z, di-
rection.x) 
             
         if angle < 0 { 
             angle += Float(2 * M_PI) 
         } 
             



22 

 

 

         overlayScene.radarPlayerRotation = CGFloat(angle) 
 
    } else { 
        let rotation = Float(M_PI / 180) * 
Float(translation.y / 50) 
        let convertedAxis = multiply(multiply(orientation, 
q2: SCNQuaternion(x: 1, y: 0, z: 0, w: 0)), q2: conju-
gate(orientation)) 
        playerNode.rotatePlayer(convertedAxis.x, y: con-
vertedAxis.y, z: convertedAxis.z, angle: rotation) 
    } 
         
    playerNode.position = position 
} 
 
internal extension Player { 
    func rotatePlayer(_ x: Float, y: Float, z: Float, an-
gle: Float) { 
        let tempQ = SCNQuaternion(x: x * sinf(angle / 2), 
y: y * sinf(angle / 2), z: z * sinf(angle / 2), w: 
cos(angle / 2)) 
        orientation = multiply(tempQ, q2: presenta-
tion.orientation) 
    } 
} 

 

internal func multiply(_ q1: SCNQuaternion, q2: SCNQuater-
nion) -> SCNQuaternion { 
     
    let w = q1.w * q2.w - q1.x * q2.x - q1.y * q2.y - q1.z 
* q2.z 
    let x = q1.y * q2.z - q1.z * q2.y + q1.w * q2.x + q2.w 
* q1.x 
    let y = q1.z * q2.x - q1.x * q2.z + q1.w * q2.y + q2.w 
* q1.y 
    let z = q1.x * q2.y - q1.y * q2.x + q1.w * q2.z + q2.w 
* q1.z 
 
    return SCNQuaternion(x: x, y: y, z: z, w: w) 
} 
 
internal func conjugate(_ q: SCNQuaternion) -> SCNQuaterni-
on { 
    return SCNQuaternion(x: -q.x, y: -q.y, z: -q.z, w: q.w) 
} 

 
Listing 7. Rotation handling and quaternion helper methods. 
 

Listing 7 displays all the functions used for rotating the player. Firstly the GameView-

Controller calls the handlePan method and then the translation is checked if the player 

wants to rotate in vertical or horizontal direction. The translation amount in this check 

needs to be an absolute value, because depending on the direction the value might be 

negative. Then the rotation value is adjusted by an arbitrary amount, to make the play-

er rotate in a desired speed. 

 



23 

 

 

Depending on the rotation direction, either a normal vector representing the z-axis or y-

axis is then converted from global axis to local by multiplying it with the player’s current 

orientation. To get the SCNNodes current orientation it’s needed to use its presentation 

property’s values. The presentation always displays the current properties while calling 

the SCNNodes properties directly always give the ones it was set with. The presenta-

tion is also a read only property, so these can not be used to set the rotation. The cal-

culation operation for this is qpq^-1, where q is the quaternion that rotates the quater-

nion p and q^-1 is conjugate of quaternion q. The order in this operation matters and 

multiplying qp gives different result than pq. The way these two operations work can be 

observed from listing 7 from their similarly named methods. In this case this is used in 

a way where first the player’s current orientation is multiplied with normal vector repre-

senting a wanted axis of rotation using the self-made multiply operation. Then this is 

multiplied with the conjugate of player current orientation, as is shown in listing 7. (Jer-

emiah van Oosten, 2012.) 

 

The x, y and z components of this quaternion are then passed to the playerNode with 

the amount to rotate. The rotatePlayer method then calculates a new quaternion that 

can be used to rotate the player by multiplying these two together. These calculations 

required a creation of a temporary quaternion named tempQ that converts from axis- 

angle to quaternion. This converted value can then be used to rotate the player correct-

ly. 

 

Finally as displayed in listing 7 the player’s position is reset with position it had before 

changing its orientation, because the players transformations position is reset to its 

starting position when orientation is set. 

 

3.4.3 Adding the shooter element to the controller 
 

Game design required making it possible for the player to shoot by tapping the screen. 

This was done by using the information given by handleTap-method that was shown 

earlier in listing 6. The information on where the player tapped is not important in this 

part, because the ammunition should just shoot directly forwards from the player. 

 
if hp > 0 && gameStarted && ammo > 0 { 
    let orientation = playerNode.presentation.orientation 
    let direction = multiply(multiply(orientation, q2: SCN-
Quaternion(x: 0, y: 0, z: -1, w: 0)), q2: conju-
gate(orientation)) 



24 

 

 

                 
                 
    let bullet = Bullet(position: SCNVector3(x: play-
erNode.presentation.position.x + direction.x, y: play-
erNode.presentation.position.y + direction.y, z: play-
erNode.presentation.position.z + direction.z)) 
    bullet.physicsBody?.applyForce(SCNVector3(x: direc-
tion.x * 20, y: direction.y * 20, z: direction.z * 20), 
asImpulse: true) 
    rootNode.addChildNode(bullet) 
    ammo -= 1 
} 

 

Listing 8. Example of controllers shooting method. 
 

