

Exoskeleton: Prototype design

Conceptual design review

Oscar Teruel Guisado

Degree Thesis for Bachelor of Engineering

Degree Program in Energy and Environmental Engineering

Vaasa (Finland), April 2016

BACHELOR'S THESIS

Author: Oscar Teruel Guisado

Degree Program: Energy and Environmental Engineering

Supervisor: Lars Enström

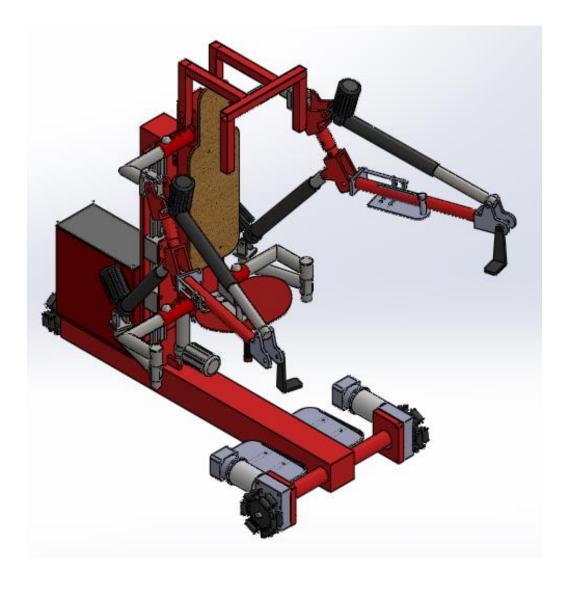
Title: Exoskeleton: Prototype Design – Conceptual Design Review

Date 22/04/2016

Number of pages 55

Appendices 3

Abstract


The design projected in this document has features specifications of an exoskeleton structure with loads operation finality. The entire structure is divided into three major parts: the lower body, the chest, and the arms. Each part was considered separately, and all of the parts can be assembled together to create the main structure.

In this document are collected all the corresponding designs of each element that will compound the final prototype. The lower body represents the base of the structure and supports, the weight of the other two parts and the advance, allowing them to move backwards as well as allowing rotational movement. The chest serves the purpose of a user cabin, where the operator will be placed to operate the exoskeleton. The purpose of the arms is to raise and carry loads.

Although some parts of the study could not be completed due to time constraints, the exoskeleton has been designed for a real use. A user is needed to drive the structure and for this reason an anthropometrical study was completed in order to adapt the design to a real situation.

The electrical design and the control system needed for the prototype functionality are not considered in this project. These sections could be studied at a later time by another person or team as a future complementary study for this project.

As it is a prototype design, this project does not consider any law or design legislation. Additionally, no health and security study was done.

Language: English

Key words: Exoskeleton, mechanical, design.

Table of contents

1	Int	rod	uction1	
2			ions	
3	De	sign	requirements5	
	3.1	Anth	nropometric study	
	3.1.	1	Introduction	
	3.1.	2	Data used 5	
	3.2	Inte	rface definition	
	3.3	Gen	eral dimensions	
	3.3.	1	Preliminary arm dimensioning	
	3.3.	2	Preliminary dimensioning of the shoulder-back set	
	3.3.	3	Lower body preliminary dimensions19	
	3.4	Mov	vement range	
	3.4.	1	Shoulder movement 21	
	3.4.	2	Elbow movement	
	3.4.	3	Hip movement	
	3.5	Glob	pal dimensioning	
	3.6	Com	ponents unification	
4	De	sign	evolution27	
	4.1	Com	nmon elements in the design	
	4.1.	1	Wheels 27	
	4.1.	2	Actuator	
	4.1.	3	Vertical profile, lineal guides and subjection plate	
	4.1.	4	Engine and engine bearing/Battery	
	4.2	Suba	assemblies	
	4.3	Che	st	

7	Literat	ture references	
6	Conclu	ısion	54
5	Budge	t	51
Z		ıl design	
	4.3.7	Exoskeleton storage	50
	4.3.6	Manoeuvrability	46
	4.3.5	Ideal transporting position	45
	4.3.4	Maximum height that the load could be raised	45
	4.3.3	Вох	43
	4.3.2	Material	42
	4.3.1	Arms	40

Appendix Table of Contents

- Annex 1 Analytical calculations
- Annex 2 Catalogues
- Annex 3 Construction drawings

1 Introduction

The objective of this study is to create a Conceptual Design Review (CDR) of an exoskeleton. The study includes an anthropometrical study and the design and mechanical functionality of the structure. It is an open project aimed to be improved and finished later.

These following points will not be considered:

- Electrical and electronic installation needed for operation.
- Control and automation system that would allow for correct operation.

As this is a conceptual design, security and health risks are not taken into account.

As a mechanical engineering student, one of my wishes is to be able to create a machine from only one concept, and if it is possible, to make it capable of improving society, The reason for completing this project, is to address a current problem in society: Musculoskeletal disorder (MSD).

According to the European Agency for Safety and Health at Work:

- Musculoskeletal disorder is most common professional disease in the EU-27, 25% of European workers complain about back pain and 24% affirm to have muscular pain.
- 63% of EU-27 workers are exposed during one quarter part or more of their time to repetitive movements of the hands and arms, 47% are exposed to painful or extenuating postures and 33% are required to transport or move heavy loads.
- Agriculture and construction are the sectors with the most workers exposed to physical risk and affected by MSD. However, all sectors are affected by it to some extent.
- MSD is an expensive affliction due to direct costs (insurance, compensation, medical and administrative cost) and indirect costs due to loss in productivity.

The lifting of medium and heavy weight loads is a problem for a lot of workers in different works and companies. Hundreds of kilograms of loads are transported by pallet lifters or electric lift trucks, but some loads are too small to be carried by machines but also too heavy to be loaded by people.

This exoskeleton has potential for use with this rank of loads, being a machine able to carry loads of zero to fifty kilograms. These are the loads that are commonly carried by people and can contribute to development of MSD.

Some examples of situations in which the exoskeleton could be useful include:

- Product unloading and transport in agriculture and cattle-raising sectors.
- Baggage transport between an airport's conveyor belts and aircraft loading.
- Transportation and loading of packages in a post office.

