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The author's aim in this project was to develop a neural network unit with
the incorporation of a genetic evolution algorithm, experimenting with pos-
sibilities and the artificial recreation of neurological registration, using the
programming language of C++.

The neural network evaluated input data into output data in a form to pro-
vide artificially intelligent response over different scenarios. This neural
network was aided by the genetic evolution algorithm to distinguish bad
results from good ones.

The author designed a simulation for the neural net to handle. This simula-
tion tests solutions for an interception problem, running two rockets: a 'Ban-
dit" which aims to shoot out its target and an 'Interceptor’ which attempts to
prevent this by eliminating the Bandit in time.

Many different scenarios were tested over different versions of the program,
with the Al module reacting in different ways. The study showed that it is
important to fitness calculation methods independent of expected mechan-
ics.

The author implemented object orientated programming principles in order
to make the code easily extendable for versatility and future development.

The project succeeded, the Interceptor has learnt to shoot the Bandit within
different circumstances.

Neuron, neural network, artificial intelligence (Al), genetic evolution algo-
rithm, fitness score.
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Neural Network Programming

1 INTRODUCTION

It is thanks to these wondrous times, that technology is developing expo-
nentially. Its spread is transforming workplaces and changing the method-
ology of productivity. As automation is rising, less tasks are getting carried
out by traditional human labour, while new markets open for developers
allowing to create more, to maintain, and to further possibilities.

Although technology experts have been experimenting with artificial intel-
ligence for decades, we are yet to see the birth of a true Al. Currently re-
vealed technologies are not more than mere imitations of how we perceive
the recreation of intelligence as humans. These solutions all root to the prin-
ciples of binary comparison, which is how computers are built today. The
possibility to develop true artificial intelligence with today's computational
architecture remains arguable.

Many technological innovations were inspired by observations made in the
nature itself, of how it is constantly finding a way around its environment.
Robotic vehicles built with legs resembling arthropods are being sent to ex-
tra-terrestrial planets to move on uncertain terrain. Lenses are built to adjust
the focus and direction of light sources, such as the human eye would do.
How wings are being used in aviary, how energy can be used as a source of
light, or the way needles inject micro-organisms to blood (even the exist-
ence of these micro organizations!); it is not a surprise that artificial intelli-
gence solutions are getting based on the very way human intelligence
works. The recognition of any intelligent organism is constantly expanding
while being linked together to voluntary and involuntary reflexes and reac-
tions by its neural network. In order to understand the mechanics of this
project, certain terms and ideas must be established first.

2 PRINCIPLE OF NEURAL NETWORKS

An artificial neural network is how the functions of the human brain are
experimentally recreated in computing. A neuron is essentially a unit which
receives signals via multiple junctions of its dendrites, called synapses.
These serve as the inputs of the neuron. Every neuron has a certain threshold
value, which if exceeded by the sum of the inputs the neuron shall fire' a
signal forward, possibly to another neuron and so on, as seen on Figure 1
(Mat Buckland, Al-Junkie 2003).
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Figure 1  The feedforward connection of two neurons is illustrated, where one's output
joins the other's synapse.
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2.1 Modelling an artificial neuron

The structure and function of a traditional neuron may be imitated by com-
putational connections as seen on Figure 2. As current computers calculate
in binary numbers, each input and output of the machine can be essentially
broken down to a series of Os and 1s, representing either ‘false’ or 'true’ re-
spectively.

When modelling an artificial neuron, these may represent different input
and output signals between their state being OFF or ON. With today's tech-
nology it is of no surprise, that developers are not limited to the use of values
limited to binary polarity, but are able to compute with decimal numbers.
However trivial it sounds, using these it is possible to represent values of
different depths linking these values together allows a wide range of com-
puting which is to be explained later.

inputs > treshold = activation
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Figure 2  Basic model of an artificial neuron
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2.2 Sampling the neuron's output

Although the range of inputs may vary with different values of numbers,
this current model is only capable of giving a binary output step signal de-
pending on whether the sum of its inputs did or did not exceed the threshold
value of the neuron. In order to diversify the neuron's output value into a
decimal range, a sigmoid function is used on the sum of inputs as seen on

Figure 3.
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Figure3 A step signal transfers to a sigmoid signal to give diversified values
a = activation, p = response constant
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This sigmoid function gives transitional values between 0 and 1, with 0.5
being on the y-axis. The diversification of the signal may be adjusted by
changing the response constant 'p’, transforming the signal's shape towards
or against to the likes of a step function.

The author used a programming friendly version of this function, as it gives
equivalent results while using less resource hungry mathematical operations
for computer to handle. Using the fast sigmoid function saves time over the
repeated course of the function's call, which adds up to great numbers con-
sidering that the sigmoid function is one of the highly used functions of the
system.

The author's implementation of the fast sigmoid function:
float Sigmoid(float activation, float response) {
activation *= response;
float fastSigmoid = (activation / (1 + abs(activation)));

return (fastSigmoid + 1) / 2;
}

The declaration of this function located in 'Utilities.h' enables default ini-
tialisation of the 'response’ parameter. It allows the function to be called by
only specifying the 'activation' parameter, in which case it initialises 're-
sponse’ with the value of 1 to work easily with most common scenarios.

2.3 Weighted input neuron model

To allow the artificial intelligence to learn dynamic handling of various sit-
uations, weights must be added to each input of every neuron. Without
weighting, the neural net would consider all the inputs at the same priority
level, where as in real situations that is not the case.

inputs * weights > treshold = activation
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Figure 4  Model of an artificial neuron utilising weighted inputs
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This way different inputs will have different impacts on the decision of the
neuron, whether it should activate forward or not. Some inputs will even
subtract from the common sum, provided that the input's corresponding
weight is negative, as seen on Figure 4.

The value of activation may be calculated by the sum of all inputs multiplied
by their corresponding weights:

i=n
a = z .XiWi = xlwl + xZWZ + X3W3 + X4_W4 + -+ leWTl
i=0
For determining and handling the values of the weights, the author incorpo-

rated a genetic evolution algorithm. The definition and function of such al-
gorithm is explained later in this work.

Acrtificial neurons are defined in the system by the following structure:

struct sNeuron {
std::vector<float> weights;

sNeuron (int nrOfInputs);

}s

One neuron needs only to be aware of its weights, as this also equals to the
number of its inputs, while its constructor is designed to be called by the
number of expected inputs as these two values are interchangeable and par-
ametrising the latter one gives much more sense in the later context of the
code, upon calling this function.

2.3.1 Handling the threshold value

From the equation of activation concludes the equation of the neuron's de-
cision for firing upon exceeding the threshold value 't":

XiWq + XoWy + X3W3 + Xq4Wy + - X,W,, =t

By subtracting the value of the threshold from both sides, it was possible to
handle the threshold as a weight of a constant input of -1.

XWq + X,Wy + X3w3 + x,Wy + o xwy, — 1 xt >0

This constant input of -1 is often referred to as the bias in neural network
studies. This way each neuron got initialised with one extra weight and the
genetic evolution algorithm handled the calculation of the threshold value
automatically.

2.4  Structure of a neural net

A neural net consists of different layers as seen on Figure 5:
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— The input layer is located at the bottom of the chain, the inputs of these
neurons serve as the senses of the neural network. The value of every
transferred output will essentially be based on these in the future.

— Hidden layer(s) serve to offer more variations on the outcome of the
neural net. The numbers of these layers can vary from 0 to any number
desired, although it is common to have a value of at least 1.

— The output layer is the what finally becomes of these series of inputs.
The values of these are ultimately translated as actions or decisions of
the artificial intelligence.

Figure 5 Modelled structure of an artificial neural network

2.4.1 Defining neuron layers to the program

The code defining neuron layers covers only the hidden layers and the out-
put layer, as the input layer remains invisible, since the input values are
simply passed from a separate function which gathers them.

struct sNeuronlayer {

int nrOfNeurons;
std: :vector<sNeuron> one neuronlayer;

sNeuronLayer (int nrOfNeurons, int nrOfInputsPerNeuron);

}i

This structure of a neuron layer has member variables containing the num-
ber of its neurons, and a vector full of its neurons, representing one neuron
layer. Its constructor must be called with parametrising the number of neu-
rons to be allocated, and the number of inputs per each neuron.
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2.4.2 Neural net as an object
An instance of a neural net is defined in the following class:

class NeuralNet {
private:

std: :vector<sNeuronLayer> all neuronLayers;

public:

NeuralNet () { createNet(); }

void createNet();
void feedWeights (std::vector<float> inputWeights);

std::vector<float> evaluate (std::vector<float>);
}s

The contents of the neural net, in other words its neuron layers are stored as
private members of the class, indicating that they should not be directly
modified by architectural reasons.

The default constructor calls the ‘createNet()' function which builds the
structure of the neural net according to parameters specified in the 'Params'
class, such as the number of inputs, number of hidden layers, the number of
neurons per hidden layer, et cetera.

void NeuralNet::createNet () {
if (Params::nr0OfHiddenLayers > 0) {
for (int i = 0; i1 < Params::nrOfHiddenLayers; ++i) {

if (1 == 0) {
all neuronlLayers.push back(sNeuronLayer
(Params: :NeuronsPerHiddenLayer,
Params: :nr0fInputs));

}

else {
all neuronlLayers.push back(sNeuronLayer
(Params: :NeuronsPerHiddenLayer,
Params: :NeuronsPerHiddenLayer)) ;

}

all neuronlLayers.push back(sNeuronLayer
(Params: :nr0fOutputs, Params::NeuronsPerHiddenLayer));
}
else {
all neuronLayers.push back (sNeuronLayer (
Params: :nr0fOutputs, Params::nrOfInputs));
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3 GENETIC EVOLUTION ALGORITHM

This algorithm simulates the evolution of numbers representing digital data,
and is crucial for the neural network to evaluate present circumstances based
on results, and to understand achieving better results.

The algorithm is based on how scientists perceive nature's evolution and
natural selection based on the fitness of one specimen. According to evolu-
tion, countless different individuals rose from a certain species throughout
billions of years and generations, from bacteria to intelligent organisms.
Looking back at the roots of this process spanning through an inconceivable
amount of time, from the point life on earth started out from micro-organ-
isms to these very times where scientists are attempting to artificially recre-
ate functional intelligence; all this change, labelled as evolution can essen-
tially be broken down to a series of mutations and genetic deviation.

Needless to say, only a minimal amount of these deviations conclude to the
top of the food chain or even prove themselves useful at all, but that one
specimen which has managed to mutate into having a new sense or superior
ability, could evade danger and become more attractive for reproduction,
and in case it succeeds in this latter, its mutated DNA earnt the chance to be
spread into the gene pool of its species, over future generations.

Since not all changes are beneficial and the author was attempting to virtu-
alise such a tendency, it was important that each individual of the current
generation got assessed by a fitness score representing how well it per-
formed with the current set of rules, or in other words: how much did it fit
solving the problem at hand (Mat Buckland, Al-Junkie 2003).

3.1 Methodology and terminology

The genetic evolution algorithm was designed for intuitive problem solving
by numbers. First it assembles a pool of experimental solutions by generat-
ing a pool of random numbers. Each of the possible solutions — good or bad
—are referred to as genomes, which consist of a series of chromosomes each,
and the whole bunch of them constitute what is ultimately called a popula-
tion.

So the algorithm tries to solve the problem at hand by substituting each ge-
nome in the solution, and then assigns a fitness score to each of them, indi-
cating how well that certain genome performed against a certain set of rules,
where a higher score indicates better performance. The same process is re-
peated for the rest of the population against the same set of rules, until each
of its genomes gets tested and gets a fitness score assigned to their perfor-
mance correspondingly.

Once each and every genome of the current population has gone through
the testing phase, the algorithm reaches its evolutionary phase and executes
it on its population of genomes. A new population based on the currently
existing genomes is to be created, thus stepping into the next — in this case
second — generation of the cycle.

7



Neural Network Programming

To put things into perspective in correspondence to the author's project
where a genetic algorithm was combined with a neural net, one chromo-
some represents a single weight assigned to one input of a neuron, conclud-
ing that one genome contains all the chromosomes (weights) required for
one whole neural net to run, while one population contains the pool of ge-
nomes (set of weights) which is to be evolved into the next generation.
Simply put, upon examining a modelled picture of the neural net (see figure
5), each line represents an input, thus a weight, thus one chromosome,
where all the lines together build up one genome.

In order for the current generation's population to procreate into the next
generation, the genetic evolution algorithm executes the steps described in
the following sub-chapters:

3.1.1 Awarding the best genomes

Evolution starts by duplicating the best genomes into the population of a
new generation. Using this function moderately ensures faster learning,
while abusing it certainly hurts the outcome of the evolution.

std: :vector<sGenome>
Population::pickBests (int topN, int copies) {

std: :vector<sGenome> returnvector;
for (unsigned i1 = 0; i < topN; ++1i) {

for (unsigned j = 0; J < copies; ++3) {
returnvector.push back (Genomes[i]);

}
}

return returnvector;

}

This function takes two parameters. 'topN' represents the number of places
awarded, while ‘copies' indicates how many copies of the genomes will per-
sist through evolution, e.g. if 'topN' = 3 and 'copies’ = 2, two copies of the
three best genomes would survive.

3.1.2 Roulette wheel selection

Two parents must be selected from the current population, each of them
represented by individual genomes. Note that this function assumes that the
genomes are sorted beforehand, by their fitness values increasingly. The
definition of the function 'SortPopulation()' is found in Appendix 24, under
the file 'Population.cpp’. The author defined the selection of one parent ac-
cording to the following code snippet:

sGenome Population::Roulette() {

float Sum = 0.0f;
float FitnessSoFar = 0.0f;
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for (int 1 = 0; 1 < Params::PopulationSize; ++1i) {
Sum += Genomes[i].fitness;

}
double Slice = (double) (randfloat () * Sum);

for (int 1 = 0; 1 < Params::PopulationSize; ++i) {

FitnessSoFar += Genomes[i].fitness;

if (FitnessSoFar >= Slice)
return Genomes|[i];

}

return Genomes.back();

}

Roulette wheel selection is a method of selection, where each candidate may
qualify, but those with higher fitness scores stand a better chance propor-
tionally.