First an if-clause was added to limit shooting to only when player is still alive, has am-

munition and the game is running. To get the shooting direction, quaternions were used 

to rotate the player starting direction vector that is facing -1z by the players presenta-

tions orientation, as shown in listing 8. Then a Bullet class, that has dynamic phys-

icsBody type to make them influenced by all the physics, is created to the player’s 

presentations current position.  

 

The bullet can be pushed forward by applying force to its physicsBody-property with a 

vector created from the direction like is done in listing 8. To make the bullets fly faster, 

the values of this vector are multiplied by arbitrary amount. 

 

3.5 Game models 
 

The simplistic game design required only a few visible models that needed to be dis-

played. The Earth and bullets were fully created with the tools provided by Xcode, I 

only needed the textures and maps for the Earth and its clouds.  

 
extension Bullet { 
    func particleSystem() { 
        guard let particleSystem = SCNParticleSystem(named: 
"BulletParticle", inDirectory: nil) else { 
            return 
        } 
        particleSystem.emitterShape = geometry 
        addParticleSystem(particleSystem) 
    } 
} 

 

Listing 9. Adding a particle system to bullet. 
 



25 

 

 

The bullets were created as just a small white spheres that have custom made particle 

effect system attached to them. The used effect was designed with Xcodes particle 

system file generator that can be used to create 3D particle systems for SceneKit easi-

ly. Xcode also has its own generator for SpriteKit that does 2D particle systems. This 

generated file is then imported to the game by initializing a SCNParticleSystem with it, 

like was done in listing 9. This SCNParticleSystem is then given the shape of the bullet 

sphere so the particle effect will surround the bullet nicely and finally this system is 

added to the bullet as a child node. This makes the system follow the bullets position 

and to get removed from the scene and memory when the bullets are. 

 

The meteors and comets, however, required custom made 3D models that were creat-

ed with Blender. To add these to the project the models were first exported from blend-

er as COLLADA file, which is a XML schema holding all the information about the 

model. This file, with .dae extension, can then be imported with any needed textures to 

Xcode. 

 
import Foundation 
import SceneKit 
 
internal class Meteor: SCNNode { 
     
    internal init?(position: SCNVector3, randRot: Int) { 
        super.init() 
         
        name = "meteor" 
        guard let url = Bundle.main.url(forResource: 
"art.scnassets/meteor", withExtension: "dae"), let source = 
SCNSceneSource(url: url, options: nil), let geometry = 
source.entryWithIdentifier("Cube-mesh", withClass: SCNGeom-
etry.self) as SCNGeometry? else { 
            return nil 
        } 
         
        self.geometry = geometry 
        physicsBody = SCNPhysicsBody.kinematic() 
         
        let material = SCNMaterial() 
        material.lightingModel = .lambert 
        material.diffuse.contents = UIImage(named: "RockS-
mooth.jpg") 
        material.diffuse.wrapS = .repeat 
        material.diffuse.wrapT = .repeat 
        material.diffuse.intensity = 0.5 
        material.emission.contents = UIImage(named: "RockS-
mooth_dark.jpg") 
        material.emission.wrapS = .repeat 
        material.emission.wrapT = .repeat 
        material.emission.intensity = 0.5 
         
        self.geometry?.replaceMaterial(at: 0, with: materi-
al) 



26 

 

 

         
        scale = SCNVector3(x: 3, y: 3, z: 3) 
 
        physicsBody = SCNPhysicsBody.kinematic() 
        physicsBody?.damping = CGFloat(0) 
        physicsBody?.categoryBitMask = CollisionCatego-
ry.Meteor 
        physicsBody?.contactTestBitMask = CollisionCatego-
ry.Bullet | CollisionCategory.Player | CollisionCatego-
ry.Earth | CollisionCategory.Comet 
        physicsBody?.collisionBitMask = CollisionCatego-
ry.Bullet | CollisionCategory.Player | CollisionCatego-
ry.Earth | CollisionCategory.Comet 
         
        self.position = position 
        rotation = SCNVector4(x: 0, y: 1, z: 0, w: 
Float(M_PI) / Float(8) * Float(randRot)) 
    } 
     
    internal required init?(coder aDecoder: NSCoder) { 
        super.init(coder: aDecoder) 
    } 
} 

 

Listing 10. Example of a Meteor class initialisation. 
 

To add this imported COLLADA file to a SCNNode, it is needed to create a 

SCNSceneSource with the files URL that can be acquired from the projects main bun-

dle. This source can then be used to initialize a SCNGeometry, by using the 

SCNSceneSources entryWithIdentifier method, the identifier being the name of the 

models mesh. The result then needs to be casted to SCNGeometry, so it can be used 

to set the Meteors geometry property like was done in listing 10.  

