

Aino Leppänen

AVEX MOTTI

AVEX MOTTI

 Aino Leppänen
 Bachelor’s thesis
 Spring 2016
 Information Technology
 Oulu University of Applied Sciences

ABSTRACT

Oulu University of Applied Sciences
Degree programme in Information Technology

Author: Aino Leppänen
Title of the bachelor’s thesis: AVEX Motti
Supervisor: Pertti Heikkilä
Term and year of completion: Spring 2016
Number of pages: 34 + 1 appendix

This application was created to help civilians and Finnish Defence Forces com-
municate in a crisis situation where all traditional networks would be unavaila-
ble.

The software was developed using the MVC (Model View Controller) architec-
tural pattern. By combining HTML5 (The fifth revision of Hyper Text Markup
Language), AngularJS, browser’s local storage and Apache CouchDB running
on server side we created an application that would solve the problem of com-
munication in a crisis situation with minimal costs, no need for installing an ap-
plication and fast setup.

The results were very positive and with more funding and time the development
could be continued further. This application could also be implemented for dif-
ferent usages with slight modifications, wherever communicating is necessary
and network connection cannot be guaranteed.

Keywords: offline, browser, crisis, NoSQL, AngularJS

PREFACE

This project was done in Oulu and Helsinki during winter of 2015. Remod Oy
participated in this project that was organized by Finnish Defence Forces as a
voluntary refresher course.

I would like to thank all my co-workers at Remod Oy for giving me this oppor-
tunity to work on this interesting topic. Special thanks to Tuukka Kivilahti who
worked as the CTO (Chief Technical Officer) and my supervisor, Jesse Hulkko
who administrated this project and Tuomas Riihimäki who worked as our
backend expert and is currently working as the CEO (Chief Executive Officer) of
the company.

Also I would like to thank my instructor from Oulu University of Applied Sciences
Pertti Heikkilä for helping me during this thesis and offering guidance for the
writing part of this work.

The last thanks go to Finnish Defence Forces and Jaakko Latikka who worked
as their organizer for AVEX projects and showed a genuine interest in our pro-
ject and the issues we were trying to solve.

In Oulu, 23.5.2016

Aino Leppänen

TABLE OF CONTENTS

ABSTRACT 1

PREFACE 2

TABLE OF CONTENTS 3

VOCABULARY 5

1 INTRODUCTION 8

2 POC 9

2.1 AVEX Motti 9

2.2 Software requirements 11

3 REMOD OY 12

3.1 Company 12

3.2 Finnish Defence Force AVEX refresher team 12

4 PROJECT CONTROL 13

4.1 Jira 13

4.2 Git 14

4.3 GitLab 14

5 DATABASES 15

5.1 Differences between SQL and NoSQL 15

5.2 PouchDB 16

5.3 CouchDB 16

5.4 JSON document structure 16

6 PROGRAMMING 19

6.1 AngularJS 19

6.2 HTML5 21

6.3 UX 22

6.3.1 Technical Implementation 22

6.3.2 UI Design 23

7 BROWSERS 25

7.1 HTML local storage 25

7.2 Application Cache 25

7.3 Modernizr 25

7.4 Browser fingerprint 26

8 LEGAL ISSUES 27

8.1 Finnish Communications Regulatory Authority 27

9 DEMONSTRATION 28

9.1 Scope 28

9.2 Changes 29

9.3 Preparation 29

9.4 Demonstration 30

10 CONCLUSION 31

REFERENCES 32

APPENDICES 34

VOCABULARY

TERM

DEFINITION

AngularJS An open source web application

framework mainly maintained by

Google, written in Javascript.

Apache CouchDB

A document-oriented NoSQL data-

base that uses JSON to store data,

JavaScript as its query language us-

ing MapReduce and HTTP for an

API.

API An Application Programming Inter-

face, a set of routines, protocols and

tools for building a software and ap-

plications.

CRUD Syntax Create, read, update and delete. Four

basic functions of a persistent stor-

age.

DRY Don’t repeat yourself, a principle

aimed at reducing the repetition of in-

formation.

FDF

Finnish Defence Forces

HTML5 The fifth revision of the HyperText

Markup Language

HTTP An Hypertext Transfer Protocol, an

application protocol for distributed,

collaborative, hypermedia information

systems.

Javascript A programming language developed

by Netscape Communications Corpo-

ration, Mozilla Foundation and Ecma

International.