Necessary software

The following software will be used for the calculations and design of the prototype:

- Microsoft Office Excel
- SolidWorks

Microsoft Office Excel is a spreadsheet software that will be used for the analytic calculations of the needed parameters to check the validity of the design. These parameters will be represented in tables. This allows the data to be displayed in a visual and intuitive way that facilitates comprehension.

SolidWorks is three-dimensional design software that includes tools for creating, simulating, publishing and administrating data in a simple and functional interface.

2 Definitions

Exoskeleton

In biology the term "exoskeleton" is used to describe the outer rigid structure of an insect or crustacean. In the robotic field, exoskeletons are the external rigid structures that give support to the people motor functions. Exoskeletons include a motor power system that gives part of the energy to the limb movement, and helps the user to move and realize activities, such as carrying weight.

An exoskeleton can be defined therefore as an external structural mechanism whose segments and joints correspond to the human body. It allows direct transmission of the mechanical power and information signals. Therefore, it must be adjustable or adaptable to different human body joints, with the objective of aligning the rotational centers.

Special aspects as security, robustness and the robotic mechanism ability should be considered.

Mechanical structure

An exorobot or exoskeleton is formed by a series of linked elements joined by articulations that allow relative movement. There are three different kinds of joints: translational, rotational and mixed.

Each of the independent movement that an articulation can make with respect to the above is called a degree of freedom. The sum of the robot's articulation degrees of freedom is the total number of degrees of freedom of the entire robot.

Actuators

Actuators are responsible for generating movement of the elements that forms the exoskeleton. In robotics, an actuator's classification is based on its power source:

pneumatic, electrical or hydraulic. Table 1 displays a summary of differences in the basic characteristics of actuator types:

Actuator type	Advantages	Disadvantages
	Low cost	
Pneumatic	Fast	It requires a special installation
Fneumatic	Simple	Noisy
	Robustness	
	Fast	It requires a special installation
Hydraulic	High load capacity	Difficult maintenance
	Stability against static charges	Expensive
	Precise and trustable	
Electrical	Noiseless	Postricted power
Electrical	Easy control	Restricted power
	Easy installation	

Table 1: Different actuator characteristics.

The selection of the actuator will depend upon the following factors: cost, velocity, control, power, precision, weight, volume, maintenance and security.

Biomechanics

Biomechanics is the scientific discipline that studies existing mechanical structures, fundamentally from the human body.

The study of biomechanical is present in different spheres, but three of them are currently the most important.

- Medical biomechanics
- Sport biomechanics
- Occupational biomechanics

3 Design requirements

The following section details the design requirements that the exoskeleton must fulfill.

3.1 Anthropometric study

3.1.1 Introduction

After specifying the exoskeleton's general aspects and its various parts, the necessary measurements of the arm elements will be determined.

First, it must be considered that the machine designed will be used by a person. It is essential to have anthropometric studies where the dimensions of the elements are clearly defined, and movement limitations are imposed. The exoskeleton must fit the human body in order to guarantee commodity and security to the user.

3.1.2 Data used

The exoskeleton should be able to be used for different physical and height size. In the predesign stage different anthropometric data were used to delimitate the movement range and the dimensions of its elements.

The digital magazine "*Elfdeportes*" has collected a total of 29 anthropometric variables into a table (figure 1). These variables are defined through statistical techniques. The table shows, for each variable, a range of values that were taken into account when the dimensions of the machine were delimited.

1	FAAC / UNESP / BAURU	Homens			Mulheres		
Dimensões dos Segmentos Corpóreos Humanos			% 50	% 95	% 05	% 50	% 95
01	Estatura	159	171	182	149	160	170
02	Altura Piso - Ombros	132	142	152	123	133	143
03	Altura Piso - Olhos	151	161	172	141	151	161
04	Altura Assento – Cabeça	82	88	93	76	83	89
05	Altura Assento - Ombro	54	58	63	46	54	59
06	Profundidade do Tórax	23	26	29	21	25	32
07	Profundidade do Abdome	19	22	26	17	21	26
08	Largura do Tórax	26	29	34		-	-
09	Largura do Bideltoide (ombros)	39	43	47	34	38	42
10	Distância alcance frontal máximo	69	76	83	62	71	79
11	Comprimento do Braço	33	36	40	-	-	-
12	Comprimento intercular Ombro - Cotovelo	24	29	32	•	-	•
13	Comprimento intercular Cotovelo – Punho	23	25	28	•	-	•
14	Comprimento Cotovelo - Ponta do dedo médio	45	49	55	36	43	50
15	Comprimento intercular Joelho – Maleolo	35	40	44	•	-	•
16	Altura Assento - Coxa	12	14	17	11	14	17
17	Altura Piso - Poplitea	34	44	55	36	40	44
18		50	54	58	49	54	59
19	Distância Nádega – Poplitea	43	48	53	42	47	52
20	Distância Nádega - Joelho	55	60	65	52	58	63
21	Largura do Quadril	30	34	38	31	36	41
22		76	80	87	66	73	80
23	Altura da Cabeça a partir do queixo	21	23	24	19	22	24
24	Largura da Cabeça	17	18	19	14	15	16
25	Profundidade da Cabeça	18	19	20	16	18	19
26		24	26	28	22	24	26
27	Largura do Pé	9	10	11	9	10	11
the state of the state	Largura do Calcâneo	6	7	8	6	6	7
29	Comprimento das mãos	18	19	20	16	17	19

Figure 1: Anthropometrical characteristics table (measurements in cm) / Source: "Elfdeportes"

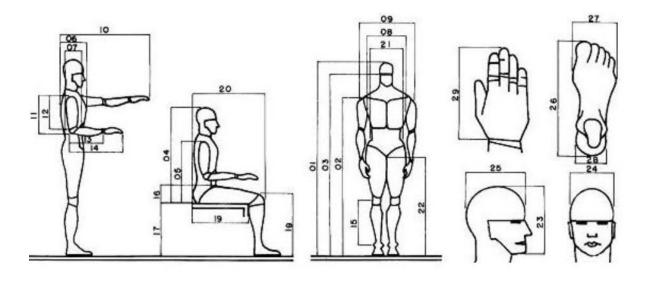


Figure 2: Bidimensional representation for measurements identification / Source: "Elfdeportes"

According to the previous table, the total and partial dimensions of each element were estimated. In an analog way, they were taken into account to define some movement ranges, such as the Top and Bottom Death Centers (TDC and BDC) in the bending actions.