 

All these return optional values, so they were chained in guard statement to make sure 

the game will not crash if something goes wrong. This guard will make the failable ini-

tializer return nil in case of error, which will then be discarded in the game when mete-

ors are spawned. 

 

Listing 10 also show a workaround for problem that arose when the code was refac-

tored from Swift 2.2 to Swfit 3. The texture setting that were included in the COLLADA 

file wouldn’t no longer successfully be applied automatically when the model was im-

ported. As a quick solution, a SCNMaterial class with the same attributes that the 

COLLADA would’ve had is created and added to the SCNNode. This included setting 

the materials lightningModel property to Lambert that decides the lightning formula 

used for rendering, setting the wrap properties to repeat the texture and finally setting 

the intensity property to 0.5 so to not make texture too bright. 



27 

 

 

 

A problem related to these models was found in testing. Because of the game design 

that wanted to simulate the light sun gives, with the omni-type SCNLight, the meteors 

were hard to see from the dark side. As a solution, a darker version of the used texture 

is also set to the meteors materials emission, as is shown in listing 10. This makes the 

meteors more visible, no matter the direction the player is looking at the models.  

 

To make the imported models larger the SCNNodes scale property is set to make them 

three times larger in all dimensions. Finally the meteors are rotated by random amount, 

to make the spawned meteors all face different direction. 

 

The comet models use the same COLLADA models as meteors but are scaled to even 

larger size. They also have an added particle system that is added by a method de-

scribed earlier in listing 9. This not only makes them look more menacing but also easy 

to distinguish from others. 

 

3.6 Animating in SceneKit 
 

For doing animations, in SceneKit there are couple of choices. Externally created ani-

mations can be imported as COLLADA files and these can be used to initialize an 

SCNScene object that can then be used as desired (SCNScene, 2016). Purely code-

based animations can be handled per frame basis in rendering loop or by creating 

SceneKits own SCNActions or SCNTransaction. Animations created in Core Animation 

frameworks can also be added to SceneKit by using SCNActionable interface. 

 



28 

 

 

 
Image 4. SceneKit rendering loop and its delegate. Copied from SCNSceneRendererDelegate 
(2016). 
 

To do per frame animations in SceneKit a class has to implement SCNSceneRender-

erDelegate protocol and be set as delegate for the SCNView that is currently used for 

the rendering. The delegate can implement any of the methods listed in image 4 for 

different phases of the render loop that are ranging from the start of the update loop to 

the moment when the scene is fully rendered. Importantly these methods should not 

contain overly complex and time-consuming logics as it can slow the rendering time. 

(SCNSceneRendererDelegate, 2016.) 

 

 
func renderer(_ renderer: SCNSceneRenderer, updateAtTime 
time: TimeInterval) { 
    if gameStarted { 
        let ppo = playerNode.presentation.orientation 
        let direction = multiply(multiply(ppo, q2: SCNQua-
ternion(x: 0, y: 0, z: -1, w: 0)), q2: conjugate(ppo)) 
        playerNode.physicsBody?.velocity = SCNVector3(x: 
direction.x * Float(8 + shipSpeed), y: direction.y * 
Float(8 + shipSpeed), z: direction.z * Float(8 + ship-
Speed)) 
                             
        if cometResponseTime >= 300 { 
            cometResponseTime = 0 
            for comet in cometNodes.childNodes { 
                let vx = comet.presentation.position.x - 
playerNode.presentation.position.x 
                let vy = comet.presentation.position.y - 
playerNode.presentation.position.y 



29 

 

 

                let vz = comet.presentation.position.z - 
playerNode.presentation.position.z 
                     
                let mVector = sqrt(powf(vx, 2) + powf(vy, 
2) + powf(vz, 2)) 
                     
                comet.physicsBody?.velocity = SCNVector3(x: 
-vx / mVector * Float(10 + difficulty), y: -vy / mVector * 
Float(10 + difficulty), z: -vz / mVector * Float(10 + dif-
ficulty)) 
                     
            } 
        } else { 
            cometResponseTime += 1 
        } 
        updateRadar() 
    } 
} 

 

Listing 11. SCNSceneRendererDelegate example. 
 

As demonstrated in listing 11 SCNSceneRendererDelegates upDateAtTime method 

was chosen for the project. This method is called in the beginning of a render loop, 

before anything has been drawn (SCNSceneRendererDelegate, 2016). Listing 11 also 

shows some of these animations that are done in the loop. The player is always moved 

forwards in its current direction by setting the velocity of playerNodes physicsBody 

when the game is running. Every frame, the player’s current orientation is calculated by 

using quaternions in the same way as was done with the shooting. Because handling 

the player’s rotation is separate method from this, checking the players orientation in 

every render loop is easiest and safest way to make sure the movement direction is 

always correct before any actual movement is rendered. 

 

The comets, that give chase to the player, are also animated in the render loop. Their 

homing capability is however handicapped in a way that they will calculate their direc-

tion to the player only once per 300 renderer loops. This means a response time of 5 

seconds when the game is running in its full 60 frames per second rendering rate. The 

handicap makes it possible for the player to do evasion movements to avoid collision 

with the comets, who by default will be moving at higher velocity than the player. 

