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 Abstract 

The use of EOQ model in inventory management is popular. However, EOQ models has 
many disadvantages, especially, when the model is applied to manage repairable items. In 
order to deal with high-cost and repairable items, Craig C. Sherbrooke introduced a model 
in his book “Optimal Inventory Modeling of Systems: Multi-Echelon Techniques”. 

The research focus is to implement and develop a program to execute the single-site in-
ventory model for repairable items. The model helps to significantly increase the availabil-
ity of the system and decrease the inventory cost, in comparison to, the model for con-
sumable items using EOQ (Economic Order Quantity) method. 

The optimized stock level is calculated by using two different techniques, including: Mar-
ginal analysis technique in Excel and special algorithm in Python. After that, the result is 
compared to each other to validate the program.  
 
Companies currently acquiring high tech or expensive systems can benefit from the re-
search. The inventory model not only helps to reduce the inventory cost, but also in-
creased the availability of the system. In addition, detailed guidelines for creating the 
model using Excel and Python is also a reference for companies who would like to apply 
this model to their operations. 
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1 INTRODUCTION 

1.1 Background information 

The introduction of Economic-Order-Quantity model in 1915 by Ford W. Harris has 

been greatly influencing the way to manage the inventory. Waters (2003, 259) de-

scribes EOQ model as flexible, easy-to-use and widely applied to inventory problems. 

In brief, EOQ model takes the information about the demand, unit cost, reorder cost 

and holding cost of one single item to compute the best order quantity, in order to 

avoid stock out. According to Sherbrooke (2004, 1-2), the EOQ model (also called the 

item approach) is simple because it only deal with one decision variable which is 

“when to order or the stock level”. In addition, the stock level for an item is deter-

mined by a simple formula which balance the cost of holding inventory, ordering and 

stock out. Also, Sherbrooke (2004, 3) pointed out that the big disadvantage of EOQ 

model is that it determines the stock level of one item without considering other 

items in a system. 

Without being satisfied with EOQ model when applying for repairable items, Craig C. 

Sherbrooke invented a new model to determine the stock level for those items which 

are expensive and repairable. This model is shown in the book “Optimal Inventory 

Modeling of Systems: Multi-Echelon Techniques (2nd edition)”. Throughout the book, 

Craig C. Sherbrooke introduced the logic of his model and also the comparison to 

EOQ model in terms of the increase in availability and decrease in inventory holding 

cost. 

In general, the book covers the development of the model in three steps. Firstly, a 

single-site model performs broken items is repaired at the base where the system is 

operated. Then, the model evolves to multi echelon, in which the broken items are 

not only repaired at site, but also at intermediaries or suppliers. Finally, the multi-in-

denture model divides items into class.  

In this thesis, only the first stage of the model development at single site is taken into 

consideration. By imagination, a fleet of ten identical aircrafts is set as an input. Each 

of them has two critical items which occurred two times in one aircraft. The author 
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would perform the model created by Craig C. Sherbrooke in Excel and constructed a 

program in Python to execute.  

Beforehand, the author only intended to do the thesis in Excel, however, Excel 

showed some disadvantages which took more times for repetitive tasks and was not 

flexible when the input data changed. After that, the author has been studying a new 

programming language named Python for two and a half months, in order to con-

struct the program. The reason for Python choice is that it is a high-level, powerful 

and easy-to-learn program, compared to C++ or Java. That is why it is very suitable 

for beginners who does not have any programming knowledge.  

This thesis is theoretical and not assigned to any companies. However, companies 

currently acquiring and operating high tech/expensive systems could benefit from it. 

Also companies with the desire to build a program to manage their inventory can see 

the open source code in this thesis as a guideline. 

1.2 Objectives 

The first objective of the thesis is to successfully implement the model in Excel with 

assumed input data using the “Marginal analysis” technique introduced in the book. 

Then a separate program is constructed in Python using special algorithm (not the 

marginal analysis technique). Both ways of running Craig C. Sherbrooke single-site 

model have to give the same output with the same data input. Finally, the result 

from the program should show an increase in the availability and decrease in inven-

tory cost, in comparison to EOQ model. 

2 RESEARCH METHODS 

2.1 Research methods in general 

Kothari (2013, 1-2) states that the purpose of the research is to discovers answers to 

questions through the application of scientific procedures and it is the search of 

knowledge. The main aim or objective of a research is to find out the truth which is 

hidden or has not been discovered as yet (Kothari 2013, 2). 
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The basic types of research can be divided into five categories, including: Descriptive 

vs. analytical, applied vs. fundamental, quantitative vs. qualitative, conceptual vs. 

empirical and other types of research (Kothari 2013, 2-3). In the context of the thesis, 

it is worth to mention the applied vs. fundamental and quantitative vs. qualitative 

categories.  

The applied research means a solution is found in order to solve practical problems 

arising in society, organizations, etc. On the contrary, fundamental research deals 

with the generalization and the formulation of a theory. Research questions from ap-

plied research could be “How to produce a product?” or “How to manage the inven-

tory”. According to fundamental research, example shall be “Analysis of factors af-

fect each stage of product life cycle". 

In general, there are two basic approaches for a research, namely qualitative and 

quantitative. The former approach is concerned with subjective assessment of atti-

tudes, opinions and behaviors (Kothari 2013, 4). Thus qualitative approach is used to 

understand the underlying reasons or motivations of a phenomena. Regularly, quali-

tative research gives more insight into the problems. With reference to quantitative 

approach, it is based on the quantitative measurements of some characteristics (Ko-

thari 2013, 3). To be more specific, quantitative approach deals with numerical data 

by quantifying problem, then the data will be treated using statistical procedure to 

give informative conclusion.  

2.2 The scope of the thesis 

This thesis is an applied research because a solution to manage the inventory for re-

pairable items is found. Here it is a program in Python which can be applied to com-

panies holding expensive systems to achieve higher availability and decrease inven-

tory cost.  

The approach of this thesis is both qualitative and quantitative. The reason is that the 

thesis is explanatory and exploratory. The explanatory characteristic is illustrated 

through the review process of the Craig C. Sherbrooke model development. Specifi-

cally, it gives an insight understanding about the way to perform the model in real 
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life. For exploratory attribute, the constructed program helps to explore a new way 

to build Craig C. Sherbrooke model in practice. 