3.2 Interface definition

The exoskeleton is divided in three subassemblies: arms, chest and lower body. These subassemblies were studied individually because each part has a dynamic movement with respect to the others. The joining elements that allow the dynamic movement are called interfaces.

Two different interfaces could be found in the final structure:

- Exoskeleton: Chest-arms
- Exoskeleton: Chest-Lower body

3.3 General dimensions

3.3.1 Preliminary arm dimensioning

The initial values for the arm design were established in accordance with "Manual de Antropometria Normal Patológica".

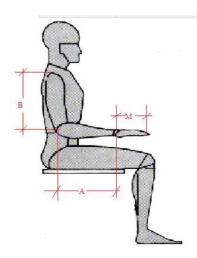


Figure 3: Dimensions used in the arm design / Source: Manual de Antropometria Normal Patológica.

Arm length (distance shoulder-elbow)

It was designed to be used by the majority of the population. Thus, the design considered the extremes to be negligible, with the 5^{th} percentile for women as the minimum and the 95^{th} percentile for man as the maximum (Figure 1).

The following table presents the values mentioned:

	B, Arm length						
Age	ge Woman			Man			
16 years	5%	50%	95%	5%	50%	95%	
10 years	27,9 cm	30,4 cm	33,4 cm	29,5 cm	32,9 cm	36,1 cm	

Finally, the dimensional range will be between 27,9 cm and 36,1 cm.

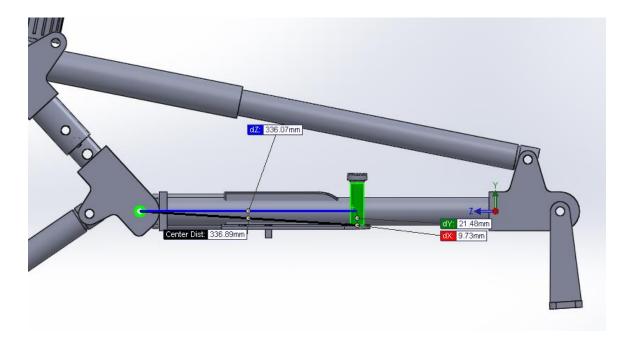


Figure 4: Adjustable arm length

Forearm length

Similarly, the extremes were not considered in the design of the forearm length, with the 5th percentile for woman as minimum and the 95th percentile for man as the maximum.

A, Forearm length						
Age	Woman		Man			
16 years	5%	50%	95%	5%	50%	95%
10 years	20,8 cm	23,3 cm	25,8 cm	22,7 cm	25,5 cm	28,1 cm

The dimensional range is between 20,8 cm as minimum and 28,1 cm as maximum.

In spite of having an arm length defined in concordance with the previous tables, the different constructive aspects that restrict the design must be considered.

In the case of the arm, the minimum measurement has been changed to 30 cm to account actuator installation conditions. Meanwhile, the maximum measurement of the forearm has been changed to 25 cm.

It must be taken into account that the real mechanical forearm is much longer than the user human forearm, because it needs more longitude to pick the load. Therefore it is enough to set this length to 25 cm. The next table adds the anthropometrical design values.

Anthropometrical design values				
	Minimum dimension	Maximum dimension		
Shoulder-elbow length, B	30 cm	35 cm		
Elbow-wrist length, A	20 cm	25 cm		

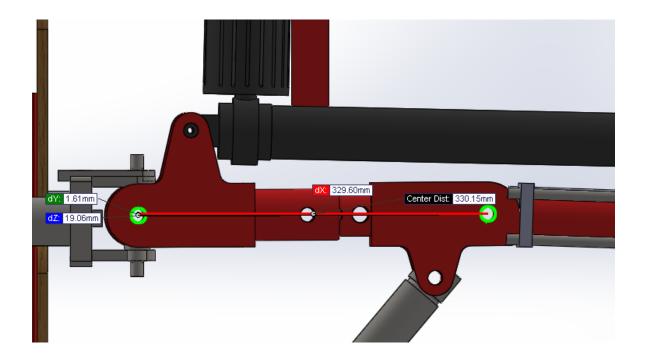


Figure 5: Adjustable forearm length

Consequently, the majority of the population is represented by this specified set of values. The different parts of the mechanical arm will be dimensioned in such a way that the length of the elements can be regulated between these dimensions to adapt to the user.

In accordance with the aforementioned, the mechanical forearm must be bigger than the user's in order to reach the loads. The following table collects the final arm dimensions of the exoskeleton.

Table 5: Dimensional range of the entire arm

Measurement type	Minimum value	Maximum value	
Arm length (from shoulder axis to the "shovel" fixation point)	95 cm	100 cm	

In conclusion, the different arm positions are:

Table 6: Different lengths for the different arm positions.

Position number	Biacromial width
Position 1	95 cm
Position 2	97,5 cm
Position 3	100 cm

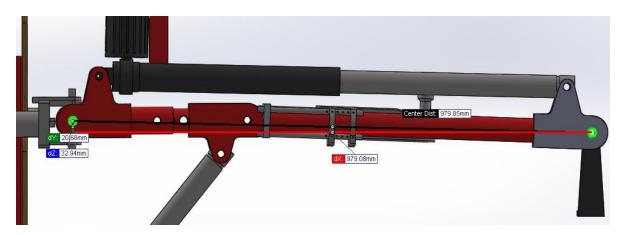


Figure 6: Total adjustable arm length

3.3.2 Preliminary dimensioning of the shoulder-back set.

The measurements that were useful to determine the general dimensions are as follows..

Biacromial distance (between deltoids)

The chest width dimensions were defined using the anthropometrical measurements for the population found in the book *"Manual de Antropometria Normal Patológica"*.

The attached table shows the biacromial back width values for men and women of 19 years old in different percentiles.

Table 7: Biacromial distance for both sexes

Biacromial distance								
Age	Women			Men				
19 years	3%	50%	97%	3%	50%	97%		
17 years	34,1 cm	37,2 cm	40,4 cm	36,3 cm	40 cm	43,5 cm		

The minimum biacromial distance is 34,1 cm while the maximum one is 43,5 cm.

