
Bachelor’s thesis

Degree programme in Information Technology

240S08

2016

Instructor – Patric Granholm

Laxmi Thebe

COMMUNITY PARENTING
PLATFORM

– Development and Deployment Using the Django
Framework

BACHELOR’S THESIS | ABSTRACT

TURKU UNIVERSITY OF APPLIED SCIENCES

Degree programme in Information Technology

2016 | 44

Author – Laxmi Thebe

COMMUNITY PARENTING PLATFORM

 Development and Deployment Using the Django Framework

With the emergence of Information Technology, different tools are being developed and
deployed even with the focus on promoting the wellbeing of people in this particular field. In
parallel with this phenomenon, globalization has taken a new height in this era of information
technology – scattering millions of Nepali people around the globe in search of opportunity.

In the light of the aforementioned context, this thesis project aims to bring thus scattered people
around the globe to their own virtual local community with the noble cause of supporting a child
in their upbringing in their local community by developing and deploying a web application built
on Django Framework including features such as content generation, need declaration, and
sponsorship offers.

This thesis covers the processes of development and deployment of the project, describes tools
and technologies used, and orients towards future development facilitated with inclusion of
scalability issues and security issues. Furthermore, it demonstrates the use of open source
technologies for improving the wellbeing of people.

KEYWORDS:

Django Framework, Web Development, Python

FOREWORD

For bringing this little contribution from the vast ocean of knowledge, I immensely owe:

To my parents, for letting me see that ocean;

To all people before me, for creating that ocean;

To my teachers, for being the light on the path;

To my girls, for the encouragement and patience;

And to the Master, for orchestrating this drama.

…. I am thankful to my Instructor Patric Granholm for guiding me through this process, to my
Mathematics Teacher Hazem Al-Bermanei and to my English Teacher Poppy Skarli that I have

some soul satisfying memories of my school days.

CONTENTS

LIST OF ABBREVIATIONS (OR) SYMBOLS 6

1 INTRODUCTION 6

1.1 Community Parenting and Nepali context in brief 6

1.2 Project Aim 7

1.3 Author’s Contribution 8

1.4 Thesis Overview 8

2 LITERATURE REVIEW ON TECHNOLOGIES USED 10

2.1 Django Framework 10

2.1.1 Django Philosophy 10

2.1.2 Why Django? 11

2.1.3 Django Request/Response Process 12

2.2 Development Tools 13

2.3 Python Packages 14

2.4 Deployment Tools 15

3 SETTING UP THE DEVELOPMENT ENVIRONMENT 17

3.1 Setting Up the Virtual Environment 17

3.2 Starting the Project 17

4 APPLICATION DEVELOPMENT PROCESS 20

4.1 Django Workflow 20

4.2 Apps and the related models in the project 20

4.3 Views in the project 25

4.4 Forms in the Project 28

4.5 URLConf in Django 30

5 APPLICATION DEPLOYMENT PROCESS 33

5.1 mod_wsgi and deployment of Django in Apache server 33

5.2 Deploying Django project with MySQL 35

5.3 Security Measures in Django Application 36

5.4 Database Security Issues 37

5.5 Scalability Issues in Application 38

6 CONCLUSION AND RECOMMENDATION 40

6.1 Recommendation 40

6.2 Personal Development in the context of thesis project 41

REFERENCES 43

FIGURES

Figure 1. Django Request/Response Cycle (Holovaty and Kaplan-Moss 2009). 13
Figure 2. Deployment of Django in Large Setup (Holovaty and Kaplan-Moss 2009). 39

PICTURES

Picture 1. The list of Python Packages. 15
Picture 2. Django Version 1.9.8. 18
Picture 3. 'manage.py' demonstarting administrative ability. 18
Picture 4. 'Post' model from 'posts' app. 21
Picture 5. 'Member' model from 'people' app. 22
Picture 6. Models from 'community' app. 23
Picture 7. Models from 'support' app. 24
Picture 8. Function-based views for 'contact' page. 25
Picture 9. Example of View from 'community' app. 26
Picture 10. Django Mixin. 27
Picture 11. Template Example. 27
Picture 12. StudentCreateView rendering the view in the browser. 28
Picture 13. Example of Form in the 'community' app. 29
Picture 14. Student model in 'community' app. 29
Picture 15. URLconf in 'people' app. 30
Picture 16. ROOT_URLCONF file. 31
Picture 17. Contact page on browser. 32
Picture 18. mod_wsgi installation confirmation. 33
Picture 19. Apache VirtualHost configuration file. 34
Picture 20. Database Settings in settings.py file. 35
Picture 21. Database access configuration file. 35
Picture 22. MySQL bind to localhost. 37
Picture 23. Firewall in Action. 38

LIST OF ABBREVIATIONS (OR) SYMBOLS

Abbreviation Explanation of abbreviation (Source)

API Application Programming Interface

HTML Hyper Text Markup Language

HTTP Hyper Text Transfer Protocol

HTTPS HTTP Secure also known as HTTP over SSL/TLS

IDE Integrated Development Environment

MTV Model Template View

MVC Model View Controller

ORM Object Relational Mapper

REST Representational State Transfer

SQL Structured Query Language

SSH Secure Shell Protocol

URL Uniform Resource Locater

WSGI Web Server Gateway Interface

6

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Laxmi Thebe

1 INTRODUCTION

With the emergence of Information and Technology, the way of our living and

interaction has changed in a way which has brought multitudes of longitudes and

latitudes to intersect in a single point transforming the whole world into a global village.

With this phenomenon, the current wave of globalization is largely fueled and more

than 2 million Nepali people are working abroad in different parts of the world.

This thesis project aims to develop a web application which brings Nepali people from

around the globalized world in that intersection called ‘Community Parenting’ - where

the similar interest of different people from multitudes of intersection of longitudes and

latitudes sponsors children back home in Nepal in different aspects of their necessities.

This thesis discusses the development and deployment process of the thesis project to

its prototype version. Background information related to the project and future

development is included as well to create a smooth transition of personal development

during the thesis development process.