The data collection method in the thesis is not as usual for qualitative and quantita-

tive approach. In fact, there is not any interviews, questionnaires, telephone calls or 

historical data. The reason is that the thesis is theoretical and acted as a general de-

velopment project of a product. In this case, the product is the software code. The 

data here is not collected from the real life, but, generated on the purpose of users 

and the authors. For example, users can change the data input in the program if they 

would like the fleet has 5, 20 and so on aircrafts. Also the number of critical items 

and their occurrences can be adjusted.  

3 THEORETICAL BASIS 

3.1 Inventory  

The term inventory has several definitions. Waters (2003, 252) defines inventory as a 

list of things hold in stock. Arnold (2012, 268) goes a little deeper into the definition 

by state that Inventories are materials and supplies that a business or institution car-

ries either for sale or to provide inputs or supplies to the production process. 

According to Arnold (2012, 269-270), inventory is classified in to five categories: raw 

materials, work-in-process, finished goods, distribution inventories and MROs 

(Maintenance, repair and operational supplies). In the thesis context, the type of in-

ventory is spare part and it is also a critical item in a system. 

3.2 Consumable vs. repairable items 

Consumables are goods that are capable of being consumed, that maybe destroyed, 

dissipated, wasted or spent (Wikipedia 2016). Whereas, repairable items are those 

could be repaired when malfunction exists. In fact, repairable items tend to be ex-

pensive and the demand for any particular item tends to be low (Sherbrooke 2004, 

6).  
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3.3 EOQ Model 

Economic Order Quantity is the simplest way to determine the size of an order. It is 

the found at the balance between the cost of placing an order and the cost of hold-

ing it. EOQ makes assumptions that there will be no stock-outs, zero lead times and 

that we can ‘safely’ order when at zero stocks (Emmett 2005, 59.) 

 

 

 

Economic Order Quantity formula is performed as: 

 

𝑄 = √
2 ∗ Ω ∗ 𝑚

𝑖 ∗ 𝑐
 

 

Where Q is the economic quantity, m is the mean annual demand,  Ω is the cost to 

place an order, i is the annual holding cost rate and c is the unit cost of the item. 

Figure 1. Economic Order Quantity (Adapted from Emmett 2005, 60) 



12 
 

 

3.4 Poisson distribution 

Considering X be the discrete random variable representing the number of random 

events in a specified time. The Poisson probability mass function is in the form: 

 

𝑝(𝑥) = (𝑚 ∗ 𝑇)𝑥 ∗
𝑒−𝑚∗𝑇

𝑥!
 𝑤𝑖𝑡ℎ 𝑥 = 0, 1, 2, … 

 

Where m is the average annual demand and T is the average time. The Poisson prob-

ability mass function gives the probability that x failures occur during a certain time. 

3.5 Poisson process 

If failures have Poisson distribution with 𝜆 equal to m*T. The time between those 

failures is exponentially distributed with parameter 𝜆. Let Yk be a random variable 

representing the time of the kth failure with 𝑌𝑘 = ∑ 𝑇𝑖
𝑘
𝑖=1  where Ti is the time be-

tween failure i-1 and failure i. Then the sum of k independent exponential random 

variables has a gamma distribution with parameters k and 𝜆 (Ebeling 1996, 52). The 

cumulative distribution function for Yk can be written as: 

 

Pr{𝑌𝑘 ≤ 𝑡} = 1 − 𝑒−𝜆𝑡 ∑
(𝜆𝑡)𝑖

𝑖!

𝑘−1

𝑖=0

 

 

The Poisson process is often applied in inventory analysis to determine the number 

of spare components when the time between failures is exponential. 

 

𝑅𝑠(𝑡) = ∑ 𝑝𝑛(𝑡)

𝑆

𝑛=0
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The above formula is the cumulative probability of S spares or fewer failures occur-

ring during time t. It represents the probability of satisfying all demands for spare 

components during time t (Ebeling 1996, 53.) 

 A fundamental result can be concluded: 

 

𝑃(𝑌𝑘 ≤ 𝑡) = 𝑃(𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠 ≥ 𝑠) 

 

3.6 Palm’s theorem 

According to the Palm’s Theorem, the steady state probability distribution for the 

number of units in repair has a Poisson distribution with mean m*T if the demand for 

and item is a Poisson process with annual mean m and the repair time for each failed 

unit is independently and identically distributed according to any distribution with 

mean T years (Sherbrooke 2004, 22.) 

Reflecting to the thesis, Palm’s theorem helps calculate the number of items in repair 

by simple formula without need for collecting the data to find the shape of repair dis-

tribution. 

3.7 Stock level 

In this scope of the thesis, the stock level means the number of spare items pur-

chased beforehand. In the single site model, each failed unit is repaired immediately 

with mean time T. The assumption is that all of critical items can be fixed without be-

ing thrown away. 

Based on the assumption, there are some incidents where the spare units are on the 

shelf, or they will be in repaired process. There also cases when there is no spare 

available on the shelf and this causes backorders when demand happens. Finally, a 

stock balance equation has been created for the analysis. 

Stock balance equation is in this form (Sherbrooke 2004, 24): 



14 
 

 

𝑠 = 𝑂𝐻 + 𝐷𝐼 − 𝐷𝑂 

 

According to the above formula, s is the stock level, OH is the number of spare units 

on the shelf, DI is the number of spare units undergoing repair and BO is number of 

backorders. Since the stock level is constant, the number of spare units in repair in-

crease by one when one demand occur. When the repair is finished, the due in de-

crease by one and the number of spare items on shelf increase by one. In case all of 

spare units are in repair and demand still occurs, the number of backorders will in-

crease. 

3.8 Expected backorders 

Expected backorders is an item performance measure which indicate the number of 

unfulfilled demand at a point in time. To be more specific, a backorder happens 

whenever a demand cannot be filled. The formula for calculating is as follow: 

Expected backorder is calculated based on this formula (Sherbrooke 2004, 26): 

 

𝐸𝐵𝑂(𝑠) = Pr{𝐷𝐼 = 𝑠 + 1} + 2 Pr{𝐷𝐼 = 𝑠 + 2} + 3 Pr{𝐷𝐼 = 𝑠 + 3} +

⋯ = ∑ (𝑥 − 𝑠) ∗ Pr {𝐷𝐼 = 𝑥}∞
𝑥=𝑠+1   

 

Where Pr{𝐷𝐼 = 𝑠 + 1}  is the probability that the “s+1” number of items are in re-

paired and x is the stock level “s” plus number of backorders. In general, the formula 

calculate the expected value of backorders by summing all of the product of number 

of backorders occur and the probability for that amount of backorder happens. How-

ever, this formula makes the computation in Excel and Python program difficult be-

cause there is no endpoint for the number of backorder would occur. That is why a 

transformation of this formula is needed. 