 

The movement direction for comets is determined by first calculating the needed x, y 

and z vector components, by reducing the point of playerNodes presentations position 

from the point of comets presentations position, as was done in listing 11. These com-

ponents are then combined and normalized to create a normal vector pointing from the 

comet to player. 



30 

 

 

 

Because of the game design, the movement speed of the comets is increased every 

successive game round and players movement speed can be increased by purchasing 

more ship speed. This makes for an ever-increasing cat and mouse game that was 

intended. Though it’s also marginally possible for the player to just keep trying to evade 

the comets if they get faster than the player. Constant evasion movements will, howev-

er, make it hard to aim and shoot all the meteors in time, meaning that the player can’t 

ignore purchasing more speed boosts forever. 

 

SCNSceneRendererDelegate is also used to refresh the radar that is displayed to the 

player, to keep its information correct. Not shown in listing 11 are also several warning 

that can be displayed to the player such as if the player is getting too close to the invis-

ible map walls or if comets are getting dangerously close. These warnings have simple 

Boolean locks that make sure they are only launched once in an occasion or otherwise 

they would be displayed to the player multiple times in a second. 

 

3.7 Using SCNActions 
 

Rest of the animations in the projects were simple enough that SCNActions could be 

used create them. SCNActions have limited amount of capabilities mostly ranging from 

moving, rotating, scaling and chancing the alpha of objects. These can, however, be 

combined together by grouping and sequencing them, to create surprisingly complex 

animations. The animations can also be repeated from finite to infinite times as need-

ed. Most importantly SCNActions take in blocks that can execute whatever is needed, 

making it possible to create custom actions. Even if SCNActions are categorized as a 

simple way to animate objects in can be used to make even complicated animations. 

(SCNAction, 2016.) 

 
func shieldMeteorMovement(_ sp: SCNVector3, ep: SCNVector3) 
{ 
    runAction(getMeteorAction(position, ep: SCNVector3(x: 
0, y: 0, z: 0), TurretSpeedUp: TurretSpeedUp)) 
         
    let shieldAction = SCNAction.sequence([ 
        SCNAction.wait(duration: 1), 
        SCNAction.run({(node) -> Void in 
           node.physicsBody?.categoryBitMask = Collision-
Category.ShieldMeteor 

                            
node.geometry?.firstMaterial?.reflective.contents 

= UIColor.red 



31 

 

 

            }), 
        SCNAction.wait(duration: 0.5), 
        SCNAction.run({(node) -> Void in 
                node.physicsBody?.categoryBitMask = Colli-
sionCategory.Meteor 

                
node.geometry?.firstMaterial?.reflective.contents 
= UIColor.black     

            }) 
            ]) 
         
    runAction(SCNAction.repeatForever(shieldAction)) 
} 
 
func getMeteorAction(_ sp: SCNVector3, ep: SCNVector3) -> 
SCNAction { 
    let vectorX = ep.x - sp.x 
    let vectorZ = ep.z - sp.z 
    let magnitudeVector = sqrtf(pow(vectorX, 2) + 
pow(vectorZ, 2)) 
         
    return SCNAction.move(to: ep, duration: TimeInter-
val(Float(0.25) * magnitudeVector)) 
} 

 

Listing 12. Example case of SCNAction usage. 
 

Most of the SCNActions in the game are related to moving the meteors like in listing 

12. The shieldMeteorMovement method will first call a helper getMeterAction method to 

create action that will move the meteor from its current position towards the Earth that 

is positioned at the origin of the scene. The SCNActions move-animation requires in-

formation on how long the movement should take, so to get all the meteors to move at 

same speed, a magnitude vector from the movements’ starting and ending position is 

calculated. This magnitude vector is then used make the movements duration be in 

relation to the distance the meteor is from Earth, making them all move at same speed. 

 

Afterwards in listing 12, a SCNAction sequence is made that is then set to be repeated 

forever until the node is removed. The sequence will first wait for one second to run a 

custom block that will change the meteor reflection colour to red and change its bit 

mask property. Then the sequence waits for half a second to change the reflection col-

our and bit mask back to what they were in the start. The intention of this is to make the 

meteors invulnerable for half a second as was mentioned in the game design. The oth-

er meteor types have similar kind of SCNAction usage: the normal meteors only need 

to be moved to origin in straight line, while the meteors that will move in more unpre-

dictable path have a sequence of different points to move to. 

 



32 

 

 

3.8 Collision detection 
 

To successfully implement the game design, some kind of information about when bul-

lets hit meteors, meteors hit Earth or comet hit player was needed. Meaning that colli-

sion detection had to be added to the game. This can be done in SceneKit by setting a 

SCNScene class as a SCNPhysicsContactDelegate. Implementing this protocol gives 

access to three different optional methods that give info about when contact begun, 

was updated or ended. These methods will return the contact that happened, which in 

turn can be asked about the position of contact and what were the two nodes involved. 