1.1 Community Parenting and Nepali context in brief

The community parenting term is used by different stakeholders to describe different

approaches of involvement in the life path of children. For example, supporting a child

through promotion of partnership with parents is one such approach whereas it could

be also done by direct involvement with the activities of a child, too. Broadly, it can be

defined as an action conducted to improve the well-being of children for their proper

upbringing by carrying different community based projects and activities. In Nepal,

children grow up among a number of family members and are never alone in their life.

Our upbringing, mode of economic production, cultural values etc. strongly promote

dependency and some degree of collectivism even in community level. We are

dependent not only with someone within our relative circle, but also help each other in

case of need within community. Our support system is largely based upon the 'give and

take' principle – a reflection as well as foundation of dependent relationship.

Consequently, it is easier to witness other community members to get involved in the

support of child upbringing where the old adage “It takes a village to raise a child” is

evidential.

7

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Laxmi Thebe

According to documented statistics (Kaphle 2014), Nepal is highly dependent on

remittance and more than 2 million of Nepali people are working abroad in different

sectors which cover a wide spectrum of opportunity from around the globe. Most of

them are deeply motivated to impart positive impact back home as demonstrated in

various social media and news channels. Community parenting can be hence defined

as an approach by people to positively contribute to their community by providing

supports to the children in their community.

1.2 Project Aim

This thesis primarily aims to develop a prototype version of platform as a website using

Django Framework which can be used as a tool to share knowledge to support school

children by creating posts related to the school or village a user of the site belongs to or

to demonstrate sponsorship to support the individual needs of children in Nepal.

Although the concept is developed in the socio-economic context of the Nepal, it is

equally viable as a tool in other developing countries. To achieve the project aim, the

following objectives are set to be achieved:

 Implementation of a login system for users who are about to

sponsor a children.

 Financial transaction in case of financial needs of the children.

The financial needs can be sponsored even by anonymous users

where as other needs requiring long term commitment would be

only possible for verified users.

 Implementation of children in need profiles – they can be made

visible for public or visible only for the community. The profile of

the child includes basic explanation of the needs, and child

description of the situation.

 A child can have multiple needs whose targets can be achieved

by multiple users.

 A post can be created publicly or within community regarding the

wellbeing of the community or of the child in need. For example, a

user can ask specific regarding a particular details so that other

members can comment on it.

8

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Laxmi Thebe

To conclude the basic concepts of this project based on the breakdown of project aim,

the project aims to involve local people to contribute to the wellbeing of children in their

community back in Nepal by generating relevant contents or offering sponsorship to the

relevant needs of children.

1.3 Author’s Contribution

This thesis emphasizes developing a web platform using Django Framework to support

a child in different needs – moreover, the platform can be also used as a tool to

organize activities around a local group. The project, albeit in its preliminary stage,

uniquely combines the different principles of developmental work and strengthens the

position of Information Technology as a tool for humanity. Although the concept is

developed in the socio-economic context of the Nepal, it is equally viable as a tool in

other developing countries as well.

1.4 Thesis Overview

This section of the thesis primarily aims to elaborate the Table of Contents so that

readers can be familiar with the main content of the thesis briefly. The structure and

content of the thesis is described briefly as:

Chapter 1 (Introduction) introduces the concept, includes brief background analysis

for the project, motivation, and most importantly provides overview of project aim.

Chapter 2 (Literature Review on Technologies Used) describes the tools and

framework opted to develop the project. In its attempt to illuminate on technologies, it

primarily describes the main framework used for the development of this project, i.e.,

Django Framework. As a bonus, it shed lights on other packages/libraries used in

combination with this framework. Additionally, it discusses development and

deployment tools.

Chapter 3 (Setting Up the Development Environment) discusses on procedures for

setting up development environment which takes place before starting the coding of the

project.

9

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Laxmi Thebe

Chapter 4 (Application Development Process) describes basic concept of web

application development in Django, and explains the structure of the project from

development perspective. It also sheds light on some challenges faced by the author

during the development process.

Chapter 5 (Application Deployment Process): discusses the deployment of the

project. Although it is in the prototype version of development, the deployment of the

project is carried for the purpose of demonstration. As the author has personally

desired to develop a web application that scales up to serve requests in large volume,

including deployment in this thesis makes sense. Security issues and scalability issues

are discussed for that reason – in addition to talking about general deployment.

Chapter 6 (Conclusion and Recommendation): Discusses the development of

personal perspective, concludes the thesis paper, and recommends further

development.

As explained above, the thesis is structured to impart a gradual flow from start to finish

– starting with reflecting the personal and academic premises in the beginning of the

thesis project, and finish including the accomplishment of realization of prototype

version and encouragement for future development.

10

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Laxmi Thebe

2 LITERATURE REVIEW ON TECHNOLOGIES USED

From the development to the deployment of the project, various tools and technologies

were used. The specific tools used for development and deployment are discussed in

this chapter briefly whereas discussion on the web framework used, i.e., Django

Framework, is included in more details. Generic tools - for example, SSH client for

accessing remote server - are not elaborated as they go beyond the specific focus of

the thesis.

2.1 Django Framework

Django is a Python web framework “for perfectionists with deadlines” which is based on

the MVC (Model, View and Controller) design pattern. Django handles common web

development task, is exceedingly fast and scalable, secure, and incredibly versatile

(Django Software Foundation 2015c) - making it a tool for rapid development of web

application with clean, concise, and maintainable codes.

In MVC design pattern, the models in Django represent the underlying data models in

the backend whereas the templates represent the View. Interestingly and not to be

confused, the view function in Django works as a controller (which can be contested if

Django is said to opt MTV design pattern). Django adopts the philosophy of loose

coupling – where different parts of a system are loosely dependent on each other

hence a single part of the system has a single role which can be easily replaced with

other similar functional components making components orthogonal. The MVC design

pattern also enables loosely coupled models, views, and controllers components. For

example, templates are used to dynamically generate HTML in Django framework –

and other template engines can be used instead of Django’s own template system.

2.1.1 Django Philosophy

As described already, loose coupling is one of the fundamental philosophy of Django

Framework which enables different stacks of the framework to work in cohesion but

indepenednt of one another whenever and wherever possible. For example, the URLs

11

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Laxmi Thebe

in Django are independent of the Python code that generates view and can be changed

without changing a single line in view codes.