JSON A JavaScript Object Notation, an

open standard format that uses a hu-

man-readable text to transmit data

objects consisting of attribute-value

pairs.

MVC A Model-View-Controller, an architec-

tural pattern mostly for implementing

user interfaces.

NoSQL A non-relational database. Providing

a mechanism for storage and re-

trieval of data, which is modelled in

means other than the tabular rela-

tions used in relational databases.

PoC

POJO

A Proof of Concept, a realization of a

certain method or idea to demon-

strate its feasibility.

A Plain Old JavaScript Object, an or-

dinary object, not bound by any spe-

cial restriction and not requiring any

class path.

PouchBD An open-source JavaScript database

that is designed to run well within the

browser.

1 INTRODUCTION

The AVEX Motti project started when the Finnish Defense Forces organized a

voluntary refresher course, and told the volunteers to think about the given is-

sues and also let them organize how they would solve the issue and present

their solution to the Finnish Defense Forces.

 Their aim was that by outsourcing problem solving the issues given would be

solved more efficiently and they would also update their way of handling them

without a gigantic bureaucratic system.

The project group of Remod Oy personnel had to think of a way to solve these

issues:

- What should be done if we suddenly lost all information networks?

- How to give civilians instructions about what to do in a crisis situation?

- How to create a working taskforce of these civilians to give information back to

the Finnish Defense Forces?

The current society has become very dependent on networks. Considering how

much of the information received every day is delivered via the Internet it is

good to have a working backup plan in case we would suddenly lose them.

There was a solution on how to skip most of the costs in this kind of situation by

using a technology that everyone already carries in their pockets: smartphones.

By creating an application that would work in a browser there would be no need

to focus on native applications to create a PoC (Proof of Concept).

In a crisis situation civilians have a natural will to restore the situation back to

normal.

2 POC

In this chapter the idea of this project will be further explained.

2.1 AVEX Motti

So in a case that networks disappear a temporary Wi-Fi spot could be set up

with just IT device (laptop, Raspberry Pi), a power supply and a Wi-Fi-router.

FIGURE 1. Wi-Fi-spot.

These kinds of spots could be set up to multiple locations in a city and this could

be a backup network for a crisis situation. After this civilians could synchronize

their phone to an application database offering instructions on what to do and

also giving tasks for them to enroll for as operators. These kinds of tasks could

be, for example to check how much water there is in a given apartment com-

plex.

FIGURE 2. Gathering information.

After finishing the task and collecting this information the operator can come

back to the Wi-Fi spot and synchronize information in their phone with database

of the application. While operators are executing these tasks there would be

one person moving between different Wi-Fi spots and by carrying their own

smartphone with them, synchronizing all the databases of different spots.

FIGURE 3: Synchronizing databases between different wifi-spots.

In this way information can be shared in a large area and FDF (Finnish Defense

Forces) personnel will have a better knowledge of where help should be priori-

tized and how to solve the situation with better efficiency.

2.2 Software requirements

To ensure that this application would work on all platforms of the PoC level it

was made into a web application instead of a native application. Being a web

application it had to have an offline database to carry all the information in the

browser instead of saving it to the custom application’s memory space.

 As few features as possible were desired to be depending on online access

which meant that no libraries with links, Google Maps API (Application Program-

ming Interface) or images downloaded from server. This also meant that there

was a limited space to store data.

3 REMOD OY

Remod Oy was the company commissioning this project.

3.1 Company

The company is focused on designing, developing, maintaining and fixing ICT

(Information and Communications Technology) structures. They also work in

software development, virtualization, databases and information networks.

3.2 Finnish Defence Force AVEX refresher team

Remod Oy team consisted of the following persons:

 Juho Juopperi

 Jesse Hulkko

 Tuukka Kivilahti

 Tuomas Riihimäki

Other people involving in this task were:

 Pekka Pussinen

 Pasi Eronen

 Mikko Jakonen

 Aleksi Mustonen

 Marko Nordberg

 Tuomas Reinvuo

 Markus Virtanen

4 PROJECT CONTROL

As in any software a project version control was important to AVEX Motti. The

project control means tracking your software project in revisions. It keeps your

project organized so that all people included in the project know where the pro-

ject is going next and where it has been at a certain point of time.

If any research has to be done it is good to document findings to some sort of

wiki system so that everyone can see your findings and it can also be found

later on.