(SCNPhysicsContactDelegate, 2016.)  

 

Because in the game there can be multiple kinds of contacts and they all should be 

handled differently, so a way to distinguish what kind of nodes made the contact was 

needed. SCNNodes have a categoryBitMask property that needs to be set with a inte-

ger unique to the type (SCNNode, 2016). The nodes physcisBody property has con-

tactTestBitmask and collisionBitMask properties that should be set with the types that 

can cause collision with the said SCNNode. This is done to limit the amount of colli-

sions that will be detected. Listing 10 earlier shows how this was done in the project: 

firstly all the bit masks were made static constants, so they could be accessed globally, 

then these were applied to the listed properties accordingly. 

 

To actually find out what kind of nodes caused the contact, the categotyBitMask prop-

erty can be asked from the contact causing nodes in the delegate methods. These can 

then easily be used to compare what kind of SCNNodes they were and then act as 

required.  In this project this involved a long switch that compares the nodes. 

 

3.9 Adding SpriteKit overlay 
 

The game needed some smart way to give information about the score, hit points, am-

munition count, radar and to show messages to the player. Also, a way to display the 

shopping screen after player finishes a round was required. One easy way to add these 

in SceneKit is by adding a SpriteKit overlay to the SCNView. This can be done by set-

ting the overlaySKScene property of SCNView with a SKScene object (SCNView, 

2016).  

 



33 

 

 

The game projects architecture proved slightly cumbersome when this was done, as 

both the SCNView and SCNScene objects needed a reference to the overlay scene 

while the SCNView would also hold reference to the SCNScene. This could potentially 

cause a memory leak in the game, when two separate entities share strong reference 

to same object. Removing the overlay scene reference from SCNView before 

SCNScene is removed solved this potential problem. Overall it might be worth improv-

ing the architecture to avoid this kind of bad and risky patterns. 

 

The overlay classed listed earlier in image 2 subclasses an SKScene class that is the 

SpriteKit equivalent of SCNScene class. So the radar, shopping screen and all the in-

formation labels were created as a SpriteKit objects that were then added to the 

SKScene classes as child nodes. These are then either hidden or shown depending on 

the games state, so for example, as was shown earlier in listing 11 the radar is only 

updated when the game is running and not when the shopping screen is shown. The 

shopping screen uses the same handeTap method that the controllers shooting action 

is using, to distinguish when and what shopping screens buttons were tapped. So this 

time also the information of what point in the screen the player tapped was needed. 

This information could easily acquired by first converting the point from ViewnControl-

lers coordinate system to SpriteKits, as this two have different origin points, by using 

SKScenes converPoint method. The SKNodes in the overlay scene could then be 

asked if they contained this point, by using their contains-method that returns an ap-

propriate Boolean value. 

 

More extensive inner workings of these overlay scenes are out of the scope of this the-

sis that is focused on SceneKit and not in SpriteKit. However, overall the SpriteKit 

framework and its classes worked very similarly to SceneKit and its equivalent classes: 

just in 2D instead of 3D. This meant that using SpriteKit for the overlay scenes did not 

require much extra learning and by knowing how SceneKit worked, I was pretty much 

good to go. 

 

 

 

 

 



34 

 

 

4 Testing 
 

4.1 Testing procedure 
 

As was discussed in chapter 2.2.2, the most likely user group for the game was decid-

ed to be between the ages of 18 and 35, as this was the largest mobile gamer group. 

This meant that the testers would preferably be of this age group. It was also decided 

that the testers gender would not matter. However, the tests that were carried out had 

clearly more men than women. 

 

The testing was meant to be light and manageable but it was also meant to give clear 

signs of how the finished game feels for a user. Further feedback on how the game 

could be improved was also needed. 

 

In the tests, a tester was given an iPhone 5s that was preloaded with the game as a 

test device and he or she was asked to play the game couple of times. The device was 

chosen because of its smaller screen size compared to the newer iPhone models, so it 

could be known that the graphics can be seen clearly even on a small screen. The de-

vice also has worse processing power than the newer ones so if the game runs well on 

iPhone 5s, it should also run well on newer models. 

 

After the testers felt confident enough to answer related questions about the game they 

were asked three questions and the main points of their answers were written down. 

The questions in English were “What did you like in the game?”, “What didn’t you like in 

the game?” and “How would you improve the game?”. 

 

4.2 Testing results and analysis 
 

A total of six people were interviewed for the user testing ranging from the age of 23 to 

30. Each tester had some experience with mobile games, so any improvement ideas 

were thought to be highly valuable. The gender distribution of these six testers was five 

males and one female, though as stated, this was not deemed important. Everything 

was done anonymously, only the testers age was asked to make sure that they fit the 

target user group. 

 



35 

 

 

Testers age in 

years 

What did you like in 

the game? 

What you didn’t like 

in the game? 