First one needs to go through all the genomes in the current population, to
sum up their fitness values into a variable. Then a random decimal number
generated, in a dynamically defined range. The range is dependent on the
result of a previously defined function called ‘randfloat()’, which returns a
random decimal number between 0 and 1, then this number is multiplied by
the calculated sum of the fitness scores of the whole population. This will
define a random point in the totaled fitness range, and the genome which
occupies that piece after accumulation will get selected. Note, that this func-
tion is built to return only one genome at a time. In order to select two par-
ents, it must run twice.

3.1.3 Genetic crossover

Genetic crossover function simulates the reproduction of two genes. The
genes will interchange part of their genetic content with each other, to breed
offspring resembling a variant of their mixture. The author defined it as fol-
lows:

std: :vector<sGenome>
Population: :Crossover?2 (std: :vector<sGenome> Parents) {

float CrossoverRate = 0.7f;
if (randfloat () <= CrossoverRate) {

o

int RandomCrossoverPoint = rand() %
Params: :WeightCount;

for (int i = RandomCrossoverPoint; 1 <
Params: :WeightCount; ++1i) {

std: :swap (Parents[0] .value[i], Parents[l].value[i]);

std: :vector<sGenome> NewParents;
NewParents.push back (Parents[0]);

9
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NewParents.push back (Parents([1]);

return NewParents;

}
else
return Parents;

Number two in the name of the function suggests that it expects two parents.
Not every parent qualifies to a crossover, the rate of this in percentages is
defined in the floating point variable 'CrossoverRate' as 70%. The value of
this is up to personal definition, aiming to experiment with getting better
results. This function will mark a random common point on the length of
the two genomes, from which onwards it will swap their genetic contents
with each other. In case the parents did not qualify to crossover, the function
returns them unmodified right after the crossover decision has been made
without a further run of the function.

3.1.4 Mutation

Mutation may occur to chromosomes under a very small percentage. The
function starts by iterating through each chromosome of the selected ge-
nomes. Once mutation takes place, a function reverses the value of that one
chromosome. Since chromosomes in the author's project were decimal num-
bers between 0 and 1, reversing them was done by subtracting their values
from 1.

std: :vector<sGenome>
Population::Mutate2 (std::vector<sGenome> Specimens) {

float MutationRate = 0.005;
bool ChangesDone = false;
for (int i = 0; i < Specimens[0].value.size(); ++i) {
if (randfloat () <= MutationRate) {
Specimens[0] .value[i] = 1 -

Specimens[0] .value[i];
ChangesDone = true;

for (int i = 0; i < Specimens[l].value.size(); ++1i) {

if (randfloat () <= MutationRate) {

Specimens[1l].value[i] = 1 -
Specimens[1].value[i];
ChangesDone = true;

}
if (ChangesDone) {

std: :vector<sGenome> returnvector;

10
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returnvector.push back(Specimens[0]);
returnvector.push back(Specimens[1]);

return returnvector;

}
return Specimens;

}

Note that since mutation only occurs rarely, the author designed this func-
tion so that it allocated the vector containing the mutated specimens only if
they got qualified for mutation. This is for the sake of efficient memory
allocation, and a dedicated Boolean variable 'ChangesDone' was declared
to handle this.

4 DEVELOPMENT IN C++

4.1 History and overview of the language

The programming language C++ dates its roots back to 1979 when it was
created by Bjarne Stroustrup. It was originally named 'C with Classes' as it
offered object oriented programming capabilities. In 1983 it got renamed to
its current name, where the ++ operator resembles the one utilised in the
language for incrementing a variable's value. This hints at the constant
growth of the language, which was essentially based on C. The shape of
C++ has gone a long way since its baby steps. New libraries are getting
added to extend the possibilities and to offer simpler built functions for
more complex problems (cplusplus.com, 2016).

4.2  Object oriented development (OOD)

Obiject oriented programming is an architectural principle, which aims for
delegated correlating developer-specified objects to correlate with each
other. This way real life or abstract objects may be custom-defined by their
common properties, functions and types of these. Once an object is defined,
multiple instances of the same type may be allocated to the virtual memory
of the computer with different values for their properties.

The basic building blocks of OOD lay in classes and structures. These two
are highly similar to each other in terms of defining custom objects, with
the only major difference that by default, all the member functions and var-
iables of a structure are public, while for classes they are private. For the
rest of this thesis work, the author will only refer to classes, as these are
more frequent interpretations than structures and are contextually equiva-
lent. A class may have its permission attributes defined by the three values
of 'public’, 'private’ and 'protected’ as follows:

— Public members of a class or structure may be referenced from outside

the class definition, calling it attached to one instance of an object or
referring by class.

11
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— Private members may only be referred by other members of the class or
structure.

— Protected members may be referred by other members of the class or
structure, and by friend and inherited classes or structures of the same

type.

Conventionally, classes and their member functions and variables are de-
clared in their designated header files e.g. 'Object.h’, while their member
functions are defined in their cpp files e.g. 'Object.cpp'.

4.2.1 Derived classes and inheritance

A class may be derived from another class, this latter becoming the base
class of the derived class. This way a derived class inherits individual in-
stances of all the member variables and functions of the base class, as now
both of the classes mutually define properties of that object.

4.2.2 Virtual functions and abstract classes

Any function may be made virtual by using the 'virtual' prefix in its decla-
ration. This allows any derived class of the current class to inherently over-
ride the definition of the function.

A virtual function can be made into a pure virtual function by adding ' = 0’
as a suffix into its declaration. A pure virtual function must only have defi-
nitions in its class' derived classes, while a virtual function is allowed to
have a default definition in the same class it is declared in.

A class containing the declaration of a pure virtual function is called an
abstract class. Any derived class of that class which does not individually
define that/those pure virtual function(s) also becomes abstract.

A popular example for the usage and benefits of virtualisation:

class Animal {
public:

int legs;
int lives;

virtual void eat() = 0;

b

class Dog : public Animal {
public:

Dog() { legs = 4; lives = 1; }
virtual void eat () override { /* Eat dog food */ }

}s
class Cat : public Animal {

public:

12
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Cat() { legs = 4; lives = 9; }
virtual void eat() override { /* Eat cat food */ }

i

As the code snippet shows, both 'Dog' and 'Cat' are derived classes of the
abstract class 'Animal’ so they both maintain separate instances of their
member variables 'legs' and 'lives' as they get assigned to different values in
their derived classes' constructor.

The beauty of virtual functions show when later both of them call their sep-
arately overridden 'eat()' function.

Dog Charlie;
Cat Oliver;

Charlie.eat();
Oliver.eat();

As this results in the two different objects executing different things when
calling the same commonly inherited pure virtual function.

4.3 SFML library

Since the default output of the language would run in a console window, the
author used the open-source SFML library to provide visual representation
of the project. SFML contains new type of objects, such as graphically ren-
dered windows, a graphical representation of objects e.g. text, shapes and
sprites, new container objects and much more.

4.3.1 Disclaimer

The author takes no credit for any work done by the developers of SFML.
The SFML library alone does not compile to results, only extends the range
of objects available for development. The structural architecture and the
contents of this Bachelor's Thesis are the genuine work of the author and do
not present code written by such a third party. This concludes that no con-
tent written by the SFML developers was published here or claimed as my-
own in any of this work, including the Appendices.

The licence of the SFML library is available on their website
http://www.sfml-dev.org/license.php

5 ROCKET INTERCEPTION SIMULATION CLASS HIRERACHY OF
OBJECTS

Each visually represented object taking part in the flow of the simulation
has been defined by a chain of several classes for the sake of object orien-
tated development. This chapter aims to describe them thoroughly since
their synopsis is crucial to understanding the frame of the methodology.

13
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Classes of visually represented objects and their hierarchy were defined by
the author as seen on Figure 6.

| Object ¥
Class
public public
Vs ~ N
Target ¥ RocketController ¥
Class Class
=+ Object -+ Object
L T
public public public
| RocketHC ¥ | RocketNN ¥ | Bandit ¥
Class Class Class

=+ RocketController < RocketController

k.

=¥ RocketController

public
P -
Interceptor ¥
Class

= RocketNN

Figure 6  Diagram indicating the hierarchy of object classes

5.1 'Object’ class

The aim of this class was to define common properties of different objects.
It contained such member functions and variables which were used by all
classes derived. It was declared as follows:

class Object {
public:

Object () {}

Object (sf::Vector2f position, sf::Vector2f wvelocity,
float angle, sf::Vector2f size, float scale)
position (position), velocity(velocity), angle (angle),
size(size), scale(scale) { }

virtual void draw(sf::RenderWindow& window) = 0;
virtual void update() = 0;

sf::Vector2f position;
sf::Vector2f velocity;
sf::Vector2f size;
float angle = 0;

float scale;

bool Collided = false;
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i

sf::FloatRect getBoundingBox () ;
bool isOOB () ;

5.1.1 Locally declared members

An instance of this object may be constructed from any of its derived clas-
ses, which will essentially collect and pass down required data by the chain
of their constructors.

Constructing parameters of the class:

Position of the object defined in a vector of 2 floating point numbers as
its X and y coordinates respectively.

Velocity vector of the object defined in a vector of 2 floating point num-
bers as its x and y coordinates indicating the velocity vector's end points
relative to its own position being the origin of its own coordinate plane.
Angle representing the rotated angle of the object in respect to the plane
of the graphical window, in radians.

Size and Scale of the objects, which are defined for their graphical rep-
resentation and collision detection functions.

Virtual functions of the class:

Function ‘draw(sf::RenderWindow& window) = 0" is a pure virtual
function of the class to be later defined by the individual methods of
different derived classes. It takes the reference ('&') of a 'sf::Render-
Window' object to draw its content to. It is important that only the ref-
erence of the window is passed, as passed parameters duplicate into new
copies existing only inside the scope of the function. This would mean
a second window being rendered otherwise.

The 'update() = 0' pure virtual function will update the values of this
class' member variables after one tick/frame of the simulation has
passed.

Local members of the class:

The Boolean variable 'Collided' stores the current state of the object,
whether it has collided or not.

The 'getBoundingBox()' function returns coordinates of the smallest
possible rectangle covering all the object's visual pixels in order to cal-
culate collision later.

The 'isOOB()' functions returns a Boolean variable if the object's posi-
tion is outside the plane of the window.

5.1.2 Notable local function

The 'isOOB()' function returns its Boolean variable based on the following
one line, where the '||' operator represents the logical 'OR' gate and therefor
returns the logical true/false value evaluated for the whole expression en-
closed in brackets.

15
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bool Object::isO0B() {

position.y > Params::WindowHeight
position.x < 0

return (position.x > Params::WindowWidth

[

[
| | position.y < 0);

}

The 'getBoundingBox()" function returns the coordinates of the rectangle
using the 'size' and 'scale’ given as parameters of the class' constructor to
retrieve accurate size of the object in respect to the scaling modifier.

sf::FloatRect Object::getBoundingBox () {
return (sf::FloatRect (position, size * scale));

}

5.2 'Target’ class

This class was directly derived from the Object class as it stands to stand-
ardise target objects for the Bandit, and was declared as follows:

class Target : public Object {
public:

Target () : Target (Params::posTarget, Params::radTarget,
sf::Vector2f(150.0£, 150.0f), Params::scaleTarget) {}

Target (sf::Vector2f position, float radius, sf::Vector2f
size, float scale) : Object (position, Params: :nullvec,
Params: :angleTarget, size, scale), radius (radius),
TextureString (Params: :TargetT) {

BodyTexture.loadFromFile (TextureString) ;
BodyTexture.setSmooth (true) ;
BodyTexture.setRepeated(false) ;

}

virtual void draw(sf::RenderWindowé&) override;
virtual void update () override;

std::string TextureString;
sf::Texture BodyTexture;
sf::Sprite BodySprite;
sf::CircleShape Body;
float radius;

void reset();

bool randomized = true;

}i

5.2.1 Locally declared members

Constructor parameters:

The constructor of this class hands parameters to the Object class’ which are
common for one instance of both. The sovereign parameters of this
function's constructor are:
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— The size of the object defined as 'radius'.
— The location of its texture file as "TextureString'.

This object may be constructed from its default constructor, as then it
calls the parametrized constructor based on default values defined in
‘Params'.

Virtual functions:

— draw(sf::RenderWindow&)

— update()

are getting overridden after their pure virtual declaration in the Object ab-
stract base class.

Local members:

— 'TextureString' stores the location of the image file used as the texture
of this objects.

— For an object to hold the image as its texture, 'BodyTexture' is defined.

— 'BodySprite’ is defined to make a sprite out of the variable 'BodyTex-
ture'

— The 'reset()’' function resets the target back to its initial properties before
every new simulation.