Less code is another Django design philosophy promoting the use of as less code as

possible. Concise, clean and maintainable codes result from the less code philosophy.

Quick development is yet another philosophy which can be summarized with “for

perfectionists with deadlines” tag line. Code repetition is not promoted in Django as

summarized in DRY (Don’t repeat yourself) philosophy. As an example, view

inheritance is the concept in Django where a template which can be repeated in

different pages of the site can be included as a template rather than hard coding in

every pages. Django emphasizes normalization in contrast to redundancy in

development practice. “Explicit is better than implicit” is a core Python principle also

adopted by Django Framework which goes along with other principles nicely. (Django

Software Foundation 2015b.)

2.1.2 Why Django?

A web framework handles common web development tasks as stated earlier. Using

Django lets the developers to emphasize the specific aspects of the application they

are developing rather than implementing the common aspects of web development

frequently. As being a Python Framework, Django also follows Python’s “batteries

included” philosophy hence including features which might not be implemented in most

other frameworks.

Additionally, Django has a great community and good documentation – which makes it

easier for beginners to make their hands dirty by enticing in real project development

tasks. Moreover, it is a widely used open source framework with several third party

packages mostly kept updated. The information about different Django communities

can be found in official Django project site.

As Django adopts DRY philosophy, codes following Django philosophies are concise

and readable. Being a Python framework, it can be deployed in any platform which

supports Python. Such a portability is further enhanced by the use of ORM, i.e., object

relational mapper, so that Django can be deployed with different database

management systems. The popularity of Django framework, availability of Django

12

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Laxmi Thebe

developers, and being a widely used established framework pushes cloud providers to

offer support and services for easier deployment of the Django application.

Django also has a built-in admin panel which lets manage the users of the site and

other database objects. It is possible to be familiar with Data Models from Django shell,

and to some extent from the admin panel as it provides an application wise model-

centric interface. In that way, it allows developers and non-technical staff to work

together to develop a data-centric applications (Neuman 2015).

Most importantly, Django is tested and scalable. It is used by some heavy traffic sites

like Eventbrite, Disqus, Instagram, Prezi, Pinterest, Washington Post and other notable

sites. As Django is loosely coupled, different stacks can be unplugged and customized

to fit the specific needs. The development and deployment of this project using Django

framework within the limitation of time constraint is self-evident of Django’s philosophy

‘for perfectionsists with deadlines’ – where fairly challenging projects could be

implemented cleanly, concisely, and efficiently.

2.1.3 Django Request/Response Process

An HTTP request from the browser is used to construct the HttpRequest object by the

handler which is passed to the later components. Additionally, the server-specific

handler also handles the response processing. Django has a middleware framework

which intercepts the request/response processing and thus having the ability to alter

Django’s input or output. As an example, AuthenticationMiddleware intercepts the

requests and links them with specific users using sessions (Django Software

Foundation 2015d). As shown in the following diagram, the processing of View is

entirely bypassed if any of the middleware returns HttpResponse. The view function is

the last one to return the HttpResponse in this processing order. Exception middleware

takes control in case of exception in view – which might either return HttpResponse or

the exeption is raised again. Ultimately, if the exception is not handled anywhere in the

processing order, Django provides default views like HTTP 404 and HTTP 500

response.

The view function being one of the important concept in Django web development

concept will be discussed further later in Chapter 4 where returning the HttpResponse

would be evidential in practice.

13

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Laxmi Thebe

Figure 1. Django Request/Response Cycle (Holovaty and Kaplan-Moss 2009).

The last stage of request/response processing takes when the Response Middleware

processes the HttpResponse to return to the browser. Additionally, resources related to

the specific requests are handled by Response Middleware. (Holovaty and Kaplan-

Moss 2009).

2.2 Development Tools

During the development process, two tools were used in particular – one of the tool

being used for setting up development environment while the other tool for writing the

code. The tools are described as follows:

Virtualenv: Virtualenv is one of the tool used for development – which creates isolated

Python environments hence addressing the issue of dependencies, versions, and

permissions (Bicking 2014). The project was developed in an isolated environment

created using virtualenv which enabled the author to follow different tutorials developed

using different versions of the same Python packages.

14

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Laxmi Thebe

Vim: For the purpose of writing code, the Vim text editor was used in this project. Vim

is a highly configurable advanced text editor which enables efficient editing of the text –

a tool which can be used using SSH communication to the server shell to code the

project. Often known as "programmer's editor", Vim is highly useful for programmer as

it is lightweight and fast providing an easy way to edit text frequently (VIM 2016).

Additionally, Vim is easily available in most of the Linux systems.

PyCharm IDE was one such tools, but the author chose to use Vim as the server was

accessible to anywhere using SSH communication and hence it was easier to use Vim

to write code from anywhere even during very short free time. As said previously, being

lightweight, there was really no need to wait like a minute as in the cases of most IDEs

as a single command vim in the Linux shell is enough to fire the Vim editor

immediately. Moreover, there are so many different plugins for the Vim text editor

which facilitates coding.

The Ubiquity of Vim, different plugins for Vim to assist coding, its efficiency, and its

significance as text editor over SSH terminal session necessiated its utilization during

the development stage.

2.3 Python Packages

Different Python packages were used during the development and deployment of the

project and they serve different purposes. Some packages add functionality to the site

whereas some packages are used as a utility tool for different purposes in different

phases of the project development. Some packages add special features which can be

used by other apps or apps written for the project. The following picture displays the list

of packages installed in the virtualenv and utilized for the project during development,

deployment and documentation:

15

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Laxmi Thebe

Picture 1. The list of Python Packages.

Some of the packages are worth to mention, whereas some utility packages can be

removed as well. For example, a braintree is used to implement online payment –

which is used for sponsoring a student for his or her financial need in the context of this

project. MySQL-Python is used to implement the Django with MySQL database system

– which is a database connector for Python. Pillow is installed so that an ImageField

can be added in Django Models. python-social-auth is used to implement Facebook

login to the system. All the required Python packages were installed using the pip

python package management tool.

2.4 Deployment Tools

This thesis project was developed using Django Web Framework and other supporting

python packages. This web application developed using Django Framework was

deployed in an Apache Server using mod_wsgi and the database back end was

implemented using MySQL database .