How would you 

improve the game? 

23 Liked graphics. Controls were con-

fusing. 

Would add instruc-

tions on how con-

trols work 

27 Liked graphics. Controls were con-

fusing. 

Would add instruc-

tions on how con-

trols work and more 

manuals overall 

30 Liked graphics and 

the games idea. 

Controls were con-

fusing. 

Would add instruc-

tions on how con-

trols work. Would 

also reduce explo-

sion particles when 

close to one. 

27 Liked graphics. Controls were con-

fusing. 

Would add instruc-

tions on how con-

trols work 

27 Liked graphics. Controls and the 

games objective 

were confusing. 

Would add instruc-

tions on how con-

trols work and 

make the controls 

slower. Would also 

add more settings 

to the controls and 

change some of the 

games terminology 

such as “HP” to 

“Life” 

23 Liked the games 

idea. 

Controls and the 

games objective 

were confusing. 

Would add more 

manuals. 

 
Table 1. User testing results. 
 



36 

 

 

Because of the clear results listed in table 1, the user testing sample size was thought 

to be enough as there was already an obvious pattern that could be analysed. This 

also meant that the test was successful in its objective of giving information of what still 

needs to be enhanced in the project. 

 

The user test results shown in table 1 are very clear on what has been done right and 

what still has to be improved. All the testers answered basically the same things. The 

graphics are fine and the game looks good but the controls still need clear instructions 

how they work. The game could also have a clear manual what the player should be 

doing in it, instead or in addition to small text paragraph that is currently shown before 

the game starts. There are also some more optional tweaks such as chancing the ter-

minology used in the game and making the explosion particle effects block less when 

they are triggered right next to the player. These too are, however, worth looking into, 

as they are trivially easy and fast to fix. 

 

Though it could be argued, if these issues might break the human interface guidelines 

as they are more of a problem with the game design. However, they need to be cor-

rected, before the project can be deemed completely finished and ready to be pub-

lished in App Store. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



37 

 

 

5 Project Summary 
 

5.1 Summary of what was done 
 

Overall the project was mostly successful: all the game design specifications were met, 

but reaching the main goal still requires the addition of more instructions. The game 

has two different game modes: one where the player can move and one where the 

player is stationary. Though the games only had small differences, the differences were 

enough to try different kind of patterns, and try to limit unnecessary code repetition.  

 

Using swift as a programming language made the code much more readable and main-

tainable compared to Objective-C. Swift’s much safer type system makes sure that the 

program will not crash because of nil pointer errors. Because it is easy to know when 

some return value can be nil, it was easy to program the application so that it can re-

solve these issues without the whole application crashing. 

 

The planned architecture for the game did not fully prove itself, as there still are some 

slight code repetition and possibility for memory leaks if not careful. Still overall, using 

protocols for common methods made it possible for handling the two different games in 

one ViewController class.  

 

The game includes a custom-made first person shooter controller for a device with 

touch screen. The controller uses quaternions for calculating the player’s orientation 

correctly as other methods of doing this could not handle rotation in multiple dimen-

sions well enough. SceneKits built-in methods for using quaternions are not as easy to 

use as it might be in frameworks such as Unity, but these shortcomings can be allevi-

ated either by using GLKits quaternion methods or with some math knowledge these 

can be implemented by self. The user testing however revealed that without instruc-

tions these controls can be confusing at first for the potential user. 

 

The design required several different models, which are either done with SceneKits 

built in features, imported from COLLADA files that were made with Blender or the 

combination of these. SCNNodes have several properties that can be changed to make 

their materials colour and texture look as wanted and these were utilised in the project 

almost fully. Only the lack of good UV maps meant that these were not used for the 

Earths model. 



38 

 

 

 

SceneKit had multiple ways of animating these models, however, most of the possible 

methods were not needed in the project. Even the most simple of these, SCNActions, 

proved more than capable of handling even the more complex animations with ease. 

The SCNRenderDelegate gave an easy way to attach animations to the frame-

rendering loop. This was also used to use simple timed actions that should only be 

triggered when certain conditions were matched. SCNRenderDelegate also had multi-

ple different possible methods for different points of the renderer loop, which the first 

one that is triggered right at the start was found most usable for the project. 

 

All the needed physics could be done with SceneKit and it was easy to configure which 

objects can bounce and which can not when colliding with other objects. The collision 

detection was also fairly easy to setup, though the current implementation required 

quite long and precise switch statement that handles all the possible cases correctly. 

 

 
Image 5. Finished game screen. 
 

SCNViews capability to have a SpriteKit scene as an overlay made it easy to show 

information to the player. As shown in image 5, this was used to display a radar that 

shows were objects are, game status information and buttons that can be used to quit 

or mute the game. The overlays were easy to setup but they also required to use 

SpriteKit in addition to SceneKit. However, the differences between SpriteKit and 

SceneKit are not very significant, so using it for a simple overlay did not require much 

additional learning. 