5.2.2 Notable local function

The 'update()’ function updates the position of the Target for every
tick/frame of the simulation. It also redefines the centre of the object relative
to the 0 point of its coordinate plane which is its sprite's top left corner.

void Target::update () {
BodySprite.setPosition (position);

BodySprite.setOrigin (Params::radTarget / 2,
Params::radTarget / 2);

5.3 'RocketController’ class
This class describes the physics and the movement mechanics of rockets.

class RocketController : public Object {
public:
RocketController () {}
RocketController (sf::Vector2f position, float angle,

std::string ntTexture, std::string ftTexture)
Object (position, Params::nullvec, angle, sf::Vector2f (45,
45), Params: :scaleRocket), noThrottleString (ntTexture),

fullThrottleString (ftTexture)
noThrottle.loadFromFile (noThrottleString) ;

noThrottle.setSmooth (true) ;
noThrottle.setRepeated (false);

17
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fullThrottle.loadFromFile (fullThrottleString) ;
fullThrottle.setSmooth (true);
fullThrottle.setRepeated(false);

}

virtual void controls () = 0;

virtual void update () override;
virtual void draw(sf::RenderWindowé& window) override;

float throttle = 0.0f;
void accelerate (float amount);

void DefineTarget (Object * EnemyRocket) ;
Object * LockOnTarget;

float angular throttle = 0.0f;
void angular accelerate(float amount);
float angular velocity = 0.0f;

float prevAngle = angle;
float rotationalSum = 0.0f;

sf::Color color;

sf::Texture noThrottle;
std::string noThrottleString;
sf::Texture fullThrottle;
std::string fullThrottleString;

5.3.1 Locally declared members

Sovereign constructor parameters:
— 'ntTexture' defines the texture of the object, in case it has no throttle.
— 'ftTexture' defines the texture of the object, in case it has full throttle.

Virtual functions:

— ‘controls()" is declared here as a pure virtual function, which makes the
RocketController class abstract. This function is defined later only by
the derived classes.

— The virtual function 'update()' for overriding definition.

— The virtual function 'draw(sf::RenderWindow&) for overriding defini-
tion.

Local members:

— 'TargetHit()' examines if the rocket has collided, setting its 'Object::Col-
lided' variable accordingly.

— 'throttle’ represents the rocket's current throttle by a floating point deci-
mal number between 0 and 1.

— ‘accelerate(float)' accumulates the value of 'throttle’, clamping the result
between 0 and 1.

— 'DefineTarget(Object *)' receives an Object's pointer as a parameter,
and feeds its value to the 'LockOnTarget' member variable.

— 'LockOnTarget' stores the rocket's target as a pointer to the Object class.

18
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— ‘angular_throttle' represents the throttle of the rocket in angular direc-
tions.

— 'angular_accelerate()' accumulates the value of ‘angular_throttle’,
clamping the result between 0 and 1.

— ‘angular_velocity' stores the rocket's momentary angular velocity.

— 'CheckForSpin()' tests the rocket for undesired spinning, setting the
‘SpinAlert' variable accordingly.

— 'SpinAlert' is true if the rocket is spinning.

— 'prevAngle' stores the latest angle of the rocket from the previous
tick/frame of the simulation.

— 'rotationalSum' is used for summing rotational movements for the
'‘CheckForSpin()' function.

— 'noThrottle’ and 'noThrottleString' together define the texture of the
rocket in case it has no throttle.

— 'fullThrottle' and ‘fullThrottleString' together define the texture of the
rocket in case it has throttle.

5.3.2 Notable local function

5.4

The 'draw()' function sets the rocket's parameters according to correct visual
representation. It also switches between textures depending on the value of
‘throttle’ and calls an instance of 'RocketHUD' exclusive to the object.

void RocketController: :draw(sf::RenderWindow& window) {

sf::Texture* rocketTexture;

if (throttle == 0.0f) {
rocketTexture = &noThrottle;

}

else {

rocketTexture = &fullThrottle;
}

sf::Sprite rocketSprite;

rocketSprite.setTexture (*rocketTexture) ;

rocketSprite.setPosition (position);

rocketSprite.setRotation((angle + Params::pi / 2) *
(180.0f / Params::pi));

rocketSprite.setOrigin (19, 27);

rocketSprite.setScale (Params: :scaleRocket,
Params::scaleRocket) ;

window.draw (rocketSprite);
RocketHUD HUD (window, *this);

'RocketHC' class

This class constructed a human controlled rocket derived from 'RocketCon-
troller', currently used in Sandbox mode.
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It offered a simple extension derived from the class of RocketController,
with ‘controls()' overridden.

class RocketHC : public RocketController {
public:
RocketHC () {}
RocketHC (sf::Vector2f position, float angle)
RocketController (position, angle, Params::BlueNTT,
Params: :BlueFTT) {}

virtual void controls () override;
}s

5.4.1 Locally declared members

Sovereign constructor parameters:

— Position of the 'RocketHC' defined in a vector of 2 floating point num-
bers as its x and y coordinates respectively.

— Angle in radians representing the rotated angle of the object in respect
to the plane of the graphical window.

Virtual functions:

— Controls are getting virtually redefined.

5.4.2 Notable local function

The 'RocketHC::controls()' function calls
'RocketController::accelerate(float)' and
'RocketController::angular_accelerate(float)' functions to move and turn the
rocket upon the press of the arrow keys.

void RocketHC::controls() {

if (sf::Keyboard::isKeyPressed(sf::Keyboard: :Up))
accelerate (0.01f) ;
else accelerate(-0.006f);

if (sf::Keyboard::isKeyPressed(sf::Keyboard::Left)) {
if (angular throttle > 0)
angular accelerate(-0.03f);
else
angular accelerate(-0.01f);
}
else if (sf::Keyboard::isKeyPressed/(
sf::Keyboard: :Right)) {

if (angular_ throttle < 0)
angular accelerate (0.03f);
else
angular accelerate(0.01f);
}
else
angular accelerate((-1 * angular throttle) / 30);

if (sf::Keyboard::isKeyPressed/(
sf::Keyboard: :Down))
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accelerate (-0.33f);

5.5 'Bandit’ class
This class constructed an adversary rocket aiming at its defined target.

class Bandit : public RocketController {
public:

Bandit () {}

Bandit (sf::Vector2f position, float angle)
RocketController (position, angle, Params::RedNTT,
Params: :RedFTT) {}

vold reset (int seed);
virtual void controls () override;

virtual void update() override;

bi

5.5.1 Locally declared members

Sovereign constructor parameters:

— Position of the 'RocketHC' defined in a vector of 2 floating point num-
bers as its x and y coordinates respectively.

— Angle in radians representing the rotated angle of the object in respect
to the plane of the graphical window.

Virtual functions:
— Controls got virtually redefined.
— Update got virtually redefined.

Local members:
— Reset got declared, initializing random generating seed parameter.

5.5.2 Notable local function

The local reset function uses Mersenne Twister pseudorandom number gen-
erator.

void Bandit::reset (int seed) {

std: :mt19937 gen(seed);

std::uniform int distribution<> disX(

Params: :WindowWidth * 0.9, Params::WindowWidth * 0.9 +
Params: :WindowWidth / 10);

std::uniform int distribution<> disY(
Params: :WindowHeight * 0.1, Params::WindowHeight *

0.1 + Params::WindowHeight * 0.8);

int randX = disX(gen);
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int randY = disY(gen);

position = sf::Vector2f (randX, randY);
velocity = Params::nullvec;

float Egocent x = LockOnTarget->position.x - position.x;
float Egocent y = LockOnTarget->position.y - position.y;
angle = atan2 (Egocent_ y, Egocent x);

throttle = 0.0f;
angular throttle = 0.0f;

angular velocity = 0.0f;
Collided = false;

This pseudorandom number generator method ensured unified distribution
of random numbers, unlike common random functions.

5.6 'RocketNN' class
This class constructed a rocket controlled by a neural net.

class RocketNN : public RocketController {
public:
RocketNN () {}

RocketNN (sf::Vector2f position, float angle)
RocketController (position, angle, Params::BlueNTT,

Params: :BlueFTT) {}

virtual void controls () override;
virtual void update() override;

virtual std::vector<float> getNNinputs() = 0;
void calcDistance();

float ClosestDistanceToTarget =

sqrt (pow (Params: :WindowHeight, 2) +

pow (Params: :WindowWidth, 2));

float calcLookAtScore():;

float LookAtScore = 0;
float normalizedLookAt () ;

std::vector<float> NNInputs;
float calcFitness (float SimulationTime) ;

std::vector<float> NNControls;
void SetNNControls (NeuralNet *NN) ;

b

5.6.1 Locally declared members

Virtual functions:
— Controls and updates are virtually overridden.
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— 'getNNinputs()' is declared as pure virtual function. Derived classes will
define it with their calculations concerning the inputs of their neural net.
The result of this function is essentially what a rocket sees.

Local members:

— Members are calculating the history of closest distance to the target.

— Methods for calculating the rocket's 'LookAtScore' are defined.

— Control values are retrieved from the neural net by SetNNControls()

— Control values retrieved from the neural net are stored in 'NNControls'

— Fitness of the current genome controlling that instance of a 'RocketNN'
is determined by the calculations of 'calcFitness(float)'

5.6.2 Notable local function

5.7

The 'normalizedLookAt()' function determined the direction of the target
compared to the look-at angle of the 'RocketNN'.

float RocketNN::normalizedLookAt () {

float Egocent x
float Egocent y

float Angle reltoX
float Difference

LockOnTarget->position.x - position.x;
LockOnTarget->position.y - position.y;

= atan2 (Egocent_y, Egocent x);
2 * Params::pi - angle - Angle reltoX;

float wrappedDifference = wrapRange (Difference, -

Params: :pi,

Params::pi);

return normalize (wrappedDifference, -Params::pi,

Params: :pi);

}

It first determined relative x and y coordinates from the difference between
the two objects, so that the function's result was only affected by their posi-
tions relative to each other, not based on the planes of the whole coordinate

system.

Then the "atan2()' function was used to determine the arc tangent to the rel-
ative point of the coordinate. After the difference had been calculated, this
value was normalised to fit the range between zero and one. The result of
this measurement showed 0.5 if the target was right in front of the Rock-
etNN, values closer to zero indicated the target's position was more to the
left, with values closer to 1 to the right respectively.

'Interceptor’

Interceptor was a class defining the properties of a rocket controlled by a neural net.

class Interceptor :

public:
Interceptor ()

{}

public RocketNN {

Interceptor(sf::Vector2f position, float angle)
RocketNN (position, angle) {}

2
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virtual std::vector<float> getNNinputs() override;

void reset () ;
void reset(float angle);

}s

5.7.1 Locally declared members

Eventually, the constructor of this class was called to construct an Intercep-
tor object. The chain of constructors linking parameters started from this
class, as it was an endpoint in hierarchy.

Sovereign constructor parameters:
— Position of the 'RocketHC' defined in a vector of 2 floating point num-
bers as its x and y coordinates respectively.

— Angle in radians representing the rotated angle of the object in respect
to the plane of the graphical window.

Virtual functions:

— 'RocketNN:getNNinputs()' gets overridden. It is a virtual function of
RocketNN because this way it is possible to later implement a neural
net controlled Bandit against the Interceptor to learn against each other,

Local members:
— Resetting function declared both with and without the angle parameter.

5.7.2 Notable local function

This function gathered data which were later fed to the neural net as its in-
puts. All the calculations were done from relative coordinates and distances.

std::vector<float> Interceptor::getNNinputs () {
std::vector<float> returnvector;

float Egocent x = LockOnTarget->position.x - position.x;
float Egocent y LockOnTarget->position.y - position.y;

float EgocentV_x = LockOnTarget->velocity.x - velocity.x;
float EgocentV_y = LockOnTarget->velocity.y - velocity.y;
// INPUT 1: Length of the velocity vector

float velocityVectorLength = sqrt (pow(velocity.x, 2) +
pow (velocity.y, 2));

float normvelocityVectorLength = clamp (normalize (
velocityVectorLength, 0, 20), 0, 1);

returnvector.push back(normvelocityVectorLength);
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// INPUT 2: Difference in direction between the face
vector and velocity vector

float VeloVec xAxisDegree = atan2(velocity.y,
velocity.x);

float velocityFaceOffset = angle - VeloVec xAxisDegree;
returnvector.push back (normalize (wrapRange (
velocityFaceOffset, 0, 2 * Params::pi), 0, 2 *
Params::pi));

// INPUT 3: Target velocityvector's arc tangent to the
x-axis

float Enemyvelocity xAxisDegree = atan2 (EgocentV vy,
EgocentV_x);

float relEVxAD = angle - Enemyvelocity xAxisDegree;
float normEVXAD = normalize (wrapRange (relEVxAD, 0, 2 *
Params::pi), 0, 2 * Params::pi);
returnvector.push back (normEVxAD) ;

// INPUT 4 : Target's direction as values between
Left-Centre-Right, compared to the interceptor's
facevector

returnvector.push back(normalizedLookAt ());

// INPUT 5: Distance to the target

returnvector.push back(sgrt (pow (Egocent x, 2) +
pow (Egocent vy, 2)));

return returnvector;

— Input 1 calculates the length of the Interceptor's velocity vector based
on the Pythagoras theorem.

— Input 2 calculates the difference between face and velocity vectors by
normalising the difference of angles between the arc tangent of the ve-
locity vector and the Interceptor's own angle of rotation.

— Input 3 calculates the target's velocity vector's arc tangent to the x-axis.

— Input 4 uses the 'normalizedLookAt()' function described earlier, to cal-
culate direction of the target compared to the Interceptor’s face vector.

— Input 5 calculates the distance between the Interceptor and its target by
using the Pythagoras theorem.

All this information is gathered to a vector of floating point numbers and

later called to define the values of the neural net, updated each tick of the
simulation with values dynamically.
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6 MANAGER CLASSES

Manager classes were created to describe the flow and functionality of the
program gathering together smaller functions.

The hierarchy of manager classes is seen on Figure 7.

¥

' Manager
Class
A
public public
' PerformanceRun ¥ | ' GraphicalRun ¥ |
Class Class

+ Manager + Manager

Figure 7 Diagram indicating the hierarchy of manager classes

'‘Manager' was the common abstract class of 'PerformanceRun’ and 'Graph-
icalRun'. This meant that Manager was not directly called, but constructed
through either instances of the derived class.