16

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Laxmi Thebe

Apache Server: The Apache HTTP server is the most used server in Internet which

supports different features – sometimes extending the core functionalities through

compiled modules (one such module being mod_wsgi explained below). It is an open

source software by Apache Software Foundation. In addition to being widely adopted,

reliable, and secure, the virtual hosting feature in Apache was an additional reason for

being chosen for this thesis project as a single web server is being used to serve

multiple sites which are developed using different technologies.

mod_wsgi: It is an Apache module which can be used to host Python web application.

The python web application must support the Python WSGI specification so that the

application can be implemented with an Apache server using the mod_wsgi package

(Dumpleton 2016a).

MySQL: Database systems play a central role in computing – particularly when large

amounts of data are to be handled. Django supports different database back ends but

not all features on all possible back ends. UTF-8 encoding is assumed to be used by

the database back ends in Django. MySQL is a relational database management

system – which means that data are stored in separate tables related to each other and

defined by relationship rules enforced by database management system. It is known

for its speed, reliability and scalability. (MySQL Documentation Team 2016) MySQL 5.5

or higher version of MySQL is supported. A Django’s feature called inspectdb utilizes

information_schema database in MySQL – which is meta-data about database schema

and hence can generate the Django models using the database. Enforcement of

transaction and referential integrity is delegated to the database system by Django. So,

the MyISAM MySQL engine is not able to apply these two features hence the default

engine InnoDB is not changed in this project.

To explain the complete thesis process briefly in term of technologies use, Django

Framework was used as a web development framework with Vim and Virtualenv as a

developing environment so as to deploy later in the Apache server using mod_wsgi

and the MySQL database backend.

17

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Laxmi Thebe

3 SETTING UP THE DEVELOPMENT ENVIRONMENT

This chapter discusses the setting up of the platform for the purpose of development

just before actually starting the coding part. As famously known Django for its niche as

“for perfectionists with deadlines” for the development part, it is relevantly easier to set

up the development environment as well. The virtual environment was set up for the

development in Ubuntu 16.04 known as Xenial Xerus as both development and

deployment took place in the same platform. Additionally, the Django project was also

created before starting to write code as part of the setting up of the platform. The

following sections describe the process to clarify the process further.

3.1 Setting Up the Virtual Environment

The web platform is developed using Python 2.7.12 and Django 1.9, hence, pip was

installed for version 2 of Python. Once pip was installed, virtualenv was installed using

the pip command tool. After installing the virtualenv tool, the new virtual environment

called ‘thesisprojects’ was created in ‘thesis’ directory by issuing the virtualenv

command.

As stated previously, virtualenv creates isolated and independent Python environment

for development which should be activated individually – in the case of this project, by

issuing the command to run the virtualenv activation script in the Linux terminal. The

activation results in the change of the shell prompt to reflect the activation of the

corresponding virtual environment. The virtual environment can be deactivated anytime

using the ‘deactivate’ command, i.e., by issuing the command to run the virtualenv

deactivation script. After the activation of the virtual environment, all the packages

needed for the development can be installed using the pip tool included by default with

the virtualenv (unless virtualenv is installed with --no-pip option) tool.

3.2 Starting the Project

After activating the virtual environment, Django Framework was installed using the pip

tool. As the version was not specified, the latest django version was used for the

18

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Laxmi Thebe

development of the porject. Picture 2 verifies the Django version used for this thesis

project.

Picture 2. Django Version 1.9.8.

After installing Django, the Django project called ‘thesis’ was created within the

activated virtual environment using the django-admin command which is a utility tool for

administrative tasks. This process automatically creates a very important utility tool

‘manage.py’ to handle administrative tasks in the project directory. It is important to

note that the ‘settings.py’ file is also created during this process – which contains

configuration for the Django project. In contrast to django-admin, ‘manage.py’ is more

convenient for use as it sets the ‘settings.py’ as the default configuration source file for

the project by setting the "DJANGO_SETTINGS_MODULE" environment variable to

‘settings.py’ with the os.environ.setdefault("DJANGO_SETTINGS_MODULE",

"thesis.settings") command. Moreover, it sets the package related to the project on

sys.path. As this project involves working only with a single Django project and thus a

single ‘settings.py’ file, ‘manage.py’ is better choice to ‘django-admin’ for administrative

tasks. The following picture demonstrates the administrative capability of the

‘manage.py’ script by issuing command to run development server:

Picture 3. 'manage.py' demonstarting administrative ability.

19

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Laxmi Thebe

After creating the Django project, different Django applications can be created within a

project which are integrated to work coherently as a component of the project. It is

possible that a whole Django site can be developed with a single application within the

project, but developing a project with different applications representing different

components is good design practice. Moreover, as described in Chapter 2, Django

promotes such practices. In practice, the ‘manage.py’ utility is used to create the

application within the project.

In addition to developing ‘posts’ application within the Django project, a third-party

Django app could be interchangeably used to achieve similar functional requirements

as offered by ‘posts’ application. For this thesis project, community, posts, support and

people apps were created and developed. The detail of the development process is

described in the next Chapter.

20

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Laxmi Thebe

4 APPLICATION DEVELOPMENT PROCESS

In Django, the application development process is robust and simple as well –

particularly when it uses the MVC design paradigm. Being familiar with that paradigm –

for example, by using Play Framework (which is also MVC framework) – helps to easily

understand the application development process in Django. This chapter discusses

Django Workflow in general, and describes the application development process in

general by providing examples from the project itself.

4.1 Django Workflow

In Django application, URL is mapped to the view using URLconf which is defined in

urls.py file. During the creation of the project, a urls.py (set to be ROOT_URLCONF in

settings.py) is added where URLconf for the apps can be imported using include()

function from django.conf.urls. When the requests are received by Django as URL, the

appropriate view is called based on the URLconf to generate response to be rendered

in template. In its simplest form, a Django work-flow consists of defining model, writing

view, updating the URLconf for matching URL to view, and writing the templates.

Database configuration can be setup already or left with the default configuration which

is for SQLite as it is easier to deploy in later phase after the development as well.