39 

 

 

 

5.2 The challenges faced 
 

The project faced several small problems through its development. The biggest one of 

these was Swift’s lack of maturity. The project has already gone through two large re-

writes because of big Swift updates. Another thing caused by this was that the protocol 

oriented programming that Swift now supports, was not a choice when the develop-

ment was started in Swift 1.2. The traditional object oriented way of developing with 

classes, was found cumbersome for avoiding code repetition and at the projects cur-

rent state, repetition could not be completely avoided. 

 

SceneKit had some undocumented features or glitches that were at times difficult to 

solve, because the low amount of overall documentation and discussion found for us-

ing the framework. Some of these were game breaking problems, such as the shop-

ping screen that is shown to the player when a round in the main game is finished suc-

cessfully, used to pause if there was nothing moving in the main SceneKit scene. Mak-

ing the object for Earth stay in the scene and have it animated with SCNAction rotate 

forever eventually solved this problem, but it was still a nuisance to solve. 

 

5.3 Future for the game 

 

The game is still headed to eventually see release in the App Store after the issues 

raised by the user testing has been alleviated. Showing a view with detailed instruc-

tions before game starts will most likely be enough to fix the problems. The project 

might also be rewritten to the newer protocol oriented way of programming before this 

is done. 

 

Swift has supported extending protocols with default behaviour from version 2.0. This 

makes it possible to abandon classes and instead only rely on structs, which are then 

made to implement their appropriate protocols (Kerber Erik, 2015). Using structs in-

stead of classes avoids some problems, such as when classes are passes to around in 

the code, they will all change the shared classes state. However structs will always be 

copied so every usage of it will change only alter the used copy’s state. Calling classes 

super methods when overriding a method are also a bit unreliable, as it is sometimes 



40 

 

 

hard to know at what point in the override it should be called: after or before the sub-

classes own code? 

 

Using only protocols in the project would require a complete rewrite and rethinking on 

how its architecture should work. It could, however, improve and simplify the game a 

lot.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



41 

 

 

6 Conclusion 
 

The focus of this thesis was to study how SceneKit framework in unison with the new 

Swift programming language can be used to develop a functional game. This was all 

based on a project with a goal to make a game that is publishable to Apple’s App 

Store. Requirement for this was that the project should pass all required guidelines in 

App Store Review Guidelines. 

 

The thesis shows how to design a game project. The design was eventually split into 

two different games that both take place in space and share the common idea of sav-

ing object from meteors for as long as possible. The thesis also explained how the 

games graphics were made. 

 

The main chapter covered how the key parts of the game were implemented, with sim-

ple examples taken from its source code. The idea was to show how the mains aspects 

of SceneKit actually work and can be done. It can also be concluded that SceneKit had 

more than enough features to handle the required game design. 

 

The made choices were later reflected on: what was done, what problems were found 

when working on the project and what could be improved in the future. Based on the 

results it seems that it could be worth testing the newer protocol oriented way of pro-

gramming now that Swift supports it. User tests that were done also show that although 

the game looks good, more instructions on how to play it are needed before it can be 

said to fulfil its objective completely. 

 

In conclusion I believe that the objectives of the thesis were completed, though the 

game project still needs some improvements before its goals can be deemed reached. 

The thesis shows how SceneKit framework was used with Swift programming language 

to program an iOS game and it should help anyone looking to use these technologies 

in game development. 

 

  



42 

 

 

References 
 
App Programming Guide for iOS (2016) [online]. Apple, 13 September 2016. URL: 
https://developer.apple.com/library/content/documentation/iPhone/Conceptual/iPhoneO
SProgrammingGuide/Introduction/Introduction.html#//apple_ref/doc/uid/TP40007072. 
Accessed 15 October 2016. 
 
App Store Review Guidelines (2016) [online]. Apple, 2016. URL: 
https://developer.apple.com/app-store/review/guidelines/. Accessed 15 October 2016. 
 
Cohen Peter (2014). Metal in iOS 8: Explained [online]. iMore, 27 June 2014. URL: 
http://www.imore.com/metal-ios-8-explained. Accessed 12 July 2016. 
 
Create games, connect with your audience, and achieve success (2016) [online]. Unity, 
2016. URL: https://unity3d.com/unity. Accessed 5 October 2016. 
 
Common App Rejections (2016) [online]. Apple, 2016. URL: 
https://developer.apple.com/app-store/review/rejections/. Accessed 15 October 2016. 
 
GameFromScratch.com (2015). GAMEDEV GLOSSARY: LIBRARY VS FRAMEWORK 
VS ENGINE [online]. GameFromScratch.com, 13 June 2015. URL: 
http://www.gamefromscratch.com/post/2015/06/13/GameDev-Glossary-Library-Vs-
Framework-Vs-Engine.aspx. Accessed 12 July 2016. 
 
iOS Data Storage Guidelines (2016) [online]. Apple, 2016. URL: 
https://developer.apple.com/icloud/documentation/data-storage/index.html. Accessed 
15 October 2016. 
 
iOS Human Interface Guidelines (2016) [online]. Apple, 2016. URL: 
https://developer.apple.com/ios/human-interface-guidelines/. Accessed 15 October 
2016. 
 