Both derived classes handled the same simulation, trained the neural net and
the genetic evolution algorithm. Since 'GraphicalRun' rendered graphical
objects to the screen it was not suitable to teach the Al as it would have
taken an unnecessarily great deal of time due to graphical real-time render-
ing. For teaching purposes, 'PerformanceRun’ was established to simulate
each round of simulation as fast as the computer could handle these.

6.1 'Manager' base class

This class described all the common functions and objects which the derived
classes both handled.

class Manager {
public:
Manager () {

I1 = Interceptor (Params: :posRocketNN,
Params: :angleRocketNN) ;

POP1 = Population();

NN1 = NeuralNet ();

Bl = Bandit (Params: :posRocketOPP,
Params: :angleRocketOPP) ;

TargetBl = Target();
Il.DefineTarget (&Bl) ;

Bl.DefineTarget (&TargetBl) ;
}
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virtual bool Simulate(float angle) = 0;

void Run();

void Save (std::ostreamé& out, const sGenome& genome) ;
volid Load(std::istreamé& in, sGenomeé& genome) ;

void SaveAll();

void LoadAll () ;

void SaveBestGenome () ;

sGenome LoadBestGenome () ;

void ManageTopGenomes (int topN) ;
std::vector<sGenome> LoadTopGenomes () ;

Interceptor Il;
Population POP1;
NeuralNet NN1;

Bandit B1;
Target TargetBl;

int iGeneration = 1;

int iGenome;

float SimuTimeInSec = 0.0f;
bi

This class declaration constructs an instance of the 'Interceptor’ class named
'11', as well as instances of 'Population’ and 'NeuralNet' all labelled by the
common number, indicating that they belong together. This is the way mul-
tiple objects should be added for later testing.

The Bandit rocket 'B1' also gets constructed. As of the current version of
the program, the Bandit is not given Al controlls, even though this is easily
implementable and have been experimented with. In case such thing is de-
sired, sovereign neural net and population objects should be defined here
for B1.

The Manager class is capable executing save and load features, as it is dis-
cussed in under the author's Serialization chapter.

It is also this class' job to handle counting the current index of generations
and genomes.
6.1.1 'Run()' function

This function is acting like the frame around each individual simulation of
the program.

void Manager::Run() {
bool isEnded = false;

for (iGeneration = iGeneration; !isEnded; ++iGeneration) {

TargetBl.reset () ;
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for (iGenome = 0; iGenome < Params::PopulationSize &&
lisEnded; ++iGenome) {

Il.reset();
Bl.reset (iGeneration);

POP1.Genomes [iGenome] .initposTargetBl =
TargetBl.position;

POPl.Genomes [iGenome] .initposIl = Il.position;

POP1.Genomes [iGenome] .initposBl Bl.position;

float SimuAngle;

for (float 1 = 0; i < Params::FitnessResolution; ++1) {

SimuAngle = i / (Params::FitnessResolution / 2) *

Params: :pi;
isEnded = Simulate (SimuAngle) ;

Il.reset (SimuAngle) ;
Bl.reset (iGeneration) ;

}

ManageTopGenomes (10) ;

}

std::cout << "Generation " << iGeneration << " ";
std::cout << "Avg fitness: " <<
POPl.CalculateAverageFitness() ;

std::cout << " Best fitness: " <<
POPl.getBestFitness () << std::endl;

SaveBestGenome () ;
POP1l.Evolve () ;

SaveAll () ;
}

The first 'for()' cycle iterates between generations, with the nested second
'for()' cycle iterating between genomes all representing different simulation
scenarios with different set of weights given to the neural net by the genetic
algorithm.

Inside this second cycle, each simulation starts by resetting objects involved
in the simulation.

The third *for()' cycle constrained by 'Params::FitnessResolution’ tests one
genome to different simulation scenarios, as one lucky scenario alone is not
deterministic enough to determine the usefulness of a genome by a greater
fitness value assigned.

'ManageTopGenomes()' then updates the top saved genomes, as this is later
described in the author's Serialization chapter.
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After derived classes are done testing the last genome of each generation,
information about the latest genome's performance in fitness scores is get-
ting streamed to the console window. Finally, the genetic population's
‘Evolve()' member function is called to guide the genomes into their next
generation, saving the current state of last fully tested generation by calling
the 'SaveAll()' function described under the author's Serialization para-
graph.

6.2 Performance Run

The 'PerformanceRun’ class has only one member besides its constructor,
which overrides the virtual function 'Simulate()’

class PerformanceRun : public Manager {
public:

}s

PerformanceRun () {}

virtual bool Simulate (float angle) override;

The 'Simulate()' function runs one simulation from until either of the rockets
have gone out of bounds, or a target has been shot.

bool PerformanceRun::Simulate (float angle) {

Il.angle = angle;
int NrOfUpdates = 0;
NN1.feedWeights (POP1l.Genomes [iGenome] .value) ;
while (true) {
if (Il.Collided || Bl.Collided) { break; }
if (I1.isOOB() && B1.isOOB()) { break; }

if (NrOfUpdates / Params::PhysicsTimeStepsPerSecond
>= Params::MaxSimulationTime) { break; }

I1.SetNNControls (&NN1) ;
I1l.update();

Bl.update();
TargetBl.update () ;

NrOfUpdates++;
}

float SimulationTime = NrOfUpdates /
Params: :PhysicsTimeStepsPerSecond;

if (POPl.Genomes[iGenome].fitness == 0)
POP1l.Genomes [1Genome] .fitness =
Il.calcFitness (SimuTimeInSec) ;
else
POP1l.Genomes [iGenome] . fitness +=
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Il.calcFitness (SimuTimeInSec) ;

return false;

}

The fitness of a genome is dependent on its simulation time and since the
'PerformanceRun::Simulate()' function is not running real-time, it must cal-
culate virtual time by accumulating the number of updates done. The vari-
able 'NrOfUpdates' was declared here to handle this. To get the simulation's
time in seconds, it has to be divided by 'Params::PhysicsTimeStepsPerSec-
onds" which is the same time constraint used for frame rate stabilizing of
‘GraphicalRun::Simulate()".

Each tick or each iteration of its main cycle, the 'SetNNControls(* Neural-
Net)' function is called on the Al controlled rocket's instance, to update the
inputs of its neural net in order to retrieve a new set of control command for
the next tick of the simulation. The other objects are getting updated here
from tick to tick as well.

A simulation's last step is to assign the fitness score to the genome, which
was responsible for the weights of the neural net.

float RocketNN::calcFitness (float SimulationTime) {

if (Collided)
return normalize (Params: :MaxSimulationTime -
SimulationTime, 0, Params::MaxSimulationTime) + 2;
else
return normalize (1400 - ClosestDistanceToTarget, O,
1400) ;

}

The method of fitness score calculation first examines the 'Object::Collided'
Boolean variable of the Interceptor, giving it a higher value in case it man-
aged to collide with its target, where a faster interception means a higher
score.

If that is not the case, the fitness score will simply be depending on the
closest achieved distance to the target.

6.3 Graphical Run

The 'GraphicalRun' class has extended functions compared to 'Perfor-
manceRun', which are used for visual representation, window handling,
handling user keyboard inputs, changing speed, storing textures.

class GraphicalRun : public Manager {
public:
GraphicalRun ()
Window (sf::VideoMode (Params: :WindowWidth,
Params: :WindowHeight), "Graphical Simulation ::
Martin Pinter - HAMK Thesis",
sf::Style::None), SpeedFactor(1.0f),
Tstr (Params: :BackgroundTexture) {
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BGT.loadFromFile (Tstr) ;
BGT.setSmooth (false) ;
BGT.setRepeated(false);

}

virtual bool Simulate(float angle) override;
sf::Texture BGT;

std::string Tstr;

void drawBG() ;

sf::RenderWindow Window;

void ReplayBestGenome () ;
voilid TopGenomes () ;

void HandleUserInput () ;
float SpeedFactor;
bool abort = false;

bool pressedKeys|[sf::Keyboard::KeyCount] = { false };
}i

The constructor renders a window object and sets the texture of the back-
ground, by its location stored in 'Params'.

‘ReplayBestGenome()' and 'TopGenomes()' are replay functions imple-
mented to show the best solutions of the artificial intelligence.

Keypress event of all keyboard keys are set to false here. This helps avoid-
ing unwanted results, when a key is being held on constructing the class.

bool GraphicalRun::Simulate (float angle) {
Il.angle = angle;
sf::Clock Clock;
SimuTimeInSec = 0.0f;
float PhysicsTimeStepAccumulator = 0.0f;
NN1.feedWeights (POP1l.Genomes [iGenome] .value) ;
while (Window.isOpen()) {

if (Il1.Collided || Bl.Collided)

break;
if (I1.1isO0OB() && B1.isOOB())

break;
const sf::Time FrameTime = Clock.restart();
float FrameSeconds = FrameTime.asSeconds();
if (FrameSeconds > 0.1f) FrameSeconds = 0.1f;

PhysicsTimeStepAccumulator += FrameSeconds;

HandleUserInput () ;

while (PhysicsTimeStepAccumulator >= SpeedFactor *
Params: :PhysicsTimeStep) {
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I1.SetNNControls (&NN1) ;
I1l.update();
Bl.update () ;
TargetBl.update() ;

PhysicsTimeStepAccumulator -= SpeedFactor *
Params: :PhysicsTimeStep;
SimuTimeInSec += Params::PhysicsTimeStep;

}

Window.clear (sf::Color::Black);

drawBG () ;

I1l.draw (Window) ;

Bl.draw (Window) ;

TargetBl.draw (Window) ;

GUI (Window, iGeneration, iGenome) ;

Window.display () ;
}

if (labort) {
if (POPl.Genomes[iGenome].fitness == 0)

POP1l.Genomes [iGenome] .fitness =
Il.calcFitness (SimuTimeInSec) ;
else
POPl.Genomes [i1Genome] .fitness +=
Il.calcFitness (SimuTimeInSec) ;

}

abort = false;
std::cout << "Fitness: " << POPl.Genomes|[iGenome].fitness <<
std::endl;

return !Window.isOpen () ;

}

The 'GraphicalRun::Simulate()' is a similar function to the 'Perfor-
mance::Simulate()', but extended by visual rendering and framerate calcu-
lation.

After starting a clock for measuring the simulation's time, the neural net
requests a genome to be fed into the net's weights. The genetic algorithm
supplies this, and so the simulation begins.

A stable framerate is essential for deterministic fitness results. In order to
guarantee this, a manual framerate calculation method has been imple-
mented. This method does not allow the objects to be updated more often,
than it is described in 'Params'.

For the rendering of each frame, the followings sequence has to be imple-

mented as it represents general handling of frames:

— ‘clear(sf::Color)' clears the window from any previous content, resetting
it with the color given as its parameter.
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‘draw(sf::RenderWindow&)' function must be called on all objects
meant to be visualized. Note that the Graphical User Interface (GUI)
object has its ‘draw()' function called in its constructor.

'display()' function displays all the objects which called their ‘draw()" in
the previous step, thus ending the frame.

This function returns the state of the window negated, as 'Manager::Run()'
expects to be informed once the window has been closed.

7 SERIALIZATION

Serialization is a method for saving and loading data of determined syntax.
Since C++ does not offer direct serialization methods, the author has imple-
mented them manually in the Manager classes.

7.1 Saving a single genome

A single genome is saved using the 'Manager::Save(std::ostreamé&, const
sGenome&)' function.

void Manager::Save (std::ostream& out, const sGenome& genome) {

}

out << genome.fitness << std::endl;

out << genome.value.size () << std::endl;
for (float value : genome.value) {
out << wvalue << ' ';

}

out << std::endl;

out << genome.initposIl.x << ' ' <<
genome.initposIl.y << ' ';

out << genome.initposBl.x << ' ' <<
genome.initposBl.y << ' ';

out << genome.initposTargetBl.x << ' ' <<

genome.initposTargetBl.y << std::endl;

This function receives an output stream reference, and a constant genome
reference. References mean that on the contrary to regular parameterizing,
not a duplicate, but the same instance of the object is being passed.

The '<<"and ">>" are output and input stream operators respectively.

Values saved in order:

Fitness of the genome.

Size of the genome (number of weights allocated).
Values of each genome.

Initial positions of objects for replay mode.
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7.2 Saving all genomes

The 'SaveAll()' function utilizes the 'Save()' function explained above.

void Manager::SaveAll () {

std::ofstream out ("SaveFile.txt");

out

out

out

for

}

<< i1Generation << std::endl;
<< i1Genome << std::endl;
<< POPl.Genomes.size () << std

(const sGenome& genome : POP1
Save (out, genome) ;

::endl;

.Genomes) {

Since the previous 'Save()' function only implements saving one genome,
the 'SaveAll()' function handles exporting the complete previous population
with its corresponding attributes.

After defining an output file stream pointing to the location of the desired

file, it exports the following attributes via the 'std::ofstream'

— The current generation's index.

— The current genome's number.

— The population's size (number of genomes within).

— The 'Save()' function on each genome of the population, described into
above.

7.3 Loading a single genome

If serialized properly, the 'Load()' function executes the same attributes in
the same order as it was defined within the 'Save()' function.

void Manager::Load(std::istreamé& in,

in >> genome.fitness;

int

size;

in >> size;

genome.value.resize (size);

for

}

(float& value : genome.value)
in >> value;

sGenome & genome) |

{

in >> genome.initposIl.x >> genome.initposIl.y;
in >> genome.initposBl.x >> genome.initposBl.y;
in >> genome.initposTargetBl.x >>
genome.initposTargetBl.y;
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Note how this function is symmetrical to the one saving a single genome. It
also has its corresponding 'LoadAll()' function symmetrical to the
‘SaveAll()' function.