General expression deduction of EBO with Poisson distribution is performed as fol-

lows (JFukuda 2007): 
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𝐸𝐵𝑂(𝑠) = 𝑃𝐿 ∗ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝑠, 𝑃𝐿) + (𝑃𝐿 − 𝑠) ∗ [1 − 𝑃𝑜𝑖𝑠𝑠𝑜𝑛𝐴𝑐(𝑠, 𝑃𝐿)]  

 

Where PL is the average pipeline (Average pipeline = m*T), Poisson(s,PL) is the prob-

ability of exactly s spares to occur with specified average pipeline and Pois-

sonAc(s,PL) is the cumulative of Poisson distribution from 0 to s spare unit. As can be 

seen from the formula, the calculation for Poisson(s,PL) and PoissonAc(s,PL) can now 

be computed easily in Excel and Python.  

3.9 Marginal analysis 

Business Dictionary (2016) defines marginal analysis as a process of identifying the 

benefits and costs of different alternatives by examining the incremental effect on 

total revenue and total cost caused by a very small change in the output or input of 

each alternative. This explanation may come from microeconomics or accounting 

point of view, but the general idea is the same.  

 

Table 1. Numerical example for single-site model (Adapted from Sherbrooke 2004, 
30) 
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An example taken from Craig C. Sherbrooke book illustrates a unit (an aircraft) com-

prises of two critical items with given input. In order to determine how many stock 

should be procured for each items, a decision of choosing either critical item 1 or 2 

for each stock level is made by using the below formula (Sherbrooke 2004, 31). 

 

[𝐸𝐵𝑂(𝑠 − 1) − 𝐸𝐵𝑂(𝑠)]

𝑐
 

 

Where EBO (s-1) is the expected backorder at “s-1” stock level, EBO (s) is the ex-

pected backorder at “s” stock level and c is the unit cost of a specified critical item. 

This formula calculates the marginal decrease in expected backorders divided by the 

item cost (Sherbrooke 2004, 31). If the result from the formula of item 2 is greater 

than item 1 at the same stock level, then item 2 will be chosen. The process will con-

tinue until the total amount of money invested in spare items approach the limit of 

maximum available inventory cost. 

3.10 Availability 

The calculation of availability has three different versions, namely inherent availabil-

ity, achieved availability and operational availability. The inherent availability is the 

simplest out of three calculations. It determines the percentage of time that a system 

will theoretically be available or work properly. Below is the formula for inherent 

availability (Jones 2006, 10.2). 

 

𝐴𝑖 =
𝑀𝑇𝐵𝐹

𝑀𝑇𝐵𝐹 + 𝑀𝑇𝑇𝑅
 

 

The achieved availability is an improvement from the inherent availability because it 

takes into consideration the MTBM rather than MTBF. The MTBM may be smaller 

than MTBF, because it makes allowance for periods when the system will not be 

available due to preventive maintenance activities or when maintenance will not be 
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performed but a failure may have occurred . Below is the formula for achieved avail-

ability (Jones 2006, 10.4.) 

 

𝐴𝑎 =
𝑀𝑇𝐵𝑀

𝑀𝑇𝐵𝑀 + 𝑀𝐶𝑀𝑇 + 𝑀𝑃𝑀𝑇
 

 

The last method of calculating availability is called operational availability. It is the 

percentage of time when under actual operating conditions the system can perform 

its mission (Jones 2006, 10.5). The formula for operational availability has slightly dif-

ference from two books. 

 

𝐴𝑜 =
𝑀𝐶𝑇

𝑀𝐶𝑇 + 𝑁𝑀𝐶𝑇
 

Where NMCT = MCT + MPT + ALDT (Jones 2006, 10.6) 

 

𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =
100×𝑀𝑇𝐵𝑀

𝑀𝑇𝐵𝑀+𝑀𝐷𝑇
  (Sherbrooke 2004, 38) 

 

In the scope of this thesis, the availability means the fleet availability which is the ex-

pected percent of the aircraft fleet that is not down for any spare and is given by this 

formula (Sherbrooke 2004, 39): 

 

𝐴 = 100 × ∏{1 −
𝐸𝐵𝑂𝑖(𝑠𝑖)

𝑁𝑍𝑖
}𝑍𝑖

𝐼

𝑖=1

 

 

Where Zi is the number of occurrences of ith critical item, N is the fleet size (Number 

of aircrafts in a fleet) and EBOi(si) is the expected backorder of ith critical item at ith 

stock level. 
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3.11 Python 

3.11.1 General Information 

In brief, Python is a programming language like JavaScript, C++, etc. It was invented 

by Guido van Rossum who is a programmer from the Netherlands and implemented 

in 1989 (Wikipedia 2016). 

Python is known as a very powerful and language due to these reasons (Python Wiki 

2014): 

 

 Equipped with elegant syntax, so it is easy to read and use. Consequently, it is 
suitable for beginners who do not have background in programming. 

 Supported by considerable libraries for programming tasks. In addition, develop-
ers around the world have created prepared modules (data analysis, statistics, 
simulation, etc.) and users just need to download and embed it to Python with-
out constructing the module again. 

 Python can be executed on my operating systems: Windows, MacOS, Unix, etc. 

 Finally, Python has the open source license which means it is totally free of 
charge and users can freely edit and redistribute.  

 In comparison to Java, Python is slower to run, however, it requires less time to 
develop, approximately 3-5 times. In addition, Python can also act as a glue lan-
guage which means a program can be constructed in Java and then combined to 
Python (Python Software Foundation 2016). 

 

3.11.2 Variables 

Severance (2013, 20) stated that the most powerful features of programming lan-

guage is the ability of manipulating variables. To be more specific, a variable is a 

name which contains value. Scientifically, memory space is reserved when variables 

are created (Tutorials Point 2016). 
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In Python, users do not need to declare variables when assigning a value to it, 

whereas Java require to do so. A value is assigned to a variable name by using “=” op-

erator. The variable name is located on the left and its value is placed on the right 

(Tutorials Point 2016). 