These measurements do not include the deltoids distance, because it was impossible to find information regarding this, a distance was assumed. The minimum and maximum assumed distances are displayed in the following table.

Table 8: Biacromial distance of the machine

Measurement type	Minimum value	Maximum value
Final shoulder distance	60 cm	77 cm

The biacromial distance must be adjustable. In detail, it was decided that the back width will vary by 6 cm. The following table shows the final shoulder distances for each position.

Table 9: Adjustable position with biacromial distance.

Position numbers	Shoulder width
Position 1	60 cm
Position 2	66 cm
Position 3	72 cm
Position 4	78 cm

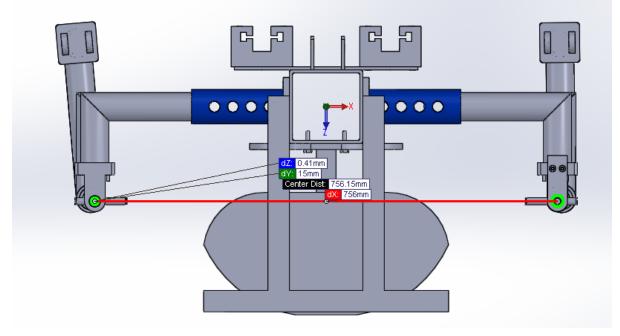


Figure 7: Adjustable shoulder length

Back height (seat-shoulders)

In this case, the digital magazine "*Elfdeportes*" was used again to obtain the ranges and to establish the minimum and maximum values.

As in the previous section, the minimum value corresponds to the 5^{th} percentile for women and the maximum corresponds to the 95^{th} percentile for men.

The following table shows the back height values taken for men and women in different percentiles.

FAAC / UNESP / BAURU		Homen		Mulheres		
Dimensões dos Segmentos Corpóreos Humanos	% 05	% 50	% 95	% 05	% 50	% 95
05 Altura Assento – Ombro	54	58	63	46	54	59

Figure 8: Maximum and minimum distance between seat and shoulders / Source: Elfdeportes

Having these values as a reference and bearing in mind the physical limitation for the exoskeleton design (interferences with other pieces) the final dimension for the back are as follows:

Table 10: Dimensional range for the back height

Measurements type	Minimum value	Maximum value
Back height	45 cm	65 cm

These values are the nominal measurements from the metallic seat base to the middle reference shoulder point. Around 2-5 cm corresponding to the padded final part width of the seat have to be added to these measurements. This is not an exact measurement, because it depends on the chosen material for this function.

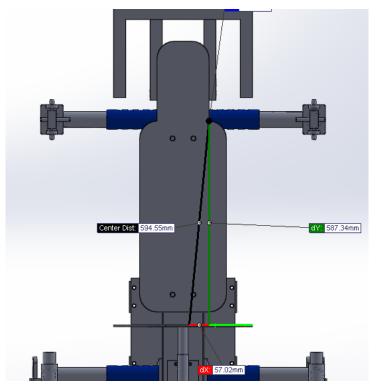


Figure 9: Adjustable back height

Seat dimensioning

The aim of the seat is to provide commodity and the ergonomics for the user in the work place. The anthropometric measurements taken as reference are presented in the following table.

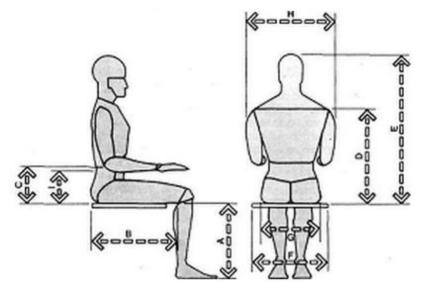


Figure 10: Main distances for a sitting position person./Source: "Mueblesdomoticos" website

		HOMBRES			MUJERES				
			Perce	entil		Percentil			
		5		95		5		95	
MED	IDA pu	lg.	cm	pulg.	cm	pulg.	cm	pulg.	cm
A Altu	ra poplitea 15	.5	39.4	19.3	49.0	14.0	35.6	17.5	44.5
B Larg	ura nalga-popliteo 17	.3	43.9	21.6	54,9	17.0	43.2	21.0	53.3
C Altu	ra codo reposo 7	.4	18.8	11.6	29.5	7.1	18.0	11.0	27.9
D Altu	ra hombro 21	.0	53.3	25.0	63.5	18.0	45.7	25.0	63.5
E Altu	ra sentado, normal 31	.6	80.3	36.6	93.0	29.6	75.2	34.7	88.1
E And	hura codo-codo 13	7	34 8	199	50.5	123	312	193	49.0
G Anc	hura caderas 12	2	31.0	15.9	40.4	12.3	31.2	17.1	43.4
H Anc	hura hombros 17	.0	43.2	19.0	48,3	13.0	33.0	19.0	48.3

Figure 11: Anthropometrical dimension of a sitting person / Source: "Mueblesdomoticos" website

Such as the seat height has to be adaptable to the user, the most important measurement is the hip width dimension (G parameter in figure 10): 43,4 cm for the 95th women percentile that represents the most unfavorable situation. For the design, the hip width will be set at 41

cm. Such as the seat is designed for human dimensions, these little variations are not representatives.

The chosen depth is 25 cm. This dimension allows a relative commodity for the backside support point when the exoskeleton is in the maximum position from the floor.

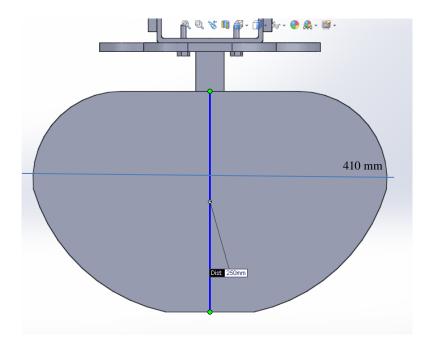


Figure 12: Final seat dimension

Back support dimensions

The back support in any common seat has to support the lumbar region such as essential function. The configuration of this has the objective of adapting the spinal profile but it will avoid the complete coupling that does not allow changing the position of the body.

Considering the previously imposed conditions and the absence of concrete data about the referent pattern values to follow, the measurements were determined through an anthropometric study of some known people. These values are shown in the following figure.

The shown measurements in mm allow a sufficient support for the user, giving enough comfort and stability sensation. Head support and back support compose a unique piece.