This way the neural net is able to pick up learning from where it left off the
last time. The serialization methods implemented ensure continuous learn-
ing of the artificial intelligence with options to start a new learning course
all over again, as defined in the main menu.

8 CONCLUSION

The author's aim was to explain the methodology of the development of
artificial intelligence by familiarizing the reader with virtually inter-ex-
changeable concepts between the biological template of neural systems and
the way they are artificially programmed to achieve similar results.

The purpose of code snippets appearing in the content of the code was to
highlight the system's working principles. The full code is available in Ap-
pendices 4-36.

Developing this program was an exciting task, awarding experience and
knowledge about software development to the author. Although the author
as a student of Automation Engineering had previous knowledge about pro-
gramming, this project was a huge increase in challenge and complexity. It
is the author's aim to continue extending his knowledge about artificial in-
telligence studies and programming in the future.

The project was developed in Microsoft Visual Studio Community 2015.

There were many architectural changes to the code to reach its current state.
Thanks to object oriented principles of development, the code was built in
a way to be easily extended and restored later. A GitHub repository con-
taining the complete functional project with documentation and changes
made to it is available at: https://github.com/martindpinter/Bachelors-The-
sis.
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Contents of the file 'ma

#include
#include

#include
#include
#include

in.cpp'

<SFML/Graphics.hpp>
<SFML/Window.hpp>

"PerformanceRun.h"
"GraphicalRun.h"
"Sandbox.h"

#define PI 3.141592;

int main

0O |

srand (time (nullptr));

std::cout <<
std::cout <<
std::endl;
std::cout <<
std::endl;
std::cout <<
std::endl;
std::cout <<
std::endl;
std::cout <<
std::cout <<
std::cout <<
std::cout <<
bool quit =
while (!quit)

"MENU" << std

::endl;

Appendix 4

"l. Start New Performance Teaching”" <<

"2. Continue Performance Teaching" <<

"3. Start New Graphical Simulation" <<

"4 . Continue Graphical Simulation" <<

"5. Sandbox Mode" << std::endl;
"6. Replay Best Genome" << std:
"7. Top Genomes" << std::endl;
"X. Quit Program" << std::endl;

false;

{

char menuChoice;
std::cin >> menuChoice;

if (menuChoice == '1"'")
PerformanceRun GM;
GM.Run () ;

}

else if

(menuChoice ==

PerformanceRun GM;
GM.LoadAll () ;
GM.Run () ;

}

else if

(menuChoice ==

GraphicalRun GM;
//GM.LoadAll () ;
GM.Run () ;

}

else if

(menuChoice ==

GraphicalRun GM;
GM.LoadAll () ;
GM.Run () ;

}

else if

(menuChoice ==

Sandbox GM;
GM.Run () ;

{

'27) A
'3 |
'4') A
'5') o

rendl;
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}

else if (menuChoice == '6"'") {
GraphicalRun GM;
GM.ReplayBestGenome () ;
//char endchar;
//std::cin >> endchar;

}

else if (menuChoice == '7") {
GraphicalRun GM;
GM.TopGenomes () ;

}

else if (menuChoice == 'x') {
quit = true;

}

return O;

Appendix 5
Contents of the file 'Bandit.h’

#pragma once
#include "RocketController.h"

class Bandit : public RocketController {
public:

Bandit () {}

Bandit (sf::Vector2f position, float angle)
RocketController (position, angle, Params::RedNTT,
Params: :RedFTT) {}

vold reset (int seed);
virtual void controls () override;

virtual void update() override;
}i

Appendix 6
Contents of the file 'Bandit.cpp'

#include "Bandit.h"
#include <random>
void Bandit::reset (int seed) {

std::mt19937 gen(seed);
std::uniform int distribution<> disX(

Params: :WindowWidth * 0.9, Params::WindowWidth * 0.9 +
Params: :WindowWidth / 10);
std::uniform int distribution<>

disY (Params: :WindowHeight * 0.1, Params::WindowHeight *
0.1 + Params::WindowHeight * 0.8);

int randX disX (gen) ;
int randY = disY (gen);

position = sf::Vector2f (randX, rand¥);
velocity = Params::nullvec;

float Egocent x = LockOnTarget->position.x - position.x;




Neural Network Programming
-

float Egocent y = LockOnTarget->position.y - position.y;
angle = atan2 (Egocent y, Egocent x);

throttle = 0.0f;
angular throttle = 0.0f;

angular velocity = 0.0f;
Collided = false;

}

void Bandit::controls () {

accelerate (0.01f) ;

}
void Bandit::update () {

RocketController: :update() ;
TargetHit () ;

Appendix 7
Contents of the file 'GraphicalRun.h'

#pragma once
#include "Manager.h"

class GraphicalRun : public Manager
public:
GraphicalRun ()
Window (sf: :VideoMode (Params: :WindowWidth,
Params::WindowHeight), "Graphical Simulation
Martin Pinter - HAMK Thesis", sf::Style::None),
SpeedFactor (1.0f), Tstr(Params::BackgroundTexture) ({

BGT.loadFromFile (Tstr) ;
BGT.setSmooth (false) ;
BGT.setRepeated(false);
}

sf::Texture BGT;

std::string Tstr;

void drawBG() ;

sf::RenderWindow Window;

virtual bool Simulate (float angle) override;

void ReplayBestGenome () ;
void TopGenomes () ;

void HandleUserInput () ;
float SpeedFactor;
bool abort = false;

bool pressedKeys[sf::Keyboard::KeyCount] = { false };

Appendix 8
Contents of the file 'GraphicalRun.cpp’
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#include "GraphicalRun.h"

#include "GUI.h"

#include "Utilities.h"

#include "Target.h"

bool GraphicalRun::Simulate (float angle) {
Il.angle = angle;
sf::Clock Clock;
SimuTimeInSec = 0.0f;

float PhysicsTimeStepAccumulator = 0.0f;

NN1.feedWeights (POP1l.Genomes [1Genome] .value) ;

while (Window.isOpen()) {
if (Il.Collided || Bl.Collided)
break;

if (I1.1isO0B() && B1.isOOB())
break;

const sf::Time FrameTime = Clock.restart();
float FrameSeconds = FrameTime.asSeconds () ;
if (FrameSeconds > 0.1f) FrameSeconds = 0.1f;
PhysicsTimeStepAccumulator += FrameSeconds;

HandleUserInput () ;

while (PhysicsTimeStepAccumulator >= SpeedFactor *
Params: :PhysicsTimeStep) {

I1.SetNNControls (&NN1) ;
I1l.update();
Bl.update();
TargetBl.update () ;

PhysicsTimeStepAccumulator -= SpeedFactor *
Params: :PhysicsTimeStep;
SimuTimeInSec += Params::PhysicsTimeStep;

Window.clear (sf::Color::Black);

drawBG () ;

Il.draw (Window) ;
Bl.draw (Window) ;
TargetBl.draw (Window) ;

GUI (Window, iGeneration, iGenome):;

Window.display () ;
}
if (labort) {
if (POPl.Genomes[iGenome].fitness == 0)
POPl.Genomes [iGenome] .fitness =
Il.calcFitness (SimuTimeInSec) ;
else
POP1.Genomes [iGenome] . fitness +=
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Il.calcFitness (SimuTimeInSec) ;
}

abort = false;

std::cout << "Fitness: " << POPl.Genomes[iGenome] .fitness
<< std::endl;

return !Window.isOpen();

void GraphicalRun: :TopGenomes () {
sf::Clock Clock;

SimuTimeInSec = 0.0f;
float PhysicsTimeStepAccumulator = 0.0f;
std::vector<sGenome> TopGenomes = LoadTopGenomes () ;

for (sGenomeé& genome : TopGenomes) {
NN1.feedWeights (genome.value) ;

Il.reset();
Bl.reset (8);
TargetBl.reset () ;

Il.position = genome.initposIl;
Bl.position = genome.initposBl;
TargetBl.position = genome.initposTargetBl;

float Egocent x = TargetBl.position.x -
Bl.position.x;

float Egocent y = TargetBl.position.y -
Bl.position.y;

Bl.angle = atan2(Egocent y, Egocent Xx);

while (Window.isOpen()) {
if (I1.Collided || Bl.Collided)
break;

if (I1.isOO0B() && B1.isOOB())

break;
const sf::Time FrameTime = Clock.restart();
float FrameSeconds = FrameTime.asSeconds();
if (FrameSeconds > 0.1f) FrameSeconds = 0.1f;

PhysicsTimeStepAccumulator += FrameSeconds;

while (PhysicsTimeStepAccumulator >= SpeedFactor
* Params: :PhysicsTimeStep) {

I1.SetNNControls (&NN1) ;
I1l.update()
Bl.update () ;
TargetBl.update () ;

PhysicsTimeStepAccumulator -= SpeedFactor *
Params: :PhysicsTimeStep;
SimuTimeInSec += Params::PhysicsTimeStep;
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Window.clear (sf::Color::Black);

drawBG () ;

Il.draw (Window) ;
Bl.draw (Window) ;
TargetBl.draw (Window) ;

GUI (Window, iGeneration, iGenome) ;

Window.display () ;

}

void GraphicalRun: :ReplayBestGenome () {
sf::Clock Clock;

SimuTimeInSec = 0.0f;

float PhysicsTimeStepAccumulator = 0.0f;
sGenome BestGenome = LoadBestGenome () ;
NN1.feedWeights (BestGenome.value) ;

Il.position = BestGenome.initposIl;
Bl.position = BestGenome.initposBl;
TargetBl.position = BestGenome.initposTargetBl;

float Egocent x = TargetBl.position.x - Bl.position.x;
float Egocent y = TargetBl.position.y - Bl.position.y;
Bl.angle = atan2(Egocent y, Egocent x);

while (Window.isOpen()) {
if (I1l.Collided || Bl.Collided)
break;

if (I1.isOO0B() && B1.isOOB())
break;

const sf::Time FrameTime = Clock.restart();
float FrameSeconds = FrameTime.asSeconds () ;
if (FrameSeconds > 0.1f) FrameSeconds = 0.1f;
PhysicsTimeStepAccumulator += FrameSeconds;

while (PhysicsTimeStepAccumulator >= SpeedFactor *
Params: :PhysicsTimeStep) {

I1.SetNNControls (&NN1) ;
I1l.update();
Bl.update();
TargetBl.update () ;

PhysicsTimeStepAccumulator -= SpeedFactor *

Params: :PhysicsTimeStep;
SimuTimeInSec += Params::PhysicsTimeStep;

Window.clear (sf::Color::Black);




Neural Network Programming
L
drawBG () ;
Il.draw(Window) ;
Bl.draw (Window) ;
TargetBl.draw (Window) ;

GUI (Window, iGeneration, iGenome) ;

Window.display () ;

void GraphicalRun::HandleUserInput () {
sf::Event event;
while (Window.pollEvent (event)) {
switch (event.type) {

case sf::Event::Closed:
Window.close () ;
break;

case sf::Event::KeyPressed:

pressedKeys [event.key.code] = true;

switch (event.key.code) {
case sf::Keyboard::S:
SaveAll () ;
break;
case sf::Keyboard::L:
Il.reset();
Bl.reset (iGeneration) ;

LoadAll () ;
abort = true;
break;

case sf::Keyboard::Add:
SpeedFactor *= 1.1f;
break;

case sf::Keyboard::Subtract:
SpeedFactor /= 1.1f;
break;

case sf::Keyboard: :Escape:
Window.close () ;
break;

}

break;
}
void GraphicalRun: :drawBG() {
sf::Texture* BGpointer;
BGpointer = &BGT;
sf::Sprite BGSprite;
BGSprite.setTexture (*BGpointer) ;

BGSprite.setPosition (0, 0);

Window.draw (BGSprite) ;
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Appendix 9
Contents of the file GUIL.h'

#pragma once
#include <SFML/Graphics.hpp>

class GUI {
public:
GUI (sf::RenderWindow& Window, int Generation, int Genome)
Generation (Generation), Genome (Genome) { draw (Window) ; }

int Generation;
int Genome;

voild draw(sf::RenderWindow& Window) ;

}s

Appendix 10
Contents of the file GUI.cpp'

#include "GUI.h"
#include "Params.h"

vold GUI::draw(sf::RenderWindow& Window) {

sf::Font font;
sf::Text text;
std::string GUIString;

font.loadFromFile ("font.ttf");

text.setFont (font) ;
text.setCharacterSize (15);
text.setColor(sf::Color::White) ;

GUIString = "Generation: ";

GUIString += std::to string(Generation);

GUIString += "/";

GUIString += std::to string(Params::MaxGenerations);

GUIString += "\nGenome: ";

GUIString += std::to_string(Genome) ;

GUIString += "/";

GUIString += std::to_string(Params::PopulationSize);

GUIString += "\n AvgFit: ";

text.setString (GUIString) ;
text.setPosition(sf::Vector2f (10, 10));

Window.draw (text) ;

Appendix 11
Contents of the file 'Interceptor.h’

#pragma once
#include "RocketNN.h"




Neural Network Programming
-

class Interceptor : public RocketNN ({

public:
Interceptor () {}
Interceptor(sf::Vector2f position, float angle)
RocketNN (position, angle) {}

virtual std::vector<float> getNNinputs () override;

void reset();
void reset(float angle);
}i
Appendix 12
Contents of the file 'Interceptor.cpp’
#include "Interceptor.h"

void Interceptor::reset () {

position = Params::posRocketNN;
velocity = Params::nullvec;
//angle = Params::angleRocketNN;
int angleConst = randfloat (1.0, 2.5);
angle = angleConst * Params::pi;
throttle = 0.0f;

angular throttle = 0.0f;

angular velocity = 0.0f;
rotationalSum = 0.0f;