4.1 Jira

Jira is a proprietary issue tracking product. (1) It is used to track the progress of

a software project by bug tracking, issue tracking and project management

functions. After all the desired features of AVEX Motti had been sorted they

were listed to Jira and a short description and an estimated time to finish that

ticket was written. For each sprint tickets would be nominated for developers

according to the time estimate of that ticket.

FIGURE 4. Ticket in Jira.

4.2 Git

Git is a version control system that is used to store a software project in a

branched fashion. (2) By having one master branch and multiple smaller sub-

branches a software project can be modified without the risk of breaking the

product. It also makes it easier for multiple developers to work on the same pro-

ject when everyone can easily check who has modified and what in a given part

of code.

For each ticket a new branch was created. All work was uploaded to Git after

every finished ticket. After that work was checked for quality and changes were

suggested if necessary. Then the code would be approved of.

4.3 GitLab

GitLab is a git repository hosting service that offered us a handy tool to visualise

data uploaded to Git. (3) It was used to evaluate changes in the code.

5 DATABASES

The idea of how to create AVEX Motti was the functionality of PouchDB, which

is a NoSQL database in the browser. The next step in this project was to deter-

mine if the application should be using an SQL or a NoSQL database with the

backend.

5.1 Differences between SQL and NoSQL

When determining whether to use an SQL (Structured Query Language) or a

NoSQL (No Structured Query Language) database for a project, one has to re-

member that although being a newer technology, NoSQL is not a replacement

for SQL and you should always aim to pick the right tool for the job.

The major difference between these two is the style of storing data. In the SQL

database all data is stored as a strict data template, so it is difficult to make mis-

takes as to where to store and what data.

NoSQL databases use JSON-documents (JavaScript Object Notation) to store

data and all data is stored in to field-value pairs. (4) This can be used in a simi-

lar way in SQL so that every document can look the same but the actual perk is

that they do not have to. Every document could have different field-value pairs

and the database itself will not complain, yet this may lead to consistency is-

sues.

SQL queries also offer a JOIN clause which NoSQL has no equivalent for. This

means that if you want to search all fields with a specific value, you have to do

that manually. (5) This also leads us to a CRUD (Create Read Update Delete)

Syntax which is more complicated to do in the NoSQL database because if we

have a complex JSON-document we have to be very specific to what we want

to do with it. This may lead in the JavaScript side to large queries that have to

be repeated multiple times resulting in code that breaks the DRY (Don’t Repeat

Yourself) principle but it is necessary.

NoSQL databases do not take part in data integrity so you might end up with or-

phaned records or invalid data if you modify or design the document structure

poorly.

NoSQL is commonly thought to be faster than SQL, with a deformalized store

allowing you to retrieve all information about a specific item in a single request.

But the most important thing is to design a database structure well to avoid

problems later on.

For AVEX Motti a NoSQL database was decided on. When having tasks that

could have different kinds of fields to fill, or that might have images attached to

them, it was required a database would not be restrictive about the data struc-

ture.

5.2 PouchDB

PouchDB is a JavaScript implementation of CouchDB which runs on browser.

(6) This is the place where a user’s information will be stored before synchroniz-

ing with the backend.

5.3 CouchDB

Apache CouchDB, which is more commonly known as just CouchDB is a

NoSQL database which is designed for a web usage. It is a project created in

April 2005 by Damien Katz. (7) This was decided to be used on the server side.

Another possibility would have been to use MongoDB but it was discarded due

to CouchDB’s reliable functioning with PouchDB.

5.4 JSON document structure

Here it can be seen how each object is stored into our database. Each object

has an “_id”-field which is automatically generated by PouchDB. This is the ulti-

mate value to differentiate objects from each other.

A “_rev”-field is also generated by PouchDB and it has two parts a revision

number which tells us how many times the object has been updated, in this

case 2 (FIGURE 5), and a long revision id number to track the amount of times

an object has been modified and also potential conflicts.

Coordinates hold the values for the location of the task in a latitude and longi-

tude format.

A date means the deadline to complete a task.

In the description, the person adding a task can give instructions and explana-

tions regarding the task.

A documents array holds reports made by users. Each object in the documents

array holds information about the user who added it (name and id number), time

when the report was submitted and the report text itself.

An enrolled operators array holds id numbers of every user who has enrolled to

this task.

A title field has a title of the task.

A type field specifies that this object is a task, another option being a user.

FIGURE 5. The JSON-structure for a task object.