3.11.3 Variable types 

The type of the value assigned to the variable varies. Basically, there are five stand-

ard types, including: number, string, list, tuple and dictionary. In the program of this 

thesis, only tuple type was not used. 

The number data type is numeric values which comprises 4 categories in Python, in-

cluding: integers (-1, 2, 10, etc.), long integers (integers performed in octal and hexa-

decimal), floating numbers or number with decimals (3.56, 5.7, etc.) and complex 

numbers (6+8i where I is the imaginary unit) (Tutorials Point 2016.) 

The string type is defined as contiguous set of characters represented in quotation 

marks (Tutorials Point 2016). In practice, a string can contain both words and values 

but it has to be put inside single or double quotation marks in Python. For example, a 

number placed inside quotation marks which is assigned to a variable will be defined 

as string type (not number type) in Python. 

A list is a sequence containing elements. Values or elements in a list can be any type 

(integers, floating integers, words, etc.) and enclosed in square brackets. One im-

portant characteristic of a list is that it is mutable, one can add, delete, slice or even 

combine two lists into one. Below is an example of retrieving elements in a defined 

list by using slice operators ([]) in Python.  

 

 

 

Figure 2. Example of list in Python (Adapted from Tutorials Point 2016) 
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A dictionary is pretty similar to a list which contains a set of elements. However, it is 

a combination of a so-called key-value pair. Like in a real dictionary, there are words 

in one language and a simultaneous explanation in another one. Another difference 

between a list and a dictionary is that elements inside a list is in ordered, whereas an 

element in a dictionary is navigated by the key name. Here is an example 

 

 

 

3.11.4 Conditional execution 

Conditional execution means outputs will be printed in Python depending on the in-

puts and conditional expressions. The first type of conditional expression is called 

Boolean. A Boolean expression is an expression which only gives two results (either 

True or False). The Boolean expression comprises one operator and two operands. 

The operator have 7 types, including: != (not equal), > (greater than), >= (greater 

than or equal to), < (less than), <= (less than or equal to), is (the same as) and is not 

(not the same as). 

 

 

 

Figure 3. Example of dictionary in Python (Adapted from Tutorials Point 2016)  

Figure 4. Boolean expression in Python (Adapted from Severance 2013, 31) 
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When there are more conditions (Two or more Boolean expressions), a logical opera-

tor needs to be used. Three typical types of logical operators are and, or and not. For 

example, an input x has the condition (x > 5 and x <10) and Python will print the re-

sult True if any value of x is within that range, otherwise the result is False. 

In order to make the program useful, users need the ability to check conditions and 

change the behavior of the program accordingly. Severance (2013, 32). In Python, 

“if” statement accompanying with colon represents for conditional statements.  

 

 

 

The second type of if statement is called alternative execution. Alternative execution 

has two possibilities and the condition will determine which one gets executed (Sev-

erance 2013, 32). 

 

Figure 5. Conditional Execution (Adapted from Severance 2013, 32) 
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With more than two possibilities, a chained conditional need to be applied. In Py-

thon, “elif” statement will add more conditions and there is no limit of elif state-

ment. The condition chain will be closed by the “else” statement. 

 

 

 

The final type of conditional execution is nested conditionals which nest one condi-

tion to the other. Below is an example of the syntax and the structure of nested con-

ditional. 

Figure 6. Alternative Execution (Adapted from Severance 2013, 33) 

Figure 7. Chain conditional (Adapted from Severance 2013, 34) 
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3.11.5 Repetition 

When users would like to repeat some statements for fixed number of time or until 

there is a signal to make the repetition to stop. In Python, the repetition is performed 

through loop. There are two types of loop which are definite an infinite loops.  

A definite loop is used to iterate values in a sequence or a range. A definite loop in 

Python has the general form “for <var> in <sequence>”. The name <var> is a loop-

counter or loop-index variable. It will be assigned a value in the sequence and some 

actions will be performed for every iteration. 

 

 

 

Figure 8. Nested conditional (Adapted from Severance 2013, 35) 

Figure 9. Definite loop example in Python (Adapted from Severance 2013, 60-61) 
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On the contrary to definite loop, infinite loop does not have any iteration variable 

which gives signal to the loop when to stop. The infinite loop is controlled by ”while” 

statement in Python. 

 

 

 

As can be seen from the above example, there is no signal for the program to stop 

and Python will run this program forever till minus infinity. 

4 BUILDING THE MODEL BY USING EXCEL 

In this chapter, all needed steps for building the model to find optimal spares in Excel 

are illustrated. Also applied formulas and Excel functions are mentioned. For simplic-

ity, each unit comprises only two critical items and each item occur two times. Fi-

nally, there are 10 units in the fleet (Fleet size is equal to 10). 

4.1 Taking inputs and calculating the average pipeline 

The inputs needed for the model has to be filled for every items in one unit, except 

the fleet size. They include: 

 

 Average annual demand (m): the term demand here is similar to failures. When 
a failure occurs, a demand for a spare is needed. 

 Average repair time in years (T): the mean time to fix one item. In the model, 
this time should be converted to year unit because the average annual demand 
was also formatted in years. 

 Item Cost (000 $): The price of one item. The unit is thousand dollars. 

 Occurrences: The number of locations for one type of item on a unit. 

 Fleet size (N): Number of units in a fleet. 

Figure 10. Infinite loop syntax in Python (Adapted from Severance 2013, 59) 
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After collecting needed inputs, the average pipeline 𝜇 was calculated by applying 

Palm’s theorem. The formula is 𝝁 = 𝒎 ∗ 𝑻. 

4.2 Computing EBOs and marginal values of EBOs for each stock level 

By applying the deduction formula for EBOs calculation, EBOs’ values were generated 

corresponding to stock levels. The formula was shown in section 3.8 (JFukuda 2007). 

In Excel, Poisson(s, PL) and PoissonAc(s, PL) was computed by using Poisson.dist 

fuction. The difference between those is at the third argument. The input of 0 (prob-

ability mass function) was applied for the former, whereas, the latter had the input 

of 1. 