Collided = false;

LookAtScore = 0;

}

void Interceptor::reset(float inputangle) {
Interceptor::reset();
angle = inputangle;

std::vector<float> Interceptor::getNNinputs() {
std::vector<float> returnvector;

float Egocent x = LockOnTarget->position.x - position.x;
float Egocent y LockOnTarget->position.y - position.y;

float EgocentV_x = LockOnTarget->velocity.x - velocity.x;
float EgocentV_y = LockOnTarget->velocity.y - velocity.y;

// INPUT 1: Length of the velocity vector

float velocityVectorLength = sqgrt (pow(velocity.x, 2) +
pow (velocity.y, 2));

float normvelocityVectorLength =

clamp (normalize (velocityVectorLength, 0, 20), 0, 1);
returnvector.push back (normvelocityVectorLength) ;

// INPUT 2: Difference in direction between the face
vector and velocity vector

float VeloVec xAxisDegree = atan2(velocity.y,
velocity.x);
float velocityFaceOffset = angle - VeloVec xAxisDegree;

returnvector.push back (normalize (wrapRange (
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velocityFaceOffset, 0, 2

Params::pi));

// INPUT 3:
x—-axis

float Enemyvelocity xAxisDegree

EgocentV_x);
float relEVxAD
float normEVxAD

Params::pi), O,

2 * Params:

* *

Params::pi), 0, 2

Target velocityvector's arc tangent to the

atan2 (EgocentV vy,

angle - Enemyvelocity xAxisDegree;
normalize (wrapRange (relEVxAD,

*

0, 2

:pi);

returnvector.push back (normEVxAD) ;

// INPUT 3
Centre-Right,

Target's direction as values between Left-
compared to the interceptor's facevector

returnvector.push back (normalizedLookAt());

// INPUT 4: Distance to the

returnvector.push back (sqgrt (pow (Egocent x,

pow (Egocent vy, 2)));

return returnvector;

Contents of the file 'Manager.h'

#pragma once

#include <iostream>
#include "NeuralNet.h"
#include "Interceptor.h"
#include "Bandit.h"
#include "Target.h"

class Manager {
public:
Manager () {

I1 Interceptor (Params:
Params: :angleRocketNN) ;

POP1l = Population();
NN1 = NeuralNet () ;
Bl =

Params: :angleRocketOPP)

TargetBl Target () ;

I1l.DefineTarget (&B1) ;

target

2) +

Appendix 13

:posRocketNN,

Bandit (Params: :posRocketOPP,

I

Bl.DefineTarget (&TargetBl) ;

}

virtual bool Simulate (float

void Run () ;

void Save (std::ostream& out,
void Load(std::istream& in,

void SaveAll ();

void LoadAll () ;

void SaveBestGenome () ;

angle) 0;

const sGenomeé& genome) ;
sGenomeé& genome) ;
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sGenome LoadBestGenome () ;

void ManageTopGenomes (int topN) ;
std: :vector<sGenome> LoadTopGenomes () ;

Interceptor Il;
Population POP1;
NeuralNet NNI1;

Bandit B1;
Target TargetBl;

int iGeneration = 1;

int iGenome;

float SimuTimeInSec = 0.0f;
bi

Appendix 14
Contents of the file 'Manager.cpp'

#include <fstream>
#include "Manager.h"
#include "Params.h"
#include <fstream>
#include <iomanip>

void Manager::Run() {
bool isEnded = false;

for (iGeneration = iGeneration; !isEnded; ++iGeneration) {
TargetBl.reset ()

for (iGenome = 0; iGenome < Params::PopulationSize &&
lisEnded; ++iGenome) {

break;

Il.reset();
Bl.reset (iGeneration) ;

POP1l.Genomes [iGenome] .initposTargetBl =
TargetBl.position;

POP1.Genomes [iGenome] .initposIl Il.position;
POP1.Genomes [iGenome] .initposBl = Bl.position;

float SimuAngle;

for (float i = 0; 1 < Params::FitnessResolution;
++i) |
SimuAngle = i / (Params::FitnessResolution /

2) * Params::pi;

isEnded = Simulate (SimuAngle) ;
Il.reset (SimuAngle) ;
Bl.reset (iGeneration) ;

ManageTopGenomes (10) ;
}

std::cout << "Generation " << iGeneration << " ";
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std::cout << "Avg fitness: " <<
POPl.CalculateAverageFitness () ;
std::cout << " Best fitness: " <<

POPl.getBestFitness () << std::endl;
SaveBestGenome () ;
POP1l.Evolve () ;

SaveAll () ;

}
void Manager::SaveAll () {
std::ofstream out ("SaveFile.txt");
out << iGeneration << std::endl;
out << iGenome << std::endl;
out << POPl.Genomes.size() << std::endl;

for (const sGenome& genome : POPl.Genomes) {
Save (out, genome) ;

}

void Manager: :ManageTopGenomes (int topN) {
if (POPl.Genomes[iGenome].fitness > 1) {
std: :vector<sGenome> TopGenomes;
std::ifstream in ("TopGenomes.txt");

int size = 0;
in >> size;

if (size > 0) {
TopGenomes.resize (size);

for (sGenomeé& genome : TopGenomes) {
Load (in, genome);
}
}

in.close();

TopGenomes.push back (POP1l.Genomes [iGenome]) ;

std: :sort (TopGenomes.begin (), TopGenomes.end(),
[] (const sGenome& lhs, const sGenome& rhs)

return lhs.fitness > rhs.fitness; 1)

while (TopGenomes.size() > topN)
TopGenomes.pop back () ;

std::ofstream out ("TopGenomes.txt");
size = TopGenomes.size();

out << size++ << std::endl;
for (sGenomeé& genome : TopGenomes) {
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Save (out, genome) ;

}
std::vector<sGenome> Manager: :LoadTopGenomes () {
std::vector<sGenome> returnvector;

std::ifstream in ("TopGenomes.txt");

int size = 0;
in >> size;

if (size > 0) {
returnvector.resize (size);

for (sGenomeé& genome : returnvector) {
Load (in, genome);

}

return returnvector;

void Manager::SaveBestGenome () {
sGenome & BestGenome =
*std::max_element (POPl.Genomes.begin(),

POPl.Genomes.end (), [] (const sGenomeé& lhs,
const sGenomeé& rhs) { return lhs.fitness < rhs.fitness;

1)
if (BestGenome.fitness > LoadBestGenome () .fitness) {
std::ofstream out ("BestGenome.txt") ;
out << BestGenome.fitness << std::endl;
out << BestGenome.value.size() << std::endl;
for (float value : BestGenome.value) {

out << value << ' ';

out << std::endl;

out << BestGenome.initposIl.x << ' ' <<
BestGenome.initposIl.y << ' ';

out << BestGenome.initposBl.x << ' ' <<
BestGenome.initposBl.y << ' ';

out << BestGenome.initposTargetBl.x << ' ' <<

BestGenome.initposTargetBl.y;

sGenome Manager: :LoadBestGenome () {
std::ifstream in ("BestGenome.txt");
sGenome BestGenome;
Load (in, BestGenome) ;

/*std::cout << BestGenome.fitness << std::endl;
std::cout << BestGenome.value.size () << std::endl;
for (float value : BestGenome.value) {
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std::cout << value << " ";

}*/

in >> BestGenome.initposIl.x >> BestGenome.initposIl.y;
in >> BestGenome.initposBl.x >> BestGenome.initposBl.y;
in >> BestGenome.initposTargetBl.x >>
BestGenome.initposTargetBl.y;

return BestGenome;

void Manager::Save (std::ostream& out, const sGenome& genome)

{

}

out << genome.fitness << std::endl;
out << genome.value.size () << std::endl;
for (float value : genome.value) {

out << value << ' ';

out << std::endl;

out << genome.initposIl.x << ' ' << genome.initposIl.y <<
A\l L

out << genome.initposBl.x << ' ' << genome.initposBl.y <<
|l LY

out << genome.initposTargetBl.x << ' ' <<

genome.initposTargetBl.y << std::endl;

void Manager::LoadAll () {

}

std::vector<sGenome> newPopulation;
std::ifstream in("SaveFile.txt");
in >> iGeneration;

in >> iGenome;
if (iGenome >= Params::PopulationSize)
iGenome = 0;

int PopulationSize;
in >> PopulationSize;
newPopulation.resize (PopulationSize);

int genomeCounter = 0;
for (sGenomeé& genome : newPopulation)
if (genomeCounter < PopulationSize) {
Load (in, genome) ;
genomeCounter++;

POP1l.Genomes = newPopulation;

void Manager::Load(std::istream& in, sGenome& genome) {

in >> genome.fitness;

int size;
in >> size;
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genome.value.resize(size);

for (floaté& value : genome.value) {
in >> value;

}

in >> genome.initposIl.x >> genome.initposIl.y;
in >> genome.initposBl.x >> genome.initposBl.y;
in >> genome.initposTargetBl.x >>
genome.initposTargetBl.y;

Appendix 15
Contents of the file 'NeuralNet.h'

#pragma once

#include <vector>
#include "Utilities.h"
#include "Params.h"
#include "Population.h"

struct sNeuron {

std::vector<float> weights;
sNeuron (int nrOfInputs);
bi

struct sNeuronlayer {

int nrO0fNeurons;
std: :vector<sNeuron> one neuronlayer;

sNeuronLayer (int nr0OfNeurons, int nrOfInputsPerNeuron);

}s

class NeuralNet ({
private:
std: :vector<sNeuronLayer> all neuronLayers;

public:
NeuralNet () { createNet(); }
void createNet () ;

void feedWeights (std::vector<float> inputWeights);
std::vector<float> evaluate (std::vector<float>);

}i

Appendix 16
Contents of the file ‘NeuralNet.cpp'
#include "NeuralNet.h"
sNeuron: :sNeuron (int nrOfInputs) {
for (int i = 0; 1 < nrOfInputs + 1; ++1i) { // +1 since

the bias
weights.push back(randClamped()) ;
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}
}

sNeuronLayer: :sNeuronlLayer (int nrOfNeurons,
int nrOfInputsPerNeuron) : nrOfNeurons (nrOfNeurons) {

for (int i = 0; i1 < nrOfNeurons; ++i) {

one neuronlLayer.push back (sNeuron (nrOfInputsPerNeuron)) ;
}
}

void NeuralNet::feedWeights (std::vector<float> inputWeights)
{
if (inputWeights.size() != Params::WeightCount) {
std::cout << "The number of input weights does not
match the weight count." << std::endl;
}

else {
int weightIndex = 0;
for (int i = 0; i1 < all neuronlayers.size(); ++1i) {

for (int 3 = 0; j <
all neuronlLayers[i].one neuronlayer.size();
++3) |
for (int k = 0; k <
all neuronlLayers[i].one neuronlayer[j].
weights.size (); ++k) {

all neuronlLayers[i].one neuronlayer[]j].weights[k] =
inputWeights[weightIndex++];

}

}

void NeuralNet::createNet () {
//Creates the structure of layers
if (Params::nrOfHiddenLayers > 0) {
for (int i = 0; i < Params::nrOfHiddenLayers; ++i) {

if (1 == 0)
all neuronLayers.push back(sNeuronLayer (
Params: :NeuronsPerHiddenLayer,
Params::nr0fInputs));
else
all neuronLayers.push back(sNeuronLayer (
Params: :NeuronsPerHiddenLayer,
Params: :NeuronsPerHiddenLayer) ) ;
}
all neuronLayers.push back(sNeuronLayer (
Params: :nr0fOutputs,
Params: :NeuronsPerHiddenLayer)) ;
}
else {
all neuronLayers.push back(sNeuronLayer (
Params: :nr0fOutputs, Params::nrOfInputs));
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std::vector<float>
NeuralNet::evaluate (std::vector<float> inputvector) {

std::vector<float> OnelayerInputs = inputvector;
std::vector<float> OnelayerOutputs;
std::vector<float> OutputVector;

// Evaluating through the Input Layer and Hidden Layers
for (int 1 = 0; i1 < Params::nrOfHiddenLayers; ++i) {
if (1 > 0) |
OnelayerInputs = OnelayerOutputs;
}

for (int j = 0; j <
all neuronlLayers[i].one neuronlayer.size(); ++3J) {

float total = 0.0f;

for (int k = 0; k < all neuronlayers[i].
one neuronlLayer([]j].weights.size(); ++k) {
if (k != all neuronlayers([i].
one neuronlLayer([]j].weights.size() - 1) {
total +=

all neuronlLayers[i].one neuronLayer[j].
weights[k] * OnelLayerInputs[k];
}
else {
total +=
all neuronLayers[i].one neuronLayer[j]
.weights[k] * Params::BiasValue;

}
OneLayerOutputs.push back(Sigmoid(total));

OnelayerInputs = OnelayerOutputs;

// Evaluating through the Output layer

for (int i = 0; i < Params::nrO0fOutputs; ++i) {
float total = 0.0f;

for (int j = 0; j <
all neuronLayers.back() .
one neuronlLayer[i].weights.size(); ++3J) {
if (j != all neuronlLayers.back() .
one neuronlLayer[i].weights.size() - 1) {
total += all neuronlLayers.back() .
one neuronlLayer([i].weights[j] *
OnelLayerOQutputs[]];
}
else {
total += all neuronlLayers.back().
one neuronlLayer[i].weights[J] *
Params: :BiasValue;
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OutputVec
}

return Output

Contents of the file 'Object.h’

#pragma once
#include <SFML/Graphics.hpp>
#include "Params.

class Object {
public:

bi

Object () {}

Object (sf::Ve
float angle,
position (pos
size(size),

virtual void
virtual void

sf::Vector2f
sf::Vector2f
sf::Vector2f
float angle =
float scale;

bool Collided

sf::FloatRect
bool isOOB() ;