6 PROGRAMMING

Before this thesis work began working on AVEX Motti, there was already some

base for the application. The MVC structure had been created and some simple

UI (User Interface) elements had been implemented. There was a way to add

task objects to database but not to modify or delete them. These are the tech-

nologies used to create this application and there was no need to depart from

that baseline.

6.1 AngularJS

AngularJS was used for all frontend functionality of the application. Controller

and a model were fully executed with AngularJS and in a view, data-binding

was used. Another option would have been to use React. One of the features

that makes AngularJS so popular and beautiful are data models that are POJO

(Plain Old JavaScript Object) classes which do not require getter and setter

functions to work so properties can be changed or added and arrays or objects

can be looped easily. In comparison to traditional data models, Angular’s data

models work as a temporary storage area instead of tools for an absolute data

perseverance. To differentiate these two, Angular data objects are called

“scopes”. A scope object does not have any data on its own but relies on the

controller to feed it values. All properties in the scope are automatically bound

to a view in Angular and they are being constantly checked for changes.

Here is an example of a functionality done using AngularJS. This function

checks the amount of operators required to finish a task and it also shows a

user how an urgent need there is for more operators by giving a glyphicon with

a responding color.

FIGURE 6 Getoperatorsglyphicon

First, a call is made to a getoperatorsglyphicon function, which is given a task

as a parameter. Then it is defined a quotient variable is defined where the

length of an enrolledOperators array is divided by an operators value. The en-

rolledOperators array holds an id number of every user who has enrolled to a

task and operators is the value given to a task showing how many operators are

required to complete a task. For example if a task is given to 4 operators and

the length of an enrolledOperators array would be 2, a variable quotient would

have a value of 0.5. After this the function has an if-statement. As there is a

possibility that the task has no value for the amount of operators the function

can return that the glyphicon should be showed black and the function will re-

turn ‘userblack’. If however the task has the amount of operators next the if-

statement will check if the value quotient returns a value of 0.33 or less, then

0.66 or less and then it will return responding color as a CSS (Cascading Style

Sheet) class name.

FIGURE 7 CSS classes

This would then be displayed in a view where the glyphicon is given a desired

color. As yellow glyphicon can be seen in the top right corner.

FIGURE 8 Display correct glyphicon.

Closely related to this feature is also displaying infinity icon “∞” if the task has

an unlimited amount of required operators. Figure 9 reads: If there are no oper-

ators defined for a task, display this icon defined as an HTML symbol, else dis-

play the amount of operators.

FIGURE 9 Infinity icon if-statement

6.2 HTML5

HTML5 was used to create the basic structure of the view and also to create

browser features like a geo location.

Figure 10 Geo location

6.3 UX

Because the nature of this application is very practicality based it was tried to be

shown that in designing the user experience too. It is a single page application

to reduce unnecessary loading times and it was made with a Bootstrap library to

ensure a good mobile and tablet scalability.

For some browsers the date object caused some issues but to ensure the usa-

bility Modernizr was used to detect and create a different input method. More

detailed info about this can be found on the browsers section.

All colours are traditional in the UX (User Experience) sense (red indicating

danger, yellow noticeability, green positive feedback and so forth).

There was also an idea to implement a counter for when the databases last

synched but there was not enough time to make it happen. This would show the

user that their local database is indeed up to date.

6.3.1 Technical Implementation

The application was created using the MVC architecture. (8) The view was

made using HTML5, AngularJS data-binding and Bootstrap elements. The con-

troller would have all the functions and would process the input from the user

and the model (in this application it was named a service) did all the communi-

cating with the backend.

FIGURE 11. MVC

6.3.2 UI Design

For the UI design, the basic building blocks provided by the Bootstrap library

were used. Some ideas for a logo were designed but later discarded.

Figure 12 displays a screenshot of the application as user view. By clicking an

“Osallistu” button user can enrol to a task. Below at “Omat tehtävät” it can be

seen all tasks for that user.

FIGURE 12 User view.

7 BROWSERS

In this chapter the most important technologies related to browsers will be intro-

duced.

7.1 HTML local storage

With a local storage web applications can store data directly to users’ browser.

(9) Before HTML5, application data had to be stored into cookies but a local

storage provides more space for the application information (5MB) and it does

not affect the website performance. For AVEX Motti the local storage was used

to store PouchDB so that all the synched information would be available for us-

ers even at offline mode.