For the project, the urls.py file was already created when the project was created with

its own URL space. The apps can have their own URLconf file which can be imported

to the ROOT_URLCONF i.e. URLconf of the project by using include() function. As

apps play an important role in Django development, apps are defined in the next

section; and models being the main component of the data centric apps, the models in

each app will be illustrated with pictures. Views are important but it is inconvenient to

describe all of them, so this paper discussed only briefly whereas URLconf and

urlpatterns will be explained with the help of an example from the project.

4.2 Apps and the related models in the project

The thesis project contains four different apps called ‘posts’, ‘support’, ‘community’ and

‘people’. The app ‘people’ contains custom user information related to this project even

21

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Laxmi Thebe

though users are registered using the python-social-auth package when users log in

the site using Facebook credentials. By extending the AbstractBaseUser class from

Django, custom fields are added for the users which are labeled as ‘Member’ in Django

model in ‘people’ app. Thus created models also relate to the UserSocialAuth model

from the python-social-auth package. The posts app is all about creating posts by

‘Member’ in ‘people’ app for ‘community’ or for public in general. The following picture

demonstrates the graphical form of the model in posts app. Django-extensions was

used together with pygraphviz to generate all the model graphs from four different

apps. With Member, Village, and School models, the picture shows one to many

relationship of the Post model.

Picture 4. 'Post' model from 'posts' app.

Similarly, the Member model demonstrated in the following picture reflects the

inheritance of AbstractBaseUser and PermissionMixin class and its relationship with

22

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Laxmi Thebe

Village and School models. The other models which are related to Member, i.e., Group

and Permission are resulted as an extension of Django authentication system.

Picture 5. 'Member' model from 'people' app.

The ‘community’ app contains models which define entities related to community. The

user could have been defined within this app, but our approach to the development

was incremental based on functionalities rather than thorough database modeling in

the beginning. As we started first to make the use of social logins to the site, the app

‘people’ was a result – which we let it be as a user from a community can also

contribute outside of their community and to public in widest possible range. The

models in ‘community’ app are as shown in the picture below. ‘Student’, ‘Requirement’,

‘Village’, ‘School’, and ‘StudentNeed’ are the core models in the community app.

‘Requirement’ is left generic which means a Requirement is not associated only with a

student or a village or a school so that the admin can create the Requirement which

applies for general student needs. StudentNeed is a special model – which defines one

particular need of a particular student but can have multiple sponsors. StudentImage

model is used to save image of the Student which is trivial from the app development

perspective whereas important from the usability perspective. It is noteworthy to notice

the relationship between School and Village with Member – which is labeled as

23

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Laxmi Thebe

created_by in the picture – that a School or Village is created by the user who belongs

to the local community. Logically, the users are restricted to create communities

haphazardly as well.

Picture 6. Models from 'community' app.

The other important app is ‘support’ as it includes the details about the sponsors and

related information in the context of meeting the need of the student or child. The

models in ‘support’ app are as shown in the picture below:

24

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Laxmi Thebe

Picture 7. Models from 'support' app.

The Sponser model contains braintree_id which is used for financial transaction using

Braintree payments. Support and SupportDetail are quite confusing, which are like

promise and actions. In Support, a sponsor is recorded who promises to meet the

particular StudentNeed (one need of one student) whereas in SupportDetail event of

the supports are recorded so that a user can sponsor a particular need parallel with

time. It is noteworthy to explain the many-to-many relationship between Sponser and

StudentNeed through the Support model.

25

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Laxmi Thebe

4.3 Views in the project

Views are like controllers which define what is to be passed to the template for

rendering in the browser. Additionally, it uses form when user input is to be stored in

the database. When an app is created within a project, a skeleton file for view called

‘views.py’ is created inside the app folder – which is edited according to the need of the

app and what the particular app is supposed to do. There are two types of views in

Django – function-based views and class-based views. For the purose of apps, class

based views are used whereas function based views are used in cases like contact

page. Class-based views are good choices when the project becomes larger that

inheritance is needed. Moreover, Django comes shipped with some generic class

based views which can be inheritated to our own class-based views.

The following picture illustrates the function based view which is used to generate

contact page. This view does not use any models, although written in view file

belonging to the people app.

Picture 8. Function-based views for 'contact' page.

As limited in the number is the function-based view in this project, there are many

class-based views used in this project. The example shown below in the picture

demonstrates StudentCreateView – which inherits the Django offered generic

26

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Laxmi Thebe

CreateView and AdminRequiredMixin. The model is defined as Student (refer above in

the model description) and form as StudentForm. When the form is valid during form

submission, the student is saved but not committed as there is yet to set the School the

student belongs to. As admin can add student only from the school to which the admin

belongs, the school of the student is set the same as the admin’s school before

committing the save.

Picture 9. Example of View from 'community' app.

The view is rendered using the default template name located default location – in this

case, stored inside the app folder in templates/community/ as ‘student_form.html’

where community is app name, student is model name, and _form is

template_name_suffix as shown in Picture 11. The AdminRequiredMixin is mixin which

contains logic to allow only School Admin to do tasks. AdminRequiredMixin displayed

below in the picture can be used in other class based views which needs feature that

only School Admin is allowed to access the page – otherwise it returns a Response

saying ‘you are not school admin – check community/mixins and raise Http404’ which

is the message to generate a good-looking page when access is restricted for a user

who is not School Admin.

27

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Laxmi Thebe

Picture 10. Django Mixin.

Additionally the project uses other mixins as well since they can be useful to class

based views. For example, LogingRequiredMixin is used extensively in this project to

restrict access to some pages if the user is not logged in to the application.

Picture 11. Template Example.

As shown in the template file above, {{form}} tag - which is the default form name in

context - is all needed to render the form in the response where {{form.as_p}} is form

rendering option where each element of form is displayed within paragraph (<p></p>

tags). The picture ‘StudentCreateView rendered’ below demonstrates how the template

from above is rendered in browser to the School Admin.

28

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Laxmi Thebe

Picture 12. StudentCreateView rendering the view in the browser.

In conclusion, the function-based views are simple – they use method decorators for

what mixins do in the class based views and always return HttpResponse object.

Class-based views are convenient approach to writing views in Django, yet it takes

time to become familiar with base classes shipped with Django to start working coding.