			HOM	BRES					
			Perc	entil		Percentil			
		5	5	9	5	5	5	9	5
	MEDIDA	pulg.	cm	pulg.	cm	pulg.	cm	pulg.	cm
A	Altura poplitea	15.5	39.4	19.3	49.0	14.0	35.6	17.5	44.5
в	Largura nalga-popliteo	17.3	43.9	21.6	54.9	17.0	43.2	21.0	53.3
C	Altura codo reposo	7.4	18.8	11.6	29.5	7.1	18.0	11.0	27.9
D	Altura hombro	21.0	53.3	25.0	63.5	18.0	45.7	25.0	63.5
Ε	Altura sentado, normal	31.6	80.3	36.6	93.0	29.6	75.2	34.7	88.1
F	Anchura codo-codo	13.7	34.8	19.9	50.5	12.3	31.2	19.3	49.0
G	Anchura caderas	12.2	31.0	15.9	40.4	12.3	31.2	17.1	43.4
H	Anchura hombros	17.0	43.2	19.0	48.3	13.0	33.0	19.0	48.3

To determine the maximum height from the seat to the head support, the measurements were taken from "normal sitting height" (parameter E, Figure 13).

Figure 13: Sitting individual anthropometrical dimensions.

Considering the 95th men percentile such as the most unfavorable height situation with 92,5 cm, and taking such as head support a point of 3,5 cm under the maximum height of it, it was determined a maximum permissible exoskeleton height of 89 cm, taking the minimum seat height such as reference. The measurement is shown in the following figure.

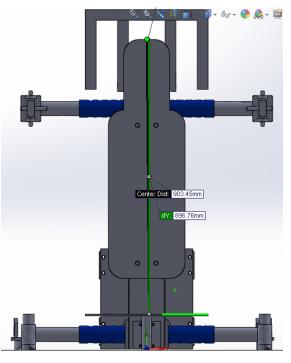


Figure 14: Back support height

Head security structure dimensioning.

Using the book "Felisberto e Pascuoarelli (2001)" the head security structure dimensions were established.

	Seat to head height (04)							
	Women			Men				
3%	50%	97%	3%	50%	97%			
81,5 cm	87,5 cm	92,5 cm	75,5 cm	82,5 cm	88,5 cm			
Head height from chin (23)								
	Women			Men				
3%	50%	97%	3%	50%	97%			
20,5 cm	22,5 cm	23,5 cm	18,5 cm	21,5 cm	23,5 cm			
		Hea	ad height (24)					
	Women		Men					
3%	50%	97%	3%	50%	97%			
16,5 cm	17,5 cm	18,5 cm	13,5 cm	14,5 cm	15,5 cm			
		Hea	ad depth (25)					
Women			Men					
3%	50%	97%	3%	50%	97%			
17,5 cm	18,5 cm	9,5 cm	15,5 cm	17,5 cm	18,5 cm			

Table 11: Human head anthropometrical dimensions.

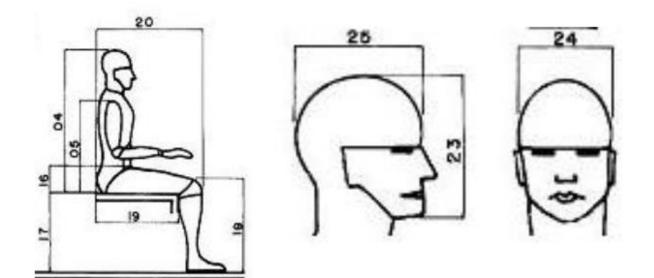


Figure 15: General head dimensions/Source: Elfdeportes

The measurements used in this section were the head width, height and depth, as well as the height from it to the seat. Such as this element does not need to be adjustable, the measurements taken were the most unfavorable; the 95th men percentile measurements were the chosen ones.

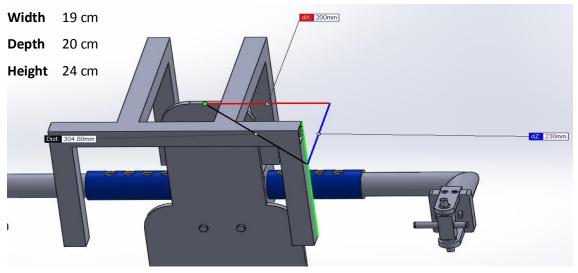


Figure 16: Security structure dimensions

The head is localized at 93 cm from the seat base, taking into account the most unfavorable user height (04 measurements from table 11).

3.3.3 Lower body preliminary dimensions

In this case all the data were found in the book "Felisberto e Pascuoarelli (2001)".

Buttock-knees distance

The distance between the back part of the seat to the footrest must be between 42 cm and 53 cm approximately as is shown in the following table.

FAAC / UNESP / BAURU	1	Homen	s	Mulheres		
Dimensões dos Segmentos Corpóreos Humanos	% 05	% 50	% 95	% 05	% 50	% 95
9 Distância Nádega – Poplitea	43	48	53	42	47	52

Figure 17: Buttock-knees distance / Source: Elfdeportes

Table 12: Buttock-knee dimensional range

Measurement type	Minimum value	Maximum value		
Buttock-knee distance	43 cm	52 cm		

Hip width

Bearing in mind the user comfort, ergonomics and functionality, the distance between feet was also considered. The exoskeleton user will spend almost all the working day with feet in the same position, so this should be such as comfortable and natural as possible.

For these reasons, it was decided that the ankle, knee and hip will be in the same vertical plane. For this design the hip width from the book "*Felisberto e Pascuoarelli (2001)*" was used.

FAAC / UNESP / BAURU		Homen	s	Mulheres		
Dimensões dos Segmentos Corpóreos Humanos	% 05	% 50	% 95	% 05	% 50	% 95
21 Largura do Quadril	30	34	38	31	36	41

Figure 18: Hip width dimension for both sexes / Sources: Elfdeportes.

As 30 cm is the 5th women percentile and 41 cm is the 95th women percentile, the measurements range is:

Table 13: Hip width dimensional range

Measurement type	Minimum value	Maximum value
Hip distance	30 cm	41 cm

To ensure that the entire dimensional specter was completed, it was decided that between 14 cm and 48 cm from the vertical body are the footrest measurements.