Contents of the file 'Object.cpp’

tor.push back(Sigmoid(total)):;

Vector;

Appendix 17

h"

ctor2f position, sf::Vector2f velocity,
sf::Vector2f size, float scale)

ition), velocity(velocity), angle(angle),
scale (scale) { }

draw (sf::RenderWindow& window) = 0;
update() = 0;

position;
velocity;
size;

0;

= false;

getBoundingBox () ;

#include "Object.h"

bool Object::is00B() {

}

return (posit
Params: :Wind
0);

Appendix 18
ion.x > Params::WindowWidth || position.y >
owHeight || position.x < 0 || position.y <

sf::FloatRect Object::getBoundingBox () {

}

return (sf::F

Contents of the file 'Params.h'

#pragma once
#include <SFML/Graphics.hpp>
#include <string>
class Params {
public:

loatRect (position, size * scale));

Appendix 19
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static float pi;
const static sf::Vector2f nullvec;

static int WindowWidth;
static int WindowHeight;
static int Framerate;

static bool GraphicalSimulation;
static int MaxSimulationTime;

static float PhysicsTimeStepsPerSecond;
static float PhysicsTimeStep;

// Rocket physics

static float EnginePower;
static float RotationalEnginePower;

static float ConstAirResistance;
static float Friction;

static float NNC Deadzone;
static std::string BackgroundTexture;

static std::string BlueNTT;
static std::string BlueFTT;
static std::string RedNTT;
static std::string RedFTT;

static std::string TargetT;

static sf::Vector2f posRocketNN;
static sf::Vector2f posRocketOPP;
static sf::Vector2f posRocketHC;
static sf::Vector2f posRocketDMM;

static float scaleRocket;
static float scaleTarget;

static sf::Vector2f sizeTarget;

static sf::Vector2f posTarget;
static float radTarget;

static float angleRocketNN;
static float angleRocketOPP;
static float angleRocketHC;
static float angleRocketDMM;
static float angleTarget;

static int nrOfInputs;

static int nr0fOutputs;

static int nrOfHiddenLayers;
static int NeuronsPerHiddenLayer;
static int BiasValue;

//GenAlg
static int MaxGenerations;
static int WeightCount;
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static int PopulationSize;
static float FitnessResolution;
static std::string SavelLocation;

}s

Contents of the file 'Params.cpp'

#include "Params.h"

float Params::pi = 3.1415926535;

Appendix 20

const sf::Vector2f Params::nullvec = sf::Vector2f (0, 0);

// Render properties

int Params::WindowWidth = 1200;

int Params::WindowHeight = 600;

int Params::Framerate = 60;

bool Params::GraphicalSimulation = true;

int Params::MaxSimulationTime = 5;

//Qtsma

float Params::PhysicsTimeStepsPerSecond =

float Params::PhysicsTimeStep = 1.0f /
PhysicsTimeStepsPerSecond;

// Rocket physics
float Params::EnginePower = 1.0f;

float Params::RotationalEnginePower = 0.015f;

float Params::ConstAirResistance = 0.003;
float Params::Friction = 0.8;

float Params::NNC Deadzone = 0.05; // This value determines
the deadzone for Left-Right controls of the Neural Net.

std::string Params::BackgroundTexture =
"../images/background.png";

std::string Params::BlueNTT =
"../images/resized by5/BlueNT.png";
std::string Params::BlueFTT =
"../images/resized by5/BlueFT.png";
std::string Params: :RedNTT =
"../images/resized by5/RedNT.png";
std::string Params::RedFTT =
"../images/resized by5/RedFT.png";

std::string Params::TargetT = "../images/TargetT.png";

// Initial positions of the rockets
sf::Vector2f Params::posRocketNN =

sf::Vector2f (Params: :WindowWidth / 2, Params::WindowHeight

/ 2);
sf::Vector2f Params::posRocketOPP
sf::Vector2f (Params: :WindowWidth - 150,
Params: :WindowHeight - 100);
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sf::Vector2f Params::posRocketHC

sf::Vector2f (Params: :WindowWidth / 2,

* 3/ 4);

sf::Vector2f Params::posRocketDMM
sf::Vector2f (Params: :WindowWidth -

Params: :WindowHeight - 100);

|
o

float Params::scaleRocket =
float Params::scaleTarget = 0.

sf::Vector2f Params::sizeTarget =
150.0f);

sf::Vector2f Params::posTarget =

Params: :WindowHeight

150,

sf::Vector2f(150.0f,

sf::Vector2f (Params: :WindowWidth / 10, Params::WindowHeight
/ 2);

float Params::radTarget = 75;

float Params::angleRocketNN = 1.75 * pi;
float Params::angleRocketOPP = pi;

float Params::angleRocketHC = 1.5 * pi;
float Params::angleRocketDMM = 0;

float Params::angleTarget = 0;

/* Neural Net Specifications */

int Params::nrO0fInputs = 5;

int Params::nr0fOutputs = 2;

int Params::nrOfHiddenLayers = 1;

int Params::NeuronsPerHiddenLayer = 6;

int Params::WeightCount =
+ (pow (NeuronsPerHiddenLayer,
(nrOfHiddenLayers -1)

nrO0fInputs * NeuronsPerHiddenLayer
(nrOfHiddenLayers - 1))) *
+ nr0fOutputs * NeuronsPerHiddenLayer

+ (NeuronsPerHiddenLayer * nrOfHiddenlLayers + nrO0fOutputs);

int Params::MaxGenerations = 1000000;
int Params::BiasValue = 1.0f;
int Params::PopulationSize = 100;

float Params::FitnessResolution =

std::string Params::SavelLocation

Contents of the file 'PerformanceRun.h'

#pragma once
#include "Manager.h"

class PerformanceRun
public:
PerformanceRun ()

{}

virtual bool Simulate (float angle)

Contents of the file 'PerformanceRun.cpp’

4;

"./Save/"™;

Appendix 21

public Manager {

override;

Appendix 22
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#include "PerformanceRun.h"

bool PerformanceRun::Simulate(float angle) {
Il.angle = angle;
int NrOfUpdates = 0;
NN1.feedWeights (POPl.Genomes [iGenome] .value) ;

while (true) {
if (Il.Collided || Bl.Collided) { break; }

if (I1.isOOB() && B1.isOOB()) { break; }

if (NrOfUpdates / Params::PhysicsTimeStepsPerSecond
>= Params::MaxSimulationTime) { break; }

I1.SetNNControls (&NN1) ;
I1.update();

Bl.update();
TargetBl.update () ;

NrOfUpdates++;
}

float SimulationTime = NrOfUpdates /
Params: :PhysicsTimeStepsPerSecond; // in seconds

if (POPl.Genomes[iGenome].fitness == 0)
POP1l.Genomes [iGenome] .fitness
Il.calcFitness (SimuTimeInSec) ;
else
POP1.Genomes [iGenome] . fitness +=
Il.calcFitness (SimuTimeInSec) ;

return false;

Appendix 23
Contents of the file 'Population.h’

#pragma once

#include <vector>
#include "Utilities.h"
#include "Params.h"
#include <iostream>

struct sGenome {

std::vector<float> value;
float fitness = 0;

sGenome () : fitness(0) { for (int i = 0; i <

Params::WeightCount; ++i) { value.push back(0.0f); }

sGenome (std: :vector<float> inputvector)
value (inputvector) {}
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}:

sf::Vector2f initposIl;
sf::Vector2f initposBl;
sf::Vector2f initposTargetBl;

class Population {
private:

sGenome BuildRandomGenome () ;

sGenome Roulette();

void SortPopulation();

std::vector<sGenome> Crossover2 (std::vector<sGenome>) ;
std: :vector<sGenome> Mutate2 (std::vector<sGenome>) ;
std::vector<sGenome> pickBests (int topN, int copies);

public:

bi

Population () { BuildRandomPopulation(); }
Population (std::vector<sGenome> inputVector) { Genomes =
inputVector; }

std: :vector<sGenome> Genomes;
float AverageFitness;

void BuildRandomPopulation () ;
void Evolve () ;

float CalculateAverageFitness();
float getBestFitness();
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Contents of the file 'Population.cpp’

#include <vector>
#include <iostream>

#include "Population.h"

// Ak kkhkkkkkkkk*k Population ***************//

sGenome Population::BuildRandomGenome () {

}

std: :vector<float> RandomGenome;

for (int i = 0; i < Params::WeightCount; ++i) {
RandomGenome.push back (randfloat (-1, 1));

}

return sGenome (RandomGenome) ;

void Population::BuildRandomPopulation () {

for (int i = 0; i < Params::PopulationSize; ++i) {
Genomes.push back (BuildRandomGenome () ) ;
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}
}

void Population::SortPopulation() {
std::sort (Genomes.begin(), Genomes.end(), [] (const

sGenomeé& lhs, const sGenomeé& rhs) {
return lhs.fitness > rhs.fitness;

}
)7
}

float Population::CalculateAverageFitness () {

float sum = 0.0f;

for (int i = 0; i < Params::PopulationSize; ++i) {
sum += Genomes[i].fitness;

}
return sum / Params::PopulationSize;
}
float Population::getBestFitness () {
return std::max_element (Genomes.begin(), Genomes.end(),

[] (const sGenomeé& lhs, const sGenomeé& rhs)
return lhs.fitness < rhs.fitness;

}

) —->fitness;

}

std::vector<sGenome> Population::pickBests (int topN, int
copies) {

std::vector<sGenome> returnvector;
for (unsigned i = 0; 1 < topN; ++i) {
for (unsigned j = 0; j < copies; ++73) {
returnvector.push back (Genomes[i]);

}
return returnvector;
}
void Population::Evolve () {
SortPopulation();
std: :vector<sGenome> NewPopulation = pickBests (4, 1);
while (NewPopulation.size() != Genomes.size()) {
std::vector<sGenome> Parents;
Parents.push back (Roulette()) ;

Parents.push back (Roulette()) ;

while (Parents[0].value == Parents[l].value)




Neural Network Programming
-

Parents[1l] = Roulette():;

std: :vector<sGenome> ParentsCrossedOver =
Crossover?2 (Parents) ;
std::vector<sGenome> SpecimensMutated =
Mutate? (ParentsCrossedOver) ;

NewPopulation.push back (SpecimensMutated[0]);
NewPopulation.push back (SpecimensMutated[1]);
}

Genomes = NewPopulation;

for (sGenomeé& genome : Genomes) {
genome.fitness = 0;

}

std::vector<sGenome>
Population::Crossover?2 (std::vector<sGenome> Parents) {

float CrossoverRate = 0.7f;

if (randfloat () <= CrossoverRate) {
int RandomCrossoverPoint = rand() %
Params: :WeightCount;

for (int i = RandomCrossoverPoint; i <
Params: :WeightCount; ++i) {
std::swap (Parents[0] .value[i],
Parents[1] .value[i]);

}

std::vector<sGenome> NewParents;
NewParents.push back (Parents[0]);
NewParents.push back (Parents([1]);

return NewParents;

}
else
return Parents;

}

std::vector<sGenome>
Population::Mutate2 (std::vector<sGenome> Specimens) {

float MutationRate = 0.005;

bool ChangesDone = false;
for (int i = 0; i < Specimens[0].value.size(); ++1i) {
if (randfloat () <= MutationRate) {
Specimens[0] .value[i] = 1 -
Specimens[0] .value[i];
ChangesDone = true;
}
}
for (int i = 0; i < Specimens[l].value.size(); ++1i) {
if (randfloat () <= MutationRate) {
Specimens[l].value[i] = 1 -

Specimens[1l].value[i];
ChangesDone = true;
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}

if (ChangesDone) {
std: :vector<sGenome> returnvector;
returnvector.push back (Specimens[0]) ;
returnvector.push back (Specimens[1]);

return returnvector;

return Specimens;

sGenome Population::Roulette() {

float Sum = 0.0f;
float FitnessSoFar = 0.0f;

for (int i = 0; i1 < Params::PopulationSize; ++i) {
Sum += Genomes[i].fitness;

}
double Slice = (double) (randfloat () * Sum);

for (int i = 0; i < Params::PopulationSize; ++i) {
FitnessSoFar += Genomes[i].fitness;

if (FitnessSoFar >= Slice)
return Genomes[i];

}

return Genomes.back() ;
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Contents of the file 'RocketController.h'

#pragma once

#include <SFML/Graphics.hpp>
#include "Object.h"

#include "Utilities.h"
#include "RocketHUD.h"
#include <string>

class RocketController : public Object {
public:

RocketController () {}

RocketController (sf::Vector2f position, float angle,
std::string ntTexture, std::string ftTexture)
Object (position, Params::nullvec, angle,
sf::Vector2f (45, 45), Params::scaleRocket),
noThrottleString (ntTexture),
fullThrottleString (ftTexture) {

noThrottle.loadFromFile (noThrottleString) ;
noThrottle.setSmooth (true) ;
noThrottle.setRepeated(false);

fullThrottle.loadFromFile (fullThrottleString) ;
fullThrottle.setSmooth (true) ;
fullThrottle.setRepeated(false);
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}s

}

virtual void controls () = 0;

virtual void update() override;
virtual void draw(sf::RenderWindowé& window) override;

float throttle = 0.0f;
void accelerate (float amount) ;

voilid DefineTarget (Object * EnemyRocket);
Object * LockOnTarget;

float angular throttle = 0.0f;
void angular accelerate(float amount);
float angular velocity = 0.0f;

void CheckForSpin (
bool SpinAlert = false;

void TargetHit () ;

float prevAngle = angle;
float rotationalSum = 0.0f;

sf::Texture noThrottle;
std::string noThrottleString;
sf::Texture fullThrottle;
std::string fullThrottleString;
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Contents of the file 'RocketController.cpp'