The concept of context is also important to note in the case of view whether it is

function-based or class-based views. Django compiles the template once and contains

variable names within double curly braces. In the template example above (Picture 11),

for example {{form}} is such a variable – which is passed to the template as dictionary

variable containing ‘key’: ‘value’ pair. The class-based view – as it uses the base class

shipped with Django – does not define the context of its own and uses the inherited

one (Picture 9) whereas the function based view declares {‘errors’:errors} as context

(Picture 8 – line 84). Finally, as described in Section 4.5, these views are invoked by

Django once it matches the URL request sent by browser to the urlpatterns in URLconf.

4.4 Forms in the Project

Forms are an important component of the web development process – particularly if

the web application is data-centric and accepts user inputs. It is possible to write the

form elements in plain HTML but Django facilitates dealing with the form in many ways.

Django Form is the class which works to generate what a normal form is supposed to

do, whereas Django ModelForm associates the fields in the model with the form

elements. Picture 13 demonstrates the StudentForm where fields in line 8 define what

field from the Student model (Picture 14) are to be displayed as form elements (which

29

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Laxmi Thebe

is shown in Picture 12 above). Additionally, Meta class is used to define model

associated with this particular form.

Picture 13. Example of Form in the 'community' app.

Comparing the form fields defined in the Meta class in StudentForm above in Picture

13 with the model fields in Student below in Picture 14, all fields are not displayed in

the form when rendering in the browser. Some fields are set during the view

processing, whereas some fields are set automatically; and some fields can be optional

as well.

Picture 14. Student model in 'community' app.

30

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Laxmi Thebe

In conclusion, a number of forms are used in this project. Some model forms are

generated on the fly – for example, when editing or adding the student needs, a

logged-in Student Admin sees only the students from his school which was only

possible by generating the form on the fly. Additional complexities can appear in form

handling when there is a needs for some customization – for example, when form fields

validation is dependent on each other (for example, the user can not have the same

password as their email). The form described in this section appears to be easy

although it can be slightly daunting for the beginners when customization is required.

For example, generating a model form on the fly was new in this project and took some

time to deal with that issue.

4.5 URLConf in Django

Web pages are associated with the URL. When a user enters the URL in browser, this

association between page and URL is the way Django knows what page to serve for a

particular request. URLconf in Django is a Python module which Django uses to match

the requested URL with the correct view to be served. Django uses regular expressions

to declare URL patterns and proceeds in the pattern from top to bottom when a request

comes until it finds the first match where it stops further processing of the pattern.

The following picture demonstrates the URLconf file for the ‘people’ app.

Picture 15. URLconf in 'people' app.

31

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Laxmi Thebe

Django uses the following algorithm to figure out what page to serve:

i. The root URLconf module – set as ROOT_URLCONF in

settings.py file normally – is determined for use by Django unless

overwritten by middleware in HttpRequest setting’s urlconf

attribute.

ii. Django loads that URLconf to find urlpatterns i.e.

django.conf.urls.url() instances.

iii. The list of URL patterns are processed in order until the first

match is found.

iv. When the URL matches the regexes of the urlpatterns, the view

specified in that pattern is imported and executed passing

HttpRequest, arguments and keyword arguments if there are any.

v. The best matching error-handling view is invoked in case no regex

matches, or if an exception is raised during the request/response

process – which is described in request/response process

previously. (Django Software Foundation 2015e.)

The urls.py file in the above picture from the people app is imported in the

ROOT_URLCONF file (created when the project was created in the beginning). The

following picture reflects the import in line 27 so that Django can access to the

urlpatterns defined in apps.

Picture 16. ROOT_URLCONF file.

32

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Laxmi Thebe

In this way, the urlpatterns defined in different apps is visible to the Django – hence

urlpatterns can loosely hold different components together in this specific aspects of

the development process.

Picture 17. Contact page on browser.

Since the URL https://meroserofero.org/contact matches with the url(r'^contact/$',

contact, name='contact') urlpatterns as shown in line 8 in Picture 15 (URLconf in

people app), Django imports the view called contact from people.views (views.py file in

people app) as shown in the line 2 in Picture 15. The URL namespace can be used so

that there would be no name conflict while reversing the named URL patterns even

when there are same names for the URL patterns in different apps. In the example

above, name=‘contact’ is the name of the URL patterns. With namespace defined, the

same name could be used in other app – which is effective for large projects developed

by many developers. The name for urlpatterns is used to reverse to generate urls

which is convenient in case where URLs are to be generated dynamically. So, the view

contact is executed by Django – returning the response as shown in the Picture 17 if

there is no error during the request/response process.

There are URLconfs in other apps as well and the basic way of writing URLconf is the

same. The above URLconfs file also demonstrates the use of arguments which are

passed to the views as described in the above described algorithm.

https://meroserofero.org/contact

33

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Laxmi Thebe

5 APPLICATION DEPLOYMENT PROCESS

The thesis project was deployed in an Apache Web Server using mod_wsgi. The back

end data was stored using the MySQL database management system. The following

sections describe the setting up and configuration of the deployment process in detail.

5.1 mod_wsgi and deployment of Django in Apache server

mod_wsgi can be installed also with pip - a package management system used for

installing and managing python packages (Python for beginners 2012) - command

which generates configuration automatically; however for this project, the traditional

approach of installation is opted where Apache is configured to load mod_wsgi

manually. The source code in tar ball form was downloaded using the wget command

and unpacked as:

gaunledream@meroserofero:~$ tar zxvf 4.5.3.tar.gz

As noted in the Google project page of the module, the apache2-dev package was also

installed as in this case the apache was installed from package repository issuing the

‘sudo apt-get install apache2’ command in the Ubuntu server (Dumpleton 2016b).

Picture 18. mod_wsgi installation confirmation.

The unpacked source code was configured with the ./configure command; the package

was built with the make command and then installed in standard location by issuing the

make install command – the location being dictated by Apache for its modules. The

error log reveals the presence of mod_wsgi as highlighted in the picture above. After

34

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Laxmi Thebe

confirming the presence of mod_wsgi, the Apache server was restarted with the ‘sudo

/etc/init.d/apache2 restart’ command and the ‘make clean’ command was issued to

clean up after installation. The downloaded tar ball and unpacked source files were

deleted.