7.2 Application Cache

Application Cache is a guide for a browser of which resources it should cache

for offline access. (10) By creating a cache manifest and listing all the files to be

cached users would be able to access our application also while browsing of-

fline.

7.3 Modernizr

Modernizr was used to detect HTML5 features, mainly if a browser could handle

a date object or not and make our application respond accordingly. Modernizr is

a Javascript library made solely for this purpose. (11)

The problem was that not all browsers support same features and this would

break the application when using the date as an input type when “admin” was

adding a task with a deadline. If a user was using a browser that could not han-

dle a date object the application would show a little input grid that would take all

these fields individually (day, month, and year) and send them to the controller

to be converted.

7.4 Browser fingerprint

Browser fingerprint is a common technique for identifying users by searching a

hash tied to computers characteristics. (12) For AVEX Motti this unique finger-

print was used to identify users without using an authentication system. The

reason for not to creating a traditional login system was to keep as much as

possible of the application functional offline. The idea was to create a system

that did not need to know anything about the user. It only needed to know the

tasks the users enrolled in. This of course means that all the users will be

viewed as equal by the application and it does not have actual “admin” users.

This could be solved by creating admin accounts manually and creating a login

system just for them who would work online. For the demonstration, a button to

toggle between admin and user views was created. Deleting the browser finger-

print is quite difficult to do so we were able to ensure that no user would delete

their “profile” by accident.

8 LEGAL ISSUES

There was also an idea that AVEX Motti could also be used to transport en-

crypted documents between places, stored in the local database like every

other object.

But this brings an interesting question about information security and whether or

not it is legal to make a person transport a document without them knowing the

contents, or even that they are doing so. Finnish Communications Regulatory

Authority was contacted to ask them about the subject.

8.1 Finnish Communications Regulatory Authority

The cyber security centre of Finnish Communications Regulatory Authority sent

an answer that it is not actually under their jurisdiction because this is an unu-

sual way for our society to transport information.

The usage of information saved on a terminal is regulated by a personal data

law and a working life protection law. Criminal law’s violation of secrecy of cor-

respondence could be applied to this situation, for according to transport and

communications committee, the messages saved on a terminal still have the se-

curity of communications confidentiality. So in this case not informing the user

about data on their terminal would be illegal.

However, if the person transporting the document were to be employed by the

sender/writer, it could be seen that the sending happened legally. Because em-

ployer has the right to dictate about the usage of the machines they own, includ-

ing holding information. This might apply to this situation.

9 DEMONSTRATION

The aim of this project for us was to demonstrate the possibilities of this system

for Finnish Defence Forces. So on 11 January 2016 the project group travelled

by train to Helsinki to visit the Finnish Defence Forces headquarters to show

what had been created.

9.1 Scope

The most important things regarding the demonstration were that the basic

CRUD functions would work properly and when handling NoSQL databases,

those functions were required to work offline as well as online which required

some research. Reporting findings to a task was on top priority because it was

crucial for us to show how the system would actually work in a crisis situation.

During the last weeks of the schedule, the work was focused on few minor de-

tails like showing how large percentage of required users had enrolled to a task

and displaying right icon according to that, and how many days, hours and

minutes there were left to finish a task. They were small details but they still

took time to create so that they would look nice and more importantly display

the correct information.

One of the tasks was to show a distance between coordinates given to a task

and a user. For this research calculating distances on a sphere shaped object

was done. Also it was considered how to handle latitude/longitude format when

a Finnish way of handling coordinates is usually a handled in different format. In

addition it was studied how to enable geo location in a browser and what is that

geo location result based on.

9.2 Changes

There were some things that the project group wanted to include in the demo

but they had to be cut out because of the time limits such as showing the last

time that databases have been synchronized or being too difficult to implement

like encrypting a document and loading it to the JSON database. Creating a

map that would work in offline mode was such a colossal task that it was not

even hoped to achieve it with the given time limit. Identifying users was done by

solely relying on the browser fingerprint so that there was really no way of

knowing who had admin rights for this software but for the demonstration, a tog-

gle button was created so that it would be easy to switch between the admin

and user views. It would have been beneficial to create some actual authentica-

tion and the project group had some ideas on how to make it happen but given

the time limit it was not possible.

One of the more basic things that had to be left out was sorting the task list ac-

cording to different filters, like a deadline or an alphabetical order. This was also

due to a lack of time.