The aim is to change the position of the feet during the usage of the machine.

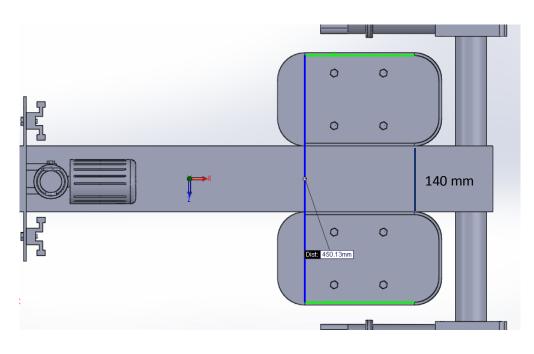
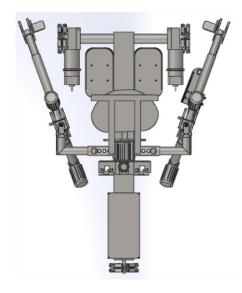
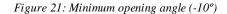


Figure 19: Maximum footrest dimension

3.4 Movement range


Once the interfaces are defined, the movement range of the adjustable elements was delimited. The delimited elements are: shoulder rotation in the horizontal plane, shoulder rotation in the vertical plane and the rise and decline movement in the squat action.

3.4.1 Shoulder movement


Movement in the horizontal plane

The design is based on the idea that the user should be capable of holding different loads with different shapes and dimensions. It was defined that the horizontal movement range would be between -10° to 20° , it is supposed that the 0° is the position where the arm is perpendicular to the back support.

This angle is conditioned by the ensemble stability and utilization, as the facility to pick up and discharge any kind of allowed load inside the exoskeleton use limitations.

Figure 20: Maximum opening angle (+20°)

Movement in the vertical plane.

In order to not put in danger the security of the user, it was decided to restrict the elevation angle from -70° to 40° from the horizontal plane. In this way, the load cannot be in any moment over the user head, avoiding losing the stability and the danger for the operator of the exoskeleton.

The raising arm angle is limited for the maximum actuator force in the maximum rod extension. On the other hand, the going down angle is limited for the actuator dimensions.

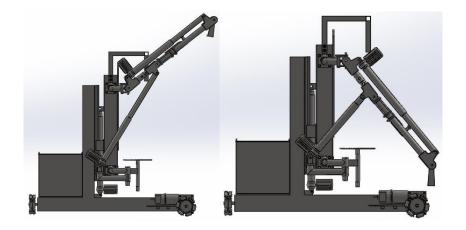


Figure 22: Maximum raising angle (+40°) Figure 23: Minimum raising angle (-60°)

3.4.2 Elbow movement

Arm flexion angle

The minimum axial angle between the arm and the forearm is limited for the maximum extension of a human arm and it corresponds to the axial axis alignment. On the other hand, the maximum angle is restricted by the minimum extension possibility of the actuator.

Table 14: Arm movements' limitations

Movement limitations		
	Angle (°)	
Arm over the horizontal plane	40	
Arm under the horizontal plane	-60	
Minimum angle (arm 1 – forearm 1)	0	
Maximum angle (arm 1 – forearm 1)	90	
Maximum opening from vertical plane (arm 1- arm 2)	20	
Maximum closing from vertical plane (arm 1- arm 2)	-10	

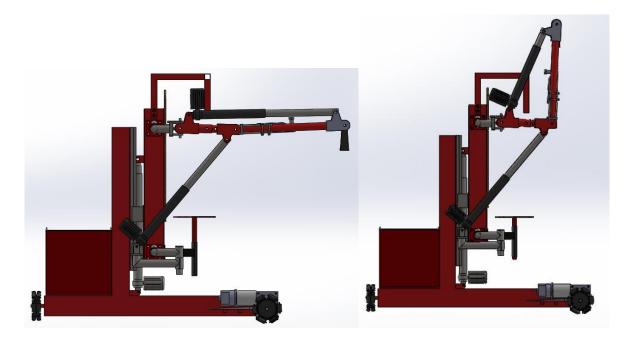


Figure 24: Minimum elbow angle

Figure 25: Maximum elbow angle

3.4.3 Hip movement

Movement limit: squat and stand up.

The action was studied in an empirical way in an average person. In this way, a set of parameters were obtained for, in an ergonomic and comfort point of view, the user could realize this action in a functional and satisfactory manner.

The most adequately feet-seat distance was obtained; this is between 42 cm and 53 cm. Then, it was defined a bottom dead center (BDC), it is the distance between the exoskeleton base to the seat in its lowest position, 30 cm. The distance from the exoskeleton base to the footrest is 6 cm, being at the end a total of 37 cm.

On the other hand, it was assumed the distance from the exoskeleton base to the highest position of the seat, 80 cm, as the top dead center (TDC). Thus these values were considered enough to realize the movement in a functional way, avoiding the risk that could create the total extension or articulation of the knee, as it is done in the real life.

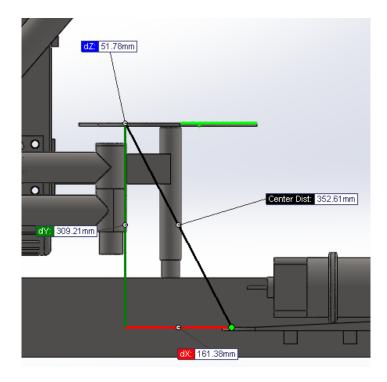


Figure 26: Minimum seat height

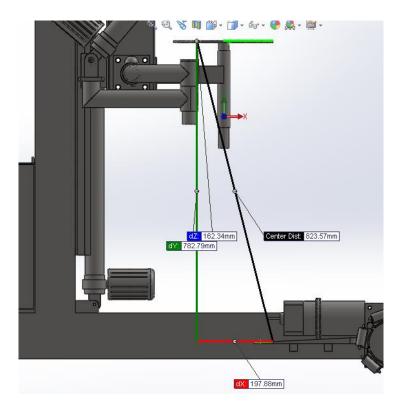


Figure 27: Maximum seat height

3.5 Global dimensioning

Next, it is explained and shown the general exoskeleton dimensioning.

The less compact configuration is when the arms are completely stretched at 40° over the horizontal plane, the shoulder in its larger position and the seat in its highest configuration and the highest position is when the arms are completely shrunk, the shoulders in its lowest position and the seat in its lowest configuration.