After finishing the EBOs calculation, the next step is to perform the marginal value 

when increasing the stock level by one unit. Basically, it is equal to the difference be-

tween the previous and the current EBOs divided by the item cost. 

 

 

 

Table 2. Calculation of marginal value in Excel  
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4.3 Setting constraints and finding optimal policy 

For the model, there are two types of constraints, including: Maximum allowable 

cost for spares and minimum allowable availability. User can choose one of those 

constraints and find the optimal spares for each item.  

In the example shown below, the cost constraint was set for 29,000 dollars. By apply-

ing the marginal analysis, we first chose 6 spares for item 2. At this point, the cost 

was just 6,000 dollars, so the stock level had to be continued to increase. However, 

the next choice was for item 1 with higher marginal value (0.126) compared to 

(0.111) of item 2 (s = 7). With the same logic, the optimal spares were 4 and 9 for 

item 1 and 2, respectively. According to these option, the system cost was 29,000 $ 

which equaled to the maximum allowable cost for spares. Finally, the system availa-

bility is 99.83 %. 

 

 

 

In order to pick the value of EBOs based on the input of stock level for item, a combi-

nation of MATCH and INDEX function are used. MATCH function helps to locate the 

row of targeted stock level, then INDEX function gives the value in EBOs column cor-

responding to the certain stock level. 

Table 3. Optimal stock level result in Excel 
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5 CONSTRUCTING A PROGRAM TO RUN THE MODEL BY 

USING PYTHON 

5.1 Step 1 – Importing libraries and creating base variables 

5.1.1 Importing libraries 

The use of factorial and exponential function for calculating EBOS in Python require 

the import of math library. This library helps the program to calculate the value of 

Poisson distribution. 

 

 

 

5.1.2 Creating base variables 

 Three base variables were created, including: N (Fleet size), numitems (Number of 

critical items in one unit) and length (Number of stock levels taken into considera-

tion). Those variables are created by using “raw_input()” function to take the data 

from users and the format is always a string. In order to use the user’s input data as 

an integer for calculation, it has to be converted to integer or real numbers by using 

“int()” or “float()” function. 

 

 

 

Figure 11. Importing library in Python 

Figure 12. Asking the user for input syntax  
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5.1.3 Conditions for base variables 

For base variables, it is really important to get the right format of input from users. 

To be more specific, the fleet size (The number of aircrafts or units) have to be posi-

tive integer. The same rule applies to the number of critical items that a unit com-

prises of and the number of stock levels. 

 

 

 

5.1.4 Prevention for errors 

In order to prevent users from accidentally or intentionally typing wrong required in-

puts (1 instead of “one”), a combination of infinite loop and try/except function was 

created. The idea of try/except function is to return a notice line to warn user, in 

case they type a wrong input. With reference to infinite loop, It helps user to retype 

the data without re-running the program again. 

5.2 Step 2 - Creating a list of EBOs 

5.2.1 Adding additional inputs 

EBO is calculated based on the general expression deduction of EBO formula (Section 

3.8). Firstly, we need to define the average pipeline (apl) variable by taking the multi-

plication of the average annual demand (m) and repair time (T). For those two com-

ponents of the average pipeline, the code was made in a way so that the user can in-

put the data for each critical items step by step. Actually, it is made by applying finite 

loop and range() function. The range function helps to create a list of item numbers 

which is equal to the number of critical items in a unit. Then a temporary variable 

can loop inside the list. 

Figure 13. Conditions for base variables syntax 
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5.2.2 Calculating EBOs 

According to EBO formula shown above, the average pipeline variable for each item 

is already calculated and defined. However, Python does not know how to compute 

the Poisson pdf and cdf, except importing another library. Fortunately, the Poisson 

pdf can be calculated by using the formula in section 3.8 (JFukuda 2007).  

 

 

 

For calculating the cumulative Poisson distribution,  a temporary variable is used to 

memorize the value of the Poisson pdf at stock level s = 0. Then, its value will be 

added by the Poisson probability at s = 1 after the second loop. This finite loop will 

end until it reaches the length of the desired number of stock levels. 

 

 

 

5.2.3 Adding EBOs to a list 

At first hand, an empty list was created and named ”t” in Python. After each loop, 

the ebo variables will be added to the list in order by using ”t.append” function.  

 

Figure 14. Asking for inputs for EBO calculation in Python 

Figure 15. Definite loop syntax for EBO calculation in Python 
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5.2.4 Prevention of errors 

At this point, the program had run quite a lot. So after the input and calculations 

were displayed. A notice line will be shown and user has a chance to check the input 

for the EBOs calculation again before moving to the next step. In case of errors, user 

just needs to type ”No” and re-input the data again (for only this step). 

Figure 16. A list of EBOs in Python 

Figure 17. EBO for each stock level and item result 
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5.3 Step 3 – Creating a list of all combined stock levels  

5.3.1 Making a list with ordered numbers for each item 

This step is like a buffer to help construct a list for combination. The below two-code 

lines help to construct a list with sublists inside for every item. Within one sublist, 

there are numbers start from 0 to the maximum number of stock levels (numitems 

variable). 

 

  

 

5.3.2 Making a list for combination of stock level 

After making a list of ordered number of stock levels, a two definite loop in the same 

list above was used. The result will be a general list for the names of each combina-

tion. 

 

 

Figure 18. Making a list with ordered numbers for each item 

Figure 19. Making a list for combination of stock level 
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5.4 Step 4 - Creating cost list 

5.4.1 Making a list for unit cost of every critical item 

Firstly, an empty list called ”costdata” was builded up. Then this list will be added by 

the unit cost input from the user. From below extracted program display, the unit 

cost for item 1 and 2 is 5, 1 respectivley.  

 

 

 

5.4.2 Making a list of total cost of each stock level for every item 

The underlying idea to build up this list is using two finite loops (loop in loop) tech-

nique. Firstly, a loop starts from the first position from the costdata list (unit cost 5 

dollars). Then the second loop will runs in a temporary list of stock levels. The first 

loop will continue to the second position, only if the second one finish the temporary 

list. The result is a cost list comprises of sublists for every items. And the total cost 

for each stock levels are inside that sublists. 

 

Figure 20. Asking inputs for unit cost of every item 
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5.4.3 Making final cost list for each combination of stock level 

The same technique of two finite loops was used to create a final list which shows 

the total cost for each combination of stock level. For a unit which has over 2 critical 

items, a new technique was applied. Firstly, the program will take the sum of the 

combination of two first items. Then, the data will be added in to a temporary list. 