Jeremiah van Oosten (2012). Understanding Quaternions [online]. 3D Game Engine 
Programming, 25 June 2012. URL: http://www.3dgep.com/understanding-quaternions/. 
Accessed 1 October 2016. 
 
Kerber Erik (2015). Introducing Protocol-Oriented Programming in Swift 2 [online]. ray-
wenderlich.com, 25 June 2015. URL:  
https://www.raywenderlich.com/109156/introducing-protocol-oriented-programming-in-
swift-2. Accessed 3 October 2016. 
 
Myth Busting: Mobile Gaming Demographics (2015) [online]. RealityMine, 1 June 2015. 
URL:  http://www.realitymine.com/myth-busting-mobile-gaming-demographics/. Ac-
cessed 15 October 2016. 
 
SceneKit (2016) [online]. Apple, 2016. URL: 
https://developer.apple.com/reference/scenekit. Accessed 2 October 2016. 
 
SCNAction (2016) [online]. Apple, 2016. URL: 
https://developer.apple.com/reference/scenekit/scnaction. Accessed 2 October 2016. 
 
SCNLight (2016) [online]. Apple, 2016. URL: 
https://developer.apple.com/reference/scenekit/scnlight. Accessed 9 October 2016. 
 



43 

 

 

SCNMaterial (2016) [online]. Apple, 2016. URL: 
https://developer.apple.com/reference/scenekit/scnmaterial. Accessed 9 October 2016. 
 
SCNMaterialProperty (2016) [online]. Apple, 2016. URL: 
https://developer.apple.com/reference/scenekit/scnmaterialproperty. Accessed 9 Octo-
ber 2016. 
 
SCNNode (2016) [online]. Apple, 2016. URL: 
https://developer.apple.com/reference/scenekit/scnnode. Accessed 9 October 2016. 
 
SCNPhysicsContactDelegate (2016) [online]. Apple, 2016. URL: 
https://developer.apple.com/reference/scenekit/scnphysicscontactdelegate. Accessed 
2 October 2016. 
 
SCNSceneRendererDelegate (2016) [online]. Apple, 2016. URL: 
https://developer.apple.com/reference/scenekit/scnscenerendererdelegate. Accessed 1 
October 2016. 
 
SCNScene (2016) [online]. Apple, 2016. URL: 
https://developer.apple.com/reference/scenekit/scnscene. Accessed 9 October 2016. 
 
SCNView (2016) [online]. Apple, 2016. URL: 
https://developer.apple.com/reference/scenekit/scnview. Accessed 9 October 2016. 
 
Solt Paul (2015). Swift vs. Objective-C: 10 reasons the future favors Swift [online]. In-
foWorld, 11 May 2015. URL: http://www.infoworld.com/article/2920333/mobile-
development/swift-vs-objective-c-10-reasons-the-future-favors-swift.html. Accessed 12 
July 2016. 
 
Sparrow (2016) [online]. Gamua, 2016. URL: http://gamua.com/sparrow/. Accessed 5 
October 2016. 
 
Specifying the renderer for SpriteKit and SceneKit (2015) [online]. Apple, 8 October 
2015. URL: https://developer.apple.com/library/ios/qa/qa1904/_index.html. Accessed 
12 July 2016. 
 
Tabini Marco (2013). Sprite Kit, GLKit, and Scene Kit: How Apple is shaping game de-
velopment [online]. MacWorld, 13 November 2013. URL: 
http://www.macworld.com/article/2051345/sprite-kit-glkit-and-scene-kit-how-apple-is-
shaping-game-development.html. Accessed 12 July 2016. 
 
Trouble subclassing SCNScene (2015) [online]. Stackoverflow, 30 December 2015. 
URL: http://stackoverflow.com/questions/34534743/trouble-subclassing-
scnscene/34536248#34536248. Accessed 14 July 2016. 
 
Wenderlich Ray (2011). OpenGL Tutorial for iOS: OpenGL ES 2.0 [online]. raywender-
lich.com, 25 May 2011. URL:  https://www.raywenderlich.com/3664/opengl-tutorial-for-
ios-opengl-es-2-0. Accessed 12 July 2016. 
 
What is Cocos2d-x (2016) [online]. cocos2d-x.org, 2016. URL: http://www.cocos2d-
x.org. Accessed 5 October 2016. 
 
Zibreg Christian (2015). Unity 5 game engine launches with iOS Metal and 64-bit sup-
port and other improvements [online]. iDownloadBlog, 3 March 2015. URL: 



44 

 

 

http://www.idownloadblog.com/2015/03/03/unity-5-game-engine-launches-with-ios-
metal-and-64-bit-support-and-other-improvements/. Accessed 12 July 2016. 
 