The virtual host configuration was updated to include the line 1 as shown in the figure

below to load the mod_wsgi module. Additionally, the figure includes the complete

virtual host configuration for the site which includes the implementation of HTTPS

protocol for the secure communication between clients and the server. Note that there

is only a single WSGIDaemonProcess defined for both HTTP and HTTPS as they run

within the same daemon process.

Picture 19. Apache VirtualHost configuration file.

35

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Laxmi Thebe

After completing the VirtualHost file, the site was enabled and the Apache server was

restarted again to bring the change to effect.

5.2 Deploying Django project with MySQL

For the deployment of Django with MySQL, the MySQL server was installed in the

machine and the database called ‘meroserofero’ was created for the project. Moreover,

practices for hardening database security were implemented as described later in this

chapter. In the Django project’s settings.py file, the database engine was set to be

MySQL and the database access configuration was imported from another file as

shown in the figure below:

Picture 20. Database Settings in settings.py file.

The database access configuration pointed above is as shown in the figure below. The

password is masked to hide it from the readers. The default character set was set to be

utf8 – which has briefly been discussed previously.

Picture 21. Database access configuration file.

The package mysql-python was installed using the pip tool which is a Python interface

for MySQL database i.e. database connection library. The development package files

for database called libmysqlclient-dev were required to install in the system in order to

36

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Laxmi Thebe

successfully install the mysql-python package in the virtual environment. After the

process of deployment, the following security measures were considered.

5.3 Security Measures in Django Application

Security practices were adopted partly during the development and mostly during the

deployment of the platform. Although the project is in its prototype version, the project

in its nature is to be secured – particularly when it involves information about

vulnerable people and financial transactions. For this reason, security requirements of

the application were highly considered and the following measures were implemented:

In the project settings.py file, DEBUG = True was changed to DEBUG = False. Settings

Debug on with the DEBUG = True option is only recommended during the development

phase. In addition, the DEBUG = True option is also resource-consuming. For

example, database queries will be saved in memory.

Host header validation was set in Django using ALLOWED_HOSTS setting. Actually,

when DEBUG is set to False, it is necessary to set this option. In our case, it was set to

be meroserofero.org as this domain is being served. This is a security measure against

HTTP Host header attacks. (Django Software Foundation 2015a.)

The SECRET_KEY was not kept in settings.py file, rather it was saved in file and read

from the file.

ADMIN was set in settings file – so that any error is reported by the Django site to the

admin.

Regarding the security issues within the application, user privileges were used to limit

the permissions for different users. To protect from cross site request forgery, Django

provides the template tag which is used in all forms submitted from the browser using

POST method. Only admins are allowed to create Student Profile – and normal users

are only allowed to create posts and be sponsor. Financial donations can be offered

even by anonymous users without logging in with Facebook logins but by providing an

email address. One can only propose to be sponsor – and demonstrates that he or she

is interested by paying certain amount of money (at the time, it is set up to be 1 dollar).

Such requests are recommended for evaluation by the admin of the site (which can be

also handed over to admin of the group i.e., school or village) so that the student needs

37

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Laxmi Thebe

are met in practice as well. Additionally, HTTPS is implemented to protect the

communication between client and server – so all requests in HTTP are redirected to

HTTPS by Apache server by default.

For more information, security issues related to Django can be viewed by following this

link (https://docs.djangoproject.com/en/1.9/releases/security/) which is the archive of

security issues.

5.4 Database Security Issues

Databases have been the integral component of the websites and are of utmost

important for data-centric sites. Because of such importance, the security of the

database of this project was highly considered during the deployment of the project.

Regarding this project, MySQL security was hardened using the following practices

under consideration during the deployment:

o the bind_address in MySQL configuration file is set explicitly to localhost

as determined by the output demonstrated in the figure below.

Picture 22. MySQL bind to localhost.

o Uncomplicated Firewall (ufw) was installed and enabled to deny all

incoming communication but SSH, HTTP, and HTTPS protocol as shown in the

following output in figure.

38

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Laxmi Thebe

Picture 23. Firewall in Action.

o User privilege was set to minimum so as to be incremented gradually as

per need and separate users were created for different databases.

o mysql_secure_installation utility was used to further harden the security in

MySQL system.

o MySQL root account was obfuscated by using different name. (Davidson,

2010)

o SQL injection attack is protected in Django unless queries are executed

with custom sql. In the case of this project, only Django’s querysets are used which

escapes the sql query by use of underlying database driver. (Nigel 2015.)

After securing the deployed system, scalability issues were considered as illustrated in

the following section.

5.5 Scalability Issues in Application

For a project that aims big, scalability is equally important as security. Sometimes the

performance overhead comes from latency in communication with other services.

Cache could be implemented if application scales to such level. Varnish can be

implemented – which is a piece of software with the ability to cache entire HTTP

response hence able to serve response for particular request quickly and efficiently

even without forwarding the requests to the Django server (Robenolt 2013).

Static files are served using the Apache Server itself.

mod_wsgi is implemented in daemon mode which makes predictable resource

consumption due to the contstant threads and processes involved.

39

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Laxmi Thebe

The codes could be improved – for which Django Debug Toolbar can be used to fine

tune the performance. It definitely involves significant mastery which the author is yet to

develop.

Database sharding could be implemented if the data signifcantly grows. For example,

data related to a group (in our case, either community or school) could be stored in a

single database. Another option regarding scaling database would be MySQL

replication – where Django can be configured to query inserts and updates to the

masters and selects to the slaves (Shuping 2014).

The configuration of the deployment droplet (which is a virtual private server) could be

increased when the traffic to the application grows.

Figure 2. Deployment of Django in Large Setup (Holovaty and Kaplan-Moss 2009).

As discussed above, some of the scalability practices are already implemented

whereas some of the practices are recommended for future development.

40

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Laxmi Thebe

6 CONCLUSION AND RECOMMENDATION

As discussed in previous section, the endeavor of thesis project was to develop and

deploy a Django web application to create community platform for supporting children

upbringing in Nepal. The deployed version is available at https://meroserofero.org at

the moment with the intention that it will be available in the same domain after the

future development. The demo version of the project demonstrates the basic

functionality out-lined in description of requirements. After completion of the

development process, there were some issues encountered which need to be

neddressed during the future development which are elaborated further in following

sections.