After that, the program will calculate the total sum between the temporary list and 

the third item cost list and so on. 

 

 

Figure 21. Making a total cost list for each stock level of every item 

Figure 22. Making final cost list for each combination of stock level 
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5.5 Step 5 - Creating a list for system availability 

5.5.1 Making a list for occurences 

Beforehand, an empty list was created and named ”occlist”. By using infinite and fi-

nite loop, a list of occurrences for every critical items was constructed. The infinite 

loop in this case just helps user to check the input/result and edit the data again if 

needed. The result is like this. 

 

 

 

5.5.2 Calculating availability of each item for every stock level 

The system availability is calculated by using the formula in section 3.10 (Adapted 

from Sherbrooke 2004, 39). 

Figure 23. Making a list for occurrences 
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At this step, the calculation for every availability is computed first based on these 

variables: EBO, fleet size (N), occurrences Z. Then it is added to a temporary list 

called ”temp1”. 

 

 

 

5.5.3 Calculating and making a list for system availability 

The system availability is the product of availability of every items at certain stock 

level. The result is a list of system availability for each combination of stock level. 

 

 

Figure 24. Making an availability list of each stock level for every item 
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5.6 Step 6 - Creating dictionaries 

5.6.1 Dictionary of EBOs 

The dictionary of EBOs includes keys and values. The keys are the combination of dif-

ferent stock level from item 1 and 2 in this example. The simultaneous value are ex-

pected back order value from EBO list ”t”. 

Figure 25. System availability calculation syntax 

Figure 26. A List of system availability for all possible combinations 
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5.6.2 Dictionary of costlist 

For cost list the code is pretty the same. It will give information about the name of 

certain combination of stock level and the total cost for keeping those spares. 

 

Figure 27. Dictionary of EBOs syntax 

Figure 28. Dictionary of EBOs 
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5.6.3 Dictionary of system availability 

By applying the similar code, a dictionary was created which includes key name for 

combination of stock level and the system availability for each option. 

 

 

Figure 29. Dictionary of costlist syntax 

Figure 30. Dictionary of costlist 

Figure 31. Dictionary of system availability syntax 
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5.7 Step 7 – Finding optimal inventory policy 

5.7.1 Designing for type of constraints 

In this model, there are two types of constraint. The former is availability constraint 

and the latter is inventory cost constraint. So a question was made in order to ask 

the user to choose between one of them. 

 

 

 

Figure 32. Dictionary of system availability 

Figure 33. Asking for constraint syntax 
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5.7.2 Optimizing inventory policy with inventory cost constraint 

The priority condition to run the optimization is that the limited cost which is entered 

by the user has to be higher, then the minimum total cost for all combination of 

stock level of items. If user enters wrong numbers, the program will give a warning 

and then force the user to input again the limited cost. 

In case of valid input, the program with compare the cost constraint with each cost in 

the dictionary of cost. If the cost in the dictionary is lower than limited cost, the pro-

gram will remember the key names. 

Based on the key names above, the program continues to look up in the dictionary of 

system availability to choose one key name with highest system availability. 

 

 

 

 

 

Figure 34. Optimization of inventory policy with inventory cost constraint syntax 
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5.7.3 Optimizing inventory policy with system availability constraint 

According to availability constraint, the process is in the opposite direction. Because 

availability is a floor constraint (minimum), it has to be greater than the maximum 

constraint in the dictionary of availability.  

If the input is valid, the program will take that constraint in to comparison with each 

value in the dictionary and only remember key names which has higher availability 

then the constraint. After that, the program will find the only key with minimum cost 

within those key names. 

 

 

Figure 35. Optimal stock level result with inventory cost constraint 

Figure 36. Optimizing inventory policy with system availability constraint 
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6 RESULTS 

By using two different ways to optimize the number of spare units for each item, a 

comparison for the result was needed, in order to validate the program constructed 

in Python. For a test, a list of same inputs was put into the model in Excel and Py-

thon. Those inputs are illustrated in a table below. 

 

 

 

There were two comparisons corresponding to two types of constraint. Users should 

notice that only one constraint (either maximum cost or minimum availability) is cho-

sen for the optimization. With reference to maximum allowable cost constraint 

which was set to 29,000 $, both techniques gave the same result. The optimal spares 

for item 1 is 4 and item 2 is 9. In addition, the availability of the system was 99.83% 

and system cost was 29,000 dollars. 

Figure 37. Optimal stock level result with system availability constraint 

Figure 38. Sample data inputs 
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According to availability constraint (minimum 98%), the results remained the same 

again. The optimal spares for item 1 is 2 and item 2 is 7. The availability of the system 

and system cost were 98.13% and 17,000 dollars, respectively. 

 

 

 

7 DISCUSSION 

7.1 CONCLUSION 

This thesis clarified the process to create the model in Excel corresponding to the 

model introduced in Craig C. Sherbrooke (2004). Furthermore, the author went be-

yond that to make the model more applicable in the real life by making a program in 

Python. The program was much more flexible than Excel because users can easily 

change the data input whatever they want without making another model like in Ex-

Figure 39. Compared results using two different techniques with inventory cost con-
straint 

Figure 40. Compared results using two different techniques with system availability 
constraint 
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cel. The program is not fully considered as a software because it needs GUI (Graph-

ical User Interface), instead, it can only run on the Command Prompt Window with 

pre-installed Python 2.7. 

In conclusion, Craig C. Sherbrooke model to manage repairable-item inventory 

worked to increase the availability and decrease the inventory cost. Because there 

was not enough information about the cost to place an order and the annual holding 

cost rate, a precise comparison between Craig C. Sherbrooke single-site model and 

EOQ model could not be conducted. However, the algorithm in Python program will 

choose the optimal option for the stock level of each critical item among all of possi-

ble options. It means any other combination will lead to either a lower in availability 

or a higher inventory cost. 

7.2 LIMITATIONS AND SUGGESTIONS FOR FURTHER RESEARCH 

Although the algorithm in the program was creative, it could not work when the con-

sidered stock level and the number of critical items was really high. For example, 

when trying a system of 22 critical items and 25 considered stock level, the program 

showed a failure notice. The reason behind that was the limitation of the size of a list 

in Python. A list in Python can contain at maximum 536,870,912 elements for 32-bit 

system. However, there were approximately 2522 = 5.68 × 1030 elements in a list 

which exceeded the limitation. 