#include "RocketController.h"
#include "Params.h"
#include <iostream> // don't forget to remove

void RocketController: :draw(sf::RenderWindow& window) {

sf::Texture* rocketTexture;

if (throttle == 0.0f) {
rocketTexture = &noThrottle;

}

else {
rocketTexture = &fullThrottle;

}

sf::Sprite rocketSprite;

rocketSprite.setTexture (*rocketTexture) ;

rocketSprite.setPosition (position) ;

rocketSprite.setRotation((angle + Params::pi / 2) *
(180.0f / Params::pi));

rocketSprite.setOrigin (19, 27);

rocketSprite.setScale (Params: :scaleRocket,
Params: :scaleRocket) ;

window.draw (rocketSprite) ;
RocketHUD HUD (window, *this);
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void RocketController::update() {

float angular acceleration = angular_ throttle *
Params: :RotationalEnginePower;

controls () ; // event poll here

angular velocity += angular acceleration;
angular velocity = clamp (angular velocity, -0.4f, 0.4f);
angular velocity *= Params::Friction;

prevAngle = angle;
angle += angular velocity;

rotationalSum += angle - prevAngle;

if (angle < 0)
angle = 2 * Params::pi + angle;

angle = std::fmod(angle, 2 * Params::pi);

sf::Vector2f acceleration(cos(angle), sin(angle));
acceleration *= throttle * Params::EnginePower;
velocity += acceleration;

velocity *= Params::Friction;

position += velocity;

}
void RocketController::TargetHit () {

Collided = getBoundingBox () .intersects (LockOnTarget-
>getBoundingBox () ) ;

}

void RocketController::accelerate(float amount) {

throttle += amount;
throttle = clamp(throttle, 0.0£f, 1.0f);

}

void RocketController::angular accelerate(float
alpha amount) {

if (angular throttle > 0 && alpha amount < 0) {
alpha amount *= 3;

}
if (angular throttle < 0 && alpha amount > 0) {

alpha amount *= 3;

}

angular throttle += alpha amount;
angular_ throttle = clamp(angular_ throttle, -1.0, 1.0);

}

void RocketController::DefineTarget (Object * EnemyRocket) {
LockOnTarget = EnemyRocket;

}

void RocketController::CheckForSpin() {

if (SpinAlert == false) {
if (rotationalSum >= Params::pi) SpinAlert = true;
else 1if (rotationalSum <= -1 * Params::pi) SpinAlert

= true;




Neural Network Programming
-

}

Appendix 27
Contents of the file 'RocketHC.h'

#pragma once

#include <SFML/Graphics.hpp>
#include "RocketController.h"
#include <string>

class RocketHC : public RocketController {
public:
RocketHC () {}
RocketHC (sf::Vector2f position, float angle)
RocketController (position, angle, Params::BlueNTT,
Params: :BlueFTT) {}

virtual void controls () override;

bi

Appendix 28
Contents of the file 'RocketHC.cpp'

#include <iostream>
#include <SFML/Graphics.hpp>

#include "RocketHC.h"
#include "Utilities.h"
#include "Params.h"

void RocketHC::controls() {

if (sf::Keyboard::isKeyPressed(sf::Keyboard::Up)) {
accelerate(0.01f);
}

else accelerate(-0.006f);

if (sf::Keyboard::isKeyPressed(sf::Keyboard::Left)) {
if (angular throttle > 0)
angular accelerate(-0.03f);
else
angular accelerate(-0.01f);
}
else if
(sf::Keyboard::isKeyPressed (sf::Keyboard::Right)) {
if (angular_ throttle < 0)
angular accelerate (0.03f);
else
angular accelerate(0.01f);
}
else {
angular accelerate((-1 * angular throttle) / 30);
//angular throttle = 0;
}

if (sf::Keyboard::isKeyPressed(sf::Keyboard::Down)) {
accelerate (-0.33f) ;
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Appendix 29

Contents of the file 'RocketNN.h'

#pragma once

#include <SFML/Graphics.hpp>
#include "RocketController.h"
#include "Params.h"

#include "NeuralNet.h"

class RocketNN : public RocketController {
public:

}s

RocketNN () {}
RocketNN (sf::Vector2f position, float angle)

RocketController (position, angle, Params::BlueNTT,
Params: :BlueFTT) {}

virtual void controls () override;
virtual void update () override;
virtual std::vector<float> getNNinputs() = 0;
void calcDistance() ;

float ClosestDistanceToTarget =

sgrt (pow (Params: :WindowHeight, 2) +
pow (Params: :WindowWidth, 2));
float calcLookAtScore();
float LookAtScore = 0;
float normalizedLookAt () ;
std::vector<float> NNInputs;
float calcFitness (float SimulationTime) ;

std::vector<float> NNControls;

voild SetNNControls (NeuralNet *NN) ;

Appendix 30

Contents of the file 'RocketNN.cpp'

#include "RocketNN.h"
#include "Utilities.h"
#include <SFML/Graphics.hpp>

void RocketNN: :update () {

}

RocketController: :update() ;

calcDistance();
calcLookAtScore() ;
CheckForSpin () ;
TargetHit () ;

void RocketNN::controls () {

if (NNControls[0] > 0.4)
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accelerate (0.01f) ;
else
accelerate (-0.006f) ;

if (NNControls[l] < 0.5 - Params::NNC Deadzone)
angular accelerate(-0.01f);

else if (NNControls[l] > 0.5 + Params::NNC Deadzone)
angular accelerate(0.01f);

else
angular accelerate((-1 * angular throttle) / 30);

}

voilid RocketNN: :SetNNControls (NeuralNet *NN) {
NNControls = NN->evaluate (getNNinputs());

}

void RocketNN::calcDistance () {

ClosestDistanceToTarget = (sqgrt (pow((LockOnTarget->
position.x - position.x), 2) + pow((LockOnTarget->
position.y - position.y), 2)));

}

float RocketNN::normalizedLookAt () {

float Egocent x = LockOnTarget->position.x - position.x;
float Egocent y LockOnTarget->position.y - position.y;

float Angle reltoX = atan2(Egocent y, Egocent x);
float Difference = 2 * Params::pi - angle - Angle reltoX;

float wrappedDifference = wrapRange (Difference, -
Params::pi, Params::pi);

return normalize (wrappedDifference, -Params::pi,
Params: :pi);

}

float RocketNN::calcLookAtScore () {
float LookAtEnemy = normalizedLookAt ();

if (LookAtEnemy > 0.48 && LookAtEnemy < 0.52)
LookAtScore++;

else
LookAtScore--;

return 0.0f;

}

float RocketNN::calcFitness(float SimulationTime) {

if (Collided)
return normalize (Params: :MaxSimulationTime -
SimulationTime, 0, Params::MaxSimulationTime) + 2;
else
return normalize (1400 - ClosestDistanceToTarget, O,
1400) ;
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Appendix 31

Contents of the file 'Sandbox.h'

#pragma once

#include <SFML/Graphics.hpp>

#include "Params.h"

#include "RocketHC.h"

class Sandbox {

public:

Sandbox () : Window (sf::VideoMode (Params: :WindowWidth,

Params: :WindowHeight), "Sandbox Mode", sf::Style::None)

{
UserRocket = RocketHC (Params: :posRocketHC,

Params::angleRocketHC) ;

}

sf::RenderWindow Window;
void HandleUserInput () ;
void Run();

float fps;
float fpsLimit;

RocketHC UserRocket;
//RocketRND Bandit;

bool pressedKeys|[sf::Keyboard::KeyCount] = { false };
}i
Appendix 32
Contents of the file 'Sandbox.cpp’

#include "Sandbox.h"
#include "GUI.h"
#include "Utilities.h"

void Sandbox::Run() {
sf::Clock Clock;

//bool CollisionDetection = false;
//bool TargetHit = false;

float PhysicsTimeStepAccumulator = 0.0f;

while (Window.isOpen()) {
const sf::Time FrameTime = Clock.restart();
float FrameSeconds = FrameTime.asSeconds();
fps = 1 / FrameSeconds;

if (FrameSeconds > 0.1f) FrameSeconds = 0.1f;
PhysicsTimeStepAccumulator += FrameSeconds;

HandleUserInput () ;

while (PhysicsTimeStepAccumulator >=
Params: :PhysicsTimeStep) {
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UserRocket.update () ;

PhysicsTimeStepAccumulator -=
Params: :PhysicsTimeStep;

}

Window.clear (sf::Color::Black);
UserRocket.draw (Window) ;
Window.display () ;

}

void Sandbox::HandleUserInput () {
sf::Event event;
while (Window.pollEvent (event)) {
switch (event.type) {

case sf::Event::Closed:
Window.close () ;
break;

case sf::Event::KeyPressed:

pressedKeys [event.key.code] = true;

switch (event.key.code) {
case sf::Keyboard::W:

break;
case sf::Keyboard::S:

break;
case sf::Keyboard::A:

break;
case sf::Keyboard::D:

break;
case sf::Keyboard::R:
//UserRocket.reset ();
break;
case sf::Keyboard::Add:
if (Params::PhysicsTimeStep >= 0.003)

Params: :PhysicsTimeStep -= (0.1 /
Params: :PhysicsTimeStepsPerSecond) ;
break;

case sf::Keyboard::Subtract:
Params: :PhysicsTimeStep += (0.1 /
Params: :PhysicsTimeStepsPerSecond) ;
break;
case sf::Keyboard::Escape:
Window.close () ;
break;

}

break;

Appendix 33
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Contents of the file 'Target.h’

#pragma once

#include <SFML/Graphics.hpp>
#include "Params.h"

#include "Object.h"

class Target : public Object {

public:
Target () : Target (Params::posTarget, Params::radTarget,
Params::sizeTarget, Params::scaleTarget) {}

Target (sf::Vector2f position, float radius, sf::Vector2f
size, float scale) : Object(position, Params::nullvec,
Params::angleTarget, size, scale), radius(radius),
TextureString (Params: :TargetT) {

BodyTexture.loadFromFile (TextureString) ;
BodyTexture.setSmooth (true) ;
BodyTexture.setRepeated(false);

}

virtual void draw(sf::RenderWindowé&) override;
virtual void update() override;

std::string TextureString;
sf::Texture BodyTexture;
sf::Sprite BodySprite;
sf::CircleShape Body;
float radius;

volid reset():;

bool randomized = true;
}i
Appendix 34
Contents of the file 'Target.cpp’

#include "Target.h"
#include <iostream>

void Target::reset () {

int randX = rand() % (int (Params::WindowWidth / 10)) +

(int (Params: :WindowWidth * 0.05));
int randY = rand() % (int (Params::WindowHeight * 0.8)) +
(int (Params: :WindowHeight * 0.1));

position = sf::Vector2f (randX, rand¥Y);
Collided false;

}

void Target::draw(sf::RenderWindow& Window) {

sf::Texture* TargetTpointer;
TargetTpointer = &BodyTexture;

BodySprite.setTexture (*TargetTpointer);
BodySprite.setPosition (position);
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BodySprite.setOrigin (Params: :radTarget,
Params: :radTarget) ;

BodySprite.setScale (Params: :scaleTarget,
Params::scaleTarget) ;

Window.draw (BodySprite) ;
}

void Target::update () {
BodySprite.setPosition (position) ;
BodySprite.setOrigin (Params: :radTarget / 2,
Params::radTarget / 2);

Appendix 35
Contents of the file 'Utilities.h'

#pragma once
#include <cstdlib>
#include <SFML/Graphics.hpp>

float Sigmoid(float activation, float response = 1.0f);

float clamp(float x, float min, float max);

float rad2deg(float);

float deg2rad(float);

float normalize (float x, float min, float max);

float wrapRange (float x, float min, float max);

float CalculateDistance2 (sf::Vector2f a, sf::Vector2f b);
std::vector<std::string> explode(std::string const &
FullString, char Separator);

struct SPoint {
float x, vy;

SPoint () {}
SPoint (float a, float b) : x(a), y(b) {}
bi

inline int randInt (int x, int y) {

return rand() % (y - x + 1) + x;
}
inline float randfloat () {
return (rand()) / (RAND MAX + 1.0);

}

inline float randfloat(float x, float y) {
float RandBase = ((float)rand() / (float)RAND MAX) ;
float range =y - x;
float random = RandBase * range;
return x + random;

}

inline bool randBool () {
if (randInt (0, 1)) return true;
else return false;

}

inline float randClamped () {// -1 <n<1
return randfloat () - randfloat():;
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}

Appendix 36
Contents of the file 'Utilities.cpp’

#include "Utilities.h"
#include <sstream>

float clamp(float x, float min, float max) {

if (x > max) {
return max;

}

if (x < min) {
return min;

}

else {
return x;

}

}

float rad2deg(float par) {
return (par * 180 / 3.141592);
}

float deg2rad(float par) {
return (par * 3.141592 / 180);
}

float normalize (float x, float min, float max) {
return ((x - min) / (max - min));

}

float wrapRange (float x, float min, float max) {
const double width = max - min;
const double offsetValue = x - min;
return (offsetValue - (floor (offsetValue / width) *
width)) + min;
}

float CalculateDistance2 (sf::Vector2f a, sf::Vector2f b) {
return (sqgrt(pow((b.x - a.x), 2) + pow((b.y - a.y), 2)));
}

std::vector<std::string> explode(std::string const &
FullString, char Separator) {

std::vector<std::string> result;
std::istringstream iss(FullString);

for (std::string token; std::getline(iss, token,
Separator); ) {

result.push back(std::move (token));

}

return result;

}
float Sigmoid(float activation, float response) {

activation *= response;
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float fastSigmoid = (activation / (1 + abs(activation)));
return (fastSigmoid + 1) / 2;