6.1 Recommendation

Even though the project looks promising, there is much works to be done as well. For

example, the issue of scalability is yet to be addressed – at least so that around two

million people can be a user and approximately 10 percent of them would be using

simultaneously as around two millions Nepali people are abroad. Pages which are

static – for example, the ‘About Us’ page in the context of this project could have been

served statically from the Apache server rather than passing through Django

request/response process. Moreover, there are many usability issues which are to be

addressed. One of the important ones is the login page – rather than using the

homepage as login page, we could create some pop up window or a single page. Ajax

functionality could be added in some of the graphical components as well. Regarding

the web application itself, there is a need to redesign the overall architecture as well

from the experience that is accumulated over the time. The approach to the design was

to add functionalities incrementally from the beginning rather than starting up from

planning – which is quite understandable as being the first time involvement in project

of such scale with product as a basic requirement for the successful completion of the

thesis. In the context of the development, we could also add features, such as project

where activities that involve the well-being of the target group could be planned.

Obviously, there are several promises as it is just the beginning of the project. Mobile

application could be also implemented where the same backend could be used to

serve data using REST API packages developed for Django Framework. Django

41

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Laxmi Thebe

philosophies could be also used carefully – for example, DRY philosophy was not

followed strictly when writing templates where template inheritance could have been

used. Coding incrementally from the beginning was also the reason why there are

some code repetitions particularly in templates. Testing is also an important aspect in

web development which is also a missing part in this project. For learning purposes, it

would not be recommended to use Facebook social plugin for comments. Yet, it was a

preferred choice as users are logged in only using Facebook social login mechanism.

The login mechanism could be also extended to include other services, such as

Google, Twitter and others. In spite of these developments yet to be achieved,

personal development was satisfactory as described in the next section.

6.2 Personal Development in the context of thesis project

Being the first endeavor in web development, the author has significantly gained skills

related to web development on one hand; on the other hand, there are aspects to be

developed further. The most important development is confidence to work in software

projects even with no prior knowledge. Moreover, the author realized the importance of

staying a bit longer sometime on the task at hand. Time management might be an

important aspect in real life projects, but giving whatever time left for the working on the

thesis proved to be significant on the thesis process. In the context of the technologies

used, the author became familiar with Bootstrap front-end technology, with JavaScript

to some extent, and with Django framework and Python programming in general. There

were times when trying to figure out a single problem took hours, yet it was of immense

satisfaction to get things done. Last but not least, the deployment of the project in the

practical world helped to improve the skills with Linux server administration and other

web domain related skills.

In conclusion, Nepal is a predominantly agriculture-based country – a significant part of

the country being covered by villages in remote areas, the country is yet to be

modernized in terms of information and technology. In one aspect, we have been using

imported technology - a recent example being the number of mobile users more than

the users of the toilet users which also implies the importance of developing mobile app

of this platform. In that sense, mobile technology has revolutionized the way we are

communicating inside Nepal. In addition to being dependent only upon borrowed

technology, the author strongly argues that we (Nepali) need to develop tools that suit

42

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Laxmi Thebe

our own needs or at least a perspective to use tools relevant to our own context. This

thesis projects in itself might be of less significance at the moment, but it sheds light on

the strong possibility of open source technologies to transform the way of our living in

Nepal.

43

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Laxmi Thebe

REFERENCES

Bicking, I. 2014. Virtualenv. Consulted 01.08.2016 https://virtualenv.pypa.io/en/latest/.

Davidson, M. 2010. MySQL Server Hardening. Consulted 29.08.2016
http://security.stackexchange.com/questions/1138/mysql-server-hardening.

Django Software Foundation 2015 (a). Allowed_hosts. Consulted 12.08.2016
https://docs.djangoproject.com/en/1.9/ref/settings/#allowed-hosts.

Django Software Foundation 2015 (b). Design Philosophies. Consulted 15.08.2016
https://docs.djangoproject.com/en/1.10/misc/design-philosophies/.

Django Software Foundation 2015 (c). Django Overview. Consulted 12.08.2016
https://www.djangoproject.com/start/overview/.

Django Software Foundation 2015 (d). Middleware. Consulted 19.08.2016
https://docs.djangoproject.com/ja/1.9/topics/http/middleware/.

Django Software Foundation 2015 (e). URL dispatchers. Consulted 04.09.2016
https://docs.djangoproject.com/en/1.10/topics/http/urls/.

Dumpleton, G. 2016 (a) . Mod_wsgi. Consulted 24.08.2016
https://modwsgi.readthedocs.io/en/develop/.

Dumpleton, G. 2016 (b). Summary Quick Installation Guide for Mod_wsgi. Consulted
22.08.2016
https://code.google.com/archive/p/modwsgi/wikis/QuickInstallationGuide.wiki#Apache_Require
ments.

Holovaty, A. & Kaplan-Moss, J. 2009. The Definitive Guide to Django : Web Development done
Right. Berkeley: Apress.

Kaphle, A. 2014. Nepal, once known for farming, now exports people; migrants earn big but
face risks. Consulted 21.07.2016 http://wpo.st/zqp02.

MySQL Documnetation Team 2016. What is MySQL?. Consluted 18.08.2016
https://dev.mysql.com/doc/refman/5.7/en/what-is-mysql.html.

Neuman, E. 2015. "Ten Reasons Django is Perfect for Startups. Consulted 20.08.2016
http://learn.onemonth.com/ten-reasons-django-is-perfect-for-startups.

Nigel, G 2015. Security in Django. Consulted 11.08.2016 http://masteringdjango.com/security-
in-django/.

Python for Beginners 2012. How to use Pip in Python?. Consulted 11.08.2016
http://www.pythonforbeginners.com/basics/python-pip-usage.

Robenolt, M. 2013. Scaling Django to 8 Billion Page Views. Consulted 09.08.2016
https://blog.disqus.com/scaling-django-to-8-billion-page-views.

Shuping, J. 2014. How to Scale Django. Consulted 10.08.2016
http://www.javaworld.com/article/2362947/architecture-scalability/expert-interview-how-to-scale-
django.html.

VIM 2016. Vim about. Consulted 23.07.2016 http://www.vim.org/about.php.