Overall the most crucial change that had to be made was not to upload images

or documents to PouchDB. It would have been useful to add some interesting

visual elements to the demonstration and also to showcase different types of

data that could be added to a task. A research had also been done about this

topic already and it would have been nice to continue by actually applying the

feature.

9.3 Preparation

The part of project group that was not working on the technical side of things

had prepared a Power Point presentation to explain the idea behind the project

to the FDF officers.

The project group travelled to Helsinki to visit the headquarters of Finnish De-

fence Forces and on 12 January 2016 developers had the last day to prepare

for the demonstration. In the dress rehearsal there was an interesting phenome-

non when one of the group members had some old database entries on his mo-

bile phone’s local storage: when synchronizing with the new database, it com-

pletely ran down the application’s system because the JSON objects’ format

was so different from the last refresher course.

This was not positive in a sense that it took developers a while to figure out and

fix the problem, but a great success in a sense that this single handily proved

that the data stored in browsers local storage will stay there for as long as

needed.

There were also some issues with removing data from the database when the

whole system was transported to a server but Tuomas Riihimäki managed to

solve this issue.

9.4 Demonstration

The actual demonstration went well. Pekka Pussinen introduced our project us-

ing his Power Point presentation as a guide (14) and me and Tuomas Riihimäki

showed the application to generals from our tablets. Mostly positive comments

were received. One of the officers had to be explained the functionality of

PouchDB because there was a misunderstanding that it would cache the infor-

mation to a smartphone’s memory space but that was the only criticism the ap-

plication got and even that was more of a concern.

The refresher course was deemed successful and the FDF officers were happy

with the outcome.

10 CONCLUSION

This project was successful in proving that this kind of application would be

helpful in a crisis situation and possible to execute with the technology currently

available.

The idea about a browser database that synchronizes to a server when in

online mode could be used in a couple of different situations, such as a re-

search team of biologists in a remote location taking notes about wildlife or mine

workers studying geological phenomena. This application is more or less work-

ing in any location where connection cannot be guaranteed 100% of the time.

REFERENCES

1. Wikipedia, 2016. Jira (software). Date of retrieval 24.5.2016.

https://en.wikipedia.org

2. Wikipedia, 2016. Git (software). Date of retrieval 24.5.2016.

https://en.wikipedia.org

3. Wikipedia, 2016. GitLab. Date of retrieval 24.5.2016.

https://en.wikipedia.org

4. Wikipedia, 2016. NoSQL. Date of retrieval 24.5.2016.

https://en.wikipedia.org

5. Sitepoint. 2016. SQL vs NOSQL: The Differences. Date of retrieval

24.5.2016.

http://www.sitepoint.com/sql-vs-nosql-differences/

6. PouchDB. 2016. Date of retrieval 24.5.206.

http://pouchdb.com/

7. Wikipedia. 2016. CouchDB. Date of retrieval 24.5.2016.

https://en.wikipedia.org/wiki/CouchDB

8. Wikipedia. 2016. Model-view-controller. Date of retrieval 24.5.2016.

https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93con-

troller

http://www.sitepoint.com/sql-vs-nosql-differences/
http://pouchdb.com/
https://en.wikipedia.org/wiki/CouchDB
https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller
https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller

9. W3schools. 2016. HTML5 Local Storage. Date of retrieval 24.5.2016.

http://www.w3schools.com/html/html5_webstorage.asp

10. HTML5 rocks. 2016. A Beginner’s Guide to Using the Application Cache.

Date of retrieval 24.5.2016.

http://www.html5rocks.com/en/tutorials/appcache/beginner/

11. Modernizr. 2016. Docs. Date of retrieval 24.5.2016.

https://modernizr.com/

12. Network world. 2016. Browser fingerprints, and why they are so hard to

ease. Date of retrieval 24.5.2016.

http://www.networkworld.com/article/2884026/security0/browser-finger-

prints-and-why-they-are-so-hard-to-erase.html

13. Pussinen Pekka, 2016, AVEX Motti loppuraportti [PowerPoint slides].

http://www.w3schools.com/html/html5_webstorage.asp
http://www.html5rocks.com/en/tutorials/appcache/beginner/
https://modernizr.com/
http://www.networkworld.com/article/2884026/security0/browser-fingerprints-and-why-they-are-so-hard-to-erase.html
http://www.networkworld.com/article/2884026/security0/browser-fingerprints-and-why-they-are-so-hard-to-erase.html

APPENDICES

Appendix 1: User reporting to task.

USER REPORTING TO TASK APPENDIX 1