Case	Height	Length
Less compact	2151 mm	1591 mm
Most compact	1450mm	990mm

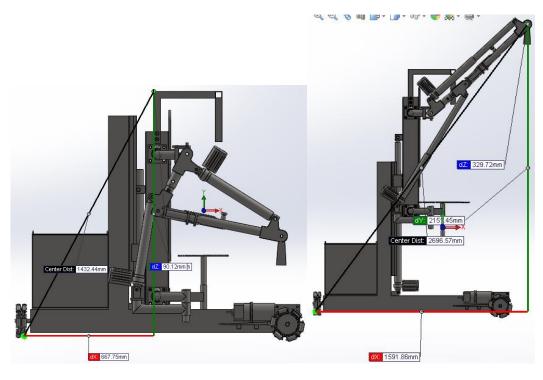


Figure 28: Most compressed position

Figure 29: Most extended position

3.6 Components unification

With the goal of reducing costs and unify the assembly processes, it was tried that the similar functional elements had the same design, it is called "Design intention" in the 3D parametric design world. With that, the maintenance work is easier and the spare stock is reduced with all the advantages that it involves, like a smaller requirement in warehouse space.

The following elements were dimensioned with design intention:

- Footrest
- Tubular profiles
- Retractile shoulder structure
- Rotating cylinder
- Demountable ear
- Retractile support structure
- Tubular profile and support hairpin

4 Design evolution

4.1 Common elements in the design

4.1.1 Wheels

One of the most important decisions was the wheel election, it should be capable to realize the progress and reverse movement, as the rotation in both directions.

After comparing different kind of wheels, it was decided that the one that was more useful for this project is the *"omni wheel"*.

The main omni wheel advantage in front of the common wheels is the disappearance of the dragging component. Consequently, the exoskeleton could rotate and advance in any direction without any restriction. In addition, the machine storage would be better with this kind of wheels.

It is needed to know how much weight each wheel must bear, all the calculations are shown in "Annex 1: Analytical calculations", and the method to choose the wheel in the section "Final design".

4.1.2 Actuator

It was needed to decide which kind of device would be chosen to elevate the load and the weight of the operator.

The first idea was that the seat was rooted in the platform; in this situation the actuator shouldn't raise the weight of the user. But, as the objective is that the exoskeleton has to be able to be driven for different heights people, it means that the seat should be adaptable, because the user must fit in the exoskeleton to have the shoulders in the correct height to concordance with the exoskeleton shoulders.

The easiest way to solve that problem is that the shoulders and seat were joined and floating regarding the platform. With this solution, the user only has to sit and adjust the seat to

have the shoulders in the correct position. Then the actuator would move the entire floating load like a set until the user was in the most comfortable position with their feet in the footrest.

Hydraulic actuator

It is capable of carrying big load with precision, but in this prototype there is no need to carry excessive loads, then the disadvantages are bigger than the advantages it offers.

Mainly the needed space for the oil deposit, the actuator dimension and the expensive maintenance are the reasons why this kind of actuator was not chosen.

Pneumatic actuator

The pneumatic actuator is capable to raise lower loads than the hydraulic actuators, but it works faster. In this prototype, this high speed is not needed, and it also was not chosen for the needed installation space that requires this kind of actuator, as the compressor and the air deposit.

Electrical actuator

The lineal electrical actuator is shown as the best choice for this prototype. It is able to raise big loads and the energy can be storage in batteries that feed as the wheels engines as the actuators engines.

Another important fact is the energy cost of each actuator, being the electrical one the most profitable.

Finally studying all the previous kind of actuators, the chosen one is the electrical actuator because is the one that fits better in this prototype.

With the maximum allowed load, maximum user weight and the exoskeleton arms and back weights, it can be done the stress force calculation that each actuator will bear. With this data, it was possible to choose the correct actuator through catalogues. The calculations can be found in the "Annex 1: Analytical calculations, section 2: Actuator election calculations". 3090 N was obtained as the maximum load value, having this force; it was able to choose the actuator ALI4 24-Vdc. that has a capacity of 4100 N.

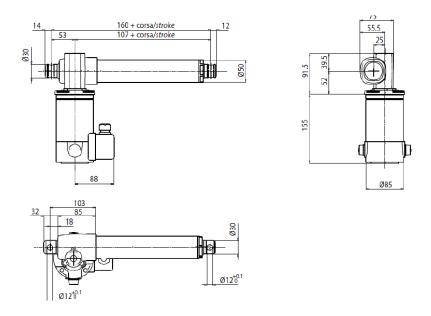


Figure 30: ALI4 24-Vdc. / Source: Actuator catalogue.

After contrasting different technologies to get arm movement, it was decided to also choose a combination of actuators to create the arm movement in the vertical plane. As this previous actuator can raise all the structure weight plus the load, it is also a good option to use the same model in the arm subassembly, because the measurements of it fits inside the design and the actuator in this mechanism do not need to raise as much weight.

Being at the end a total of five actuators in the final assembly; one in the lower body-chest interface and a composition of two of them in each arm to create the "muscle" in the arms articulations.

4.1.3 Vertical profile, lineal guides and subjection plate

The back and lower body union had to be made in a way explained in the previous section, the operator will be suspended regarding the platform and the actuator will move up and down.

But both parts, lower body and the back must be joined, without restricting the up and down movement. This can be solved installing a lineal guide. In the back should be screwed the guides, and in the lower body would be placed the corresponding rails. To insert the rails, it was decided to weld a vertical square profile on the lower body, being this profile parallel to the back.

Two kinds of guides were in mind: lineal guides with trapezoidal slide and lineal guides with straight slide.

Lineal guides with trapezoidal slides

This kind of guides present a high assembly complexity due to its geometry, they also are more expensive than the straight lineal guides.

On other hand, due to the need to place the actuator centered between both guides, the only feasible solution was adding a U profile. To this profile would be welded the trapezoidal slides, and the guides would be screwed to the base vertical profile.

Lineal guides with straight slides

However, analyzing the configuration of the lineal guides with straight slides, I can be seen that the simplicity in its geometry is the biggest advantage, as in the economical field as in the maintenance and assembly.