At the time of writing this thesis, the author had just learnt Python for two and a half 

month without prior knowledge about programming. That is why the source code 

was written in a complicated way and the program cannot execute for any of data in-

puts. 

For further development of the program, a different approach in writing the code is 

to apply the marginal analysis technique. Another solution is to use the class-object 

function in Python which performs different algorithm for storing data. For whom 

who would like to use Excel to build the model, but want to make it more flexible, Ex-

cel Visual Basic programming language is one option. 
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Appendices 

Appendice 1. Model in Excel 

 

Formula at B5: = B3 * B4 

Formula at D5: = D3 * D4 

Formula at B10: = B$5*POISSON.DIST($A10;B$5;0)+(B$5-$A10)*(1-

POISSON.DIST($A10;B$5;1)) 

Formula at C10: = (B9-B10)/$B$6 

Formula at D10: = D$5*POISSON.DIST($A10;D$5;0)+(D$5-$A10)*(1-

POISSON.DIST($A10;D$5;1)) 

Formula at E10: = (D9-D10)/$D$6 

Formula at H3: = H1*B6+H2*D6 

Formula at H5: = ((1-INDEX(Table1;MATCH(H1;Table1[Stock level 

(s)];0);2)/(F1*B2))^B2)*((1-INDEX(Table1;MATCH(H2;Table1[Stock level 

(s)];0);4)/(F1*D2))^D2) 
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Appendice 2.  Program Source Code (Written in Python programming language) 

 

import math 

 

#Creating base variables 

while True: 

    N = raw_input('Please enter your fleet size: ') 

    try: 

        N = int(N) 

        N >= 1 

        break 

    except:   

        print 'Wrong input!!! Please type only positive integer (-_-)' 

while True: 

    numitems = raw_input('Please enter number of critical items in one unit (It should 

be greater than 1): ') 

    try: 

        numitems = int(numitems) 

        numitems > 1 

        break 

    except: 

        print 'Wrong input!!! Please type only positive integer (-_-)'    

while True: 

    length = raw_input('Please enter number of stock level (s) taken into consideration 

for each critical item: ') 
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    try: 

        length = int(length) 

        length >= 1 

        break 

    except:   

        print 'Wrong input!!! Please type only positive integer (-_-)' 

 

#Creating a list of EBOs         

while True: 

    Prac = 0 

    t = list() 

    for num in range(1,numitems+1): 

        while True: 

            m = raw_input('Please enter the average annual demand for item ' + str(num) 

+ ': ') 

            try: 

                m = float(m) 

                m >= 0     

                break 

            except:   

                print 'Wrong input!!! Please type only positive real numbers (-_-)' 

        while True: 

            T = raw_input('Please enter the average repair time in years for item ' + 

str(num) + ': ') 

            try: 
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                T = float(T) 

                T >= 0     

                break 

            except:   

                print 'Wrong input!!! Please type only positive real numbers (-_-)' 

        apl = m*T 

        for x in range(length): 

            Pr = (apl**x)*math.exp(-apl)/math.factorial(x) 

            Prac = Prac + Pr 

            ebo = apl*Pr + (apl-x) * (1-Prac) 

            t.append(ebo) 

        Prac = 0 

    t = [t[p:p+length] for p in range(0,len(t),length)] 

    #print t 

             

    countitems = 1 

    count1 = 0 

    count2 = 0               

    while True: 

        for p in t[count1]:        

            print ('Item ' + str(countitems) + ' EBO at s = ' + str(count2) + ' : ' + str(p)) 

            count2 = count2 + 1 

            if count2 > (length-1): break   

        if countitems >= numitems or count1 >= (numitems-1): break 
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        else:     

            countitems = countitems + 1 

            count2 = 0 

            count1 = count1+1   

    print 'Please check the raw data once again !!!' 

    print 'Type (Yes) in case you want to continue, (No) to reinput the data.' 

    while True: 

        ques = raw_input('Continue or not ? ') 

        if ques == 'Yes': break 

        elif ques == 'No': break 

        else: 

            print 'Please answer only (Yes) or (No) !!!' 

    #print t 

    if ques == 'Yes': break 

 

#Creating a list of unit cost for each items     

while True: 

    costdata = list() 

    for p in range(1,numitems+1): 

        while True: 

            uc = raw_input('Please enter unit cost for item ' + str(p) + ': ')    

            try: 

                uc = float(uc) 

                costdata.append(uc) 
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                break 

            except: 

                print 'Wrong input!!! Please enter positive integer (-_-)'            

    print 'Please check the unit cost data once again !!!' 

    print 'Type (Yes) in case you want to continue, (No) to reinput the data.' 

    while True: 

        ques = raw_input('Continue or not ? ') 

        if ques == 'Yes': break 

        elif ques == 'No': break 

        else: 

            print 'Please answer only (Yes) or (No) !!!' 

    #print costdata 

    if ques == 'Yes': break         

 

#Creating combination of stock level between items    

temp = range(length)*numitems 

names = [temp[p:p+length] for p in range(0,len(temp),length)] 

#print names 

while True: 

    if len(names) <= 1: break 

    else: 

        nametemp = list() 

        for n1 in names[0]: 

            for n2 in names[1]:        
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                name = str(n1) + "&" + str(n2)                

                nametemp.append(name)        

        names[0:2] = []     

        names.insert(0,nametemp) 

names = names[0] 

#print names 

 

#Creating a cost list for each stock level  

i = 0 

inp = range(length)*numitems 

inp = [inp[p:p+length] for p in range(0,len(temp),length)] 

temp = list() 

while i < len(inp):    

    for c in costdata: 

        for t1 in inp[i]: 

            cost = c*t1 

            temp.append(cost) 

        i = i + 1 

costlist = [temp[p:p+length] for p in range(0,len(temp),length)] 

#print costlist 

 

#Making final cost list for each comabination 

while True: 

    if len(costlist) <= 1: break 
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    else: 

        temp = list() 

        for c1 in costlist[0]: 

            for c2 in costlist[1]:        

                sum = c1 + c2                 

                temp.append(sum)        

        costlist[0:2] = []     

        costlist.insert(0,temp) 

costlist = costlist[0] 

#print costlist 

 

#Creating a list for occurences 

occlist = list() 

while True: 

    for num in range(1,numitems+1): 

        mem = raw_input('Please enter occurences for item ' + str(num) + ': ')        

        if mem == 'quit': quit()        

        try: 

            mem = float(mem) 

            occlist.append(mem) 

        except: 

            print 'Wrong input!!! Please type again (-.-)' 

    print 'Please check the occurences data once again !!!' 

    print 'Type (Yes) in case you want to continue, (No) to reinput the data.' 
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    while True: 

        ques = raw_input('Continue or not ? ') 

        if ques == 'Yes': break 

        elif ques == 'No': break 

        else: 

            print 'Please answer only (Yes) or (No) !!!' 

    if ques == 'Yes': break                            

#print occlist 

 

#Creating a list for system availability 

temp1 = list() 

ran = range(len(t)) 

Z = 0 

#print i 

for p in ran: 

    for p1 in t[p]: 

        ex = pow(1-(p1/(N*occlist[Z])),occlist[Z]) 

        temp1.append(ex) 

    Z = Z + 1 

temp1 = [temp1[p:p+length] for p in range(0,len(temp1),length)] 

#print temp1     

while True: 

    if len(temp1) <= 1: break 

    else: 
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        temp2 = list() 

        for p2 in temp1[0]: 

            for p3 in temp1[1]:        

                ava100 = p2*p3                 

                temp2.append(ava100)        

        temp1[0:2] = []     

        temp1.insert(0,temp2) 

temp1 = temp1[0] 

#print temp1 

 

 

while True: 

    if len(t) <= 1: break 

    else: 

        temp = list() 

        for t1 in t[0]: 

            for t2 in t[1]:         

                sum = t1 + t2                   

                temp.append(sum)         

        t[0:2] = []     

        t.insert(0,temp) 

t = t[0] 

#print t    
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#Creating dictionaries 

costdict = dict() 

ebodict = dict() 

avadict = dict() 

optdata = dict() 

pos1 = 0 

pos2 = 0 

pos3 = 0 

for d in names: 

    ebodict[d] = t[pos1] 

    pos1 = pos1 + 1 

#print ebodict 

for d in names: 

    costdict[d] = costlist[pos2] 

    pos2 = pos2 + 1 

#print costdict 

for d in names: 

    avadict[d] = temp1[pos3] 

    pos3 = pos3 + 1 

#print avadict 

 

#Finding optimal inventory policy 

while True: 

    print 'Type (a) for constraint of availability and (c) for cost' 
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    quesf = raw_input('Would you like to choose constraint for availability or cost? ') 

    if quesf == 'c': 

        while True:    

            ltdcost = raw_input('Please enter maximum allowable cost for spares: ') 

            if float(ltdcost) < min(costdict.itervalues()): 

                print 'The cost is too small, please enter at least',min(costdict.itervalues()) 

                continue 

            try: 

                ltdcost = float(ltdcost) 

                optdata1 = dict() 

                for key,value in costdict.iteritems(): 

                    if value > ltdcost: continue 

                    else: 

                        for key1,value1 in avadict.iteritems(): 

                            if key != key1: continue 

                            else: 

                                optdata1[key] = value1        

                #print optdata 

                com = max(optdata1, key=optdata1.get) 

                syscost = costdict[com] 

                syscost = round(syscost,3) 

                sysebo = ebodict[com] 

                sysebo = round(sysebo,3) 

                sysava = avadict[com] 
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                sysava = round(sysava*100,3) 

                com = com.split('&') 

                num = 1 

                 

                print 'Optimal inventory policy: ' 

                for p in com: 

                    print 'Item',num,':',p 

                    num = num + 1 

                     

                print 'System EBO(s):',sysebo 

                print ('System Availability: ' + str(sysava) + '%') 

                print 'System Cost:',syscost 

                 

                while True:  

                    ques1 = raw_input('Would like to try another allowable cost (Type Yes or 

No)? ') 

                    if ques1 == 'Yes': break 

                    elif ques1 == 'No': break                

                    else:  

                        print 'Wrong input!!! Please type only Yes or No (-_-)' 

                  

            except: 

                print 'Wrong input!!! Please type only positive integer (-_-)' 

            if ques1 == 'No': break 
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    elif quesf == 'a': 

        while True:    

            ltdava = raw_input('Please enter minimum allowable availability for the fleet: 

') 

            if float(ltdava) < min(avadict.itervalues()): 

                print 'The availability is too small, please enter at least',min(avadict.iterval-

ues()) 

                continue 

            try: 

                ltdava = float(ltdava) 

                optdata2 = dict() 

                for key,value in avadict.iteritems(): 

                    if value < ltdava: continue 

                    else: 

                        for key1,value1 in costdict.iteritems(): 

                            if key != key1: continue 

                            else: 

                                optdata2[key] = value1        

                #print optdata 

                com = min(optdata2, key=optdata2.get) 

                syscost = costdict[com] 

                syscost = round(syscost,3) 

                sysebo = ebodict[com] 

                sysebo = round(sysebo,3) 

                sysava = avadict[com] 



60 
 

 

                sysava = round(sysava*100,3) 

                com = com.split('&') 

                num = 1 

                 

                print 'Optimal inventory policy: ' 

                for p in com: 

                    print 'Item',num,':',p 

                    num = num + 1 

                     

                print 'System EBO(s):',sysebo 

                print ('System Availability: ' + str(sysava) + '%') 

                print 'System Cost:',syscost 

                 

                while True:  

                    ques1 = raw_input('Would like to try another allowable availability (Type 

Yes or No)? ') 

                    if ques1 == 'Yes': break 

                    elif ques1 == 'No': break                

                    else:  

                        print 'Wrong input!!! Please type only Yes or No (-_-)' 

                  

            except: 

                print 'Wrong input!!! Please type only positive integer (-_-)' 

            if ques1 == 'No': break 
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    else: 

        print 'Wrong input!!! Please type only (a) or (c) (-_-))' 

        continue 

    while True: 

        quesc = raw_input('Would you like to change the constraint? ') 

        if quesc == 'Yes': 

            break 

        elif quesc == 'No': break 

        else: 

            print 'Wrong input!!! Please type only Yes or No (-_-)' 

    if quesc == 'No': break 