In this case, to add this element in the design there is any need to add any profile, because it can be screwed in the back or in the vertical base profile.

Due to these advantages, finally the lineal guides with straight slides were the chosen ones for the prototype.

Next will be explained which configuration was chosen to add the actuator and why finally was decide to add two lineal guides instead of one.

Two guides election

At first, it was considered to use a unique guide-slides set (from now on advance it will be called "lineal table"). Finally, the design was changed because the situation of this lineal table was not fitting with the electrical lineal actuator, also the stability of the chest-arms set was not enough, thus finally, it was decided to use two lineal tables to guarantee the correct operation.

Support plate

As the final design has in consideration using two linear tables, it is needed to add a support plate; the central column has not enough space to screw both of them. The dimension of it must to be fit into the design, guarantying the no interference with the other elements.

- <u>Height</u>: The height of the plate has the same longitude than the lineal tables, all the plate-guides set is installed in the same direction than the back electrical actuator direction (490 mm). It is decided to add a little dimensional marge (in this case is 55 mm each side) to avoid impacts on the top and bottom dead point (TDP-BTP). The final height of the support plate is 600 mm.
- <u>Width</u>: This value has to be enough to accommodate to lineal guides and allows the alternative vertical actuator movement. On the same way, a security marge is added (30 mm in total). The final width is 260 mm. Enough to satisfy the previous necessities.

- <u>Thickness</u>: The value was procured to fit in the preliminary design. However, it should be enough to withstand all the service tension and resist the stress caused for the screwed unions used in the guides. Bearing in mind this requests, the final thickness value is 10 mm.

The first material thought to be used to construct the support plate was aluminum, but as the central column would be made of steel, some considerations must to be done when two different material have to be welded.

Two materials with different fusion points and different dilatation coefficients could generate internal tensions that would raise the service weld bead fragility and the corrosion risk. To weld steel and aluminum, some chemical compounds are generated, these compounds are brittle and for avoiding then, it is need to use special welding technics.

Finally, to reduce cost and facilitate the assembly, the material chosen for the support plate is AISI1020 steel, the same used in the structure.

Magnitude	Measurement (mm)	Marge (mm)	Total measurement (mm)
Width	200	30.2 = 60	260
Height	490	55.2 = 110	600
Thickness	10	0	10

Table 16: Support plate measurements.

Two slides per guide

If only one slide per guide is put in the design, this will support the entire torque of all the structure, because the gravity center is between them. However, if two slides are put in each guide, the distance from each slide to the gravity center rise, decreasing the stress supported per each one.

In this way it is observed that for a same torque, the stress supported per each slide is lower when the distance between the slides and the gravity center rises. In Annex 1: Analytical calculations, section 3: Calculation referred to the lineal guide election, are some suppositions for the arm and load positions. From this analysis is obtained that the worse position is where one arm is at 0° while the other is at 20° outward and supporting the totality of the load.

After this analysis, all the following studies will be done in the same position, because is the worst one. If the design is favorable in this position, it means that it is favorable for all the others positions.

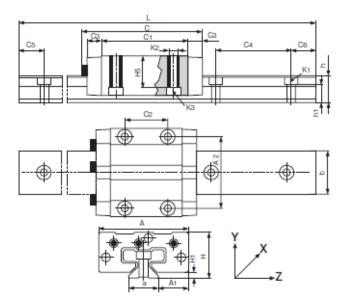


Figure 31: Lineal table DryLin TK01 / Source: Lineal guide catalogue

4.1.4 Engine and engine bearing/Battery

This element will be related with the chosen wheel and the final weight of the structure. These two elements will be defined when the final design will be over.

Depending on the engine and actuator consumption, it will be chosen a battery with different capacities, this element also will be defined when the final design will be over.

4.2 Subassemblies

The following pictures show the different subassemblies that compounds the final structure.

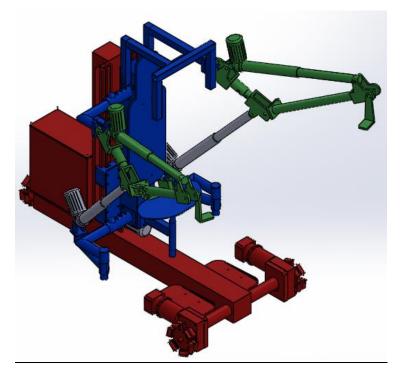


Figure 32: Isometric view. Chest, arms and lower body subassemblies.

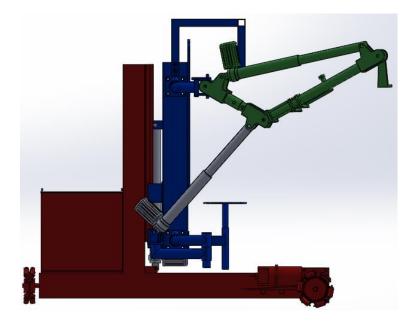


Figure 33: Lower body, Chest and Arms subassemblies

4.2.1 Lower body

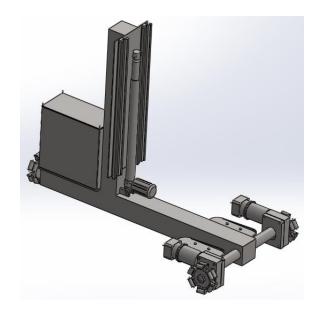


Figure 34: Lower body subassembly

Main components:

- 1 x Crew profile
- 3 x Omni wheels
- 3 x Engines
- 3 x Engine fixing piece
- 2 x Footrest
- 2 x Lineal guide
- 1 x Lineal guide support plate
- 1 x Actuator
- 1 x Box battery
- 1 x Battery tape

Analyzing this design, it can be observed that the exoskeleton could realize the needed movements without an engine in the back wheel; it means a weight reduction and energy savings for the needed battery storage.

The lateral movement is erased to convert it into two actions, rotation and advance (two wheels rotating into opposite directions).

The principal structure changed a total of 3 times, first it was a composition of two square pieces, one was the base and the other was the lower body interface, it was designed to be able to mount and dismount both pieces; this design was changed for some inconveniences:

- A square base do not give enough stability to the entire structure, the gravity center was displaced too much.
- The joint between both parts was a useless idea, this exoskeleton is not designed to be dismounted and the join is one of the weakest points in the structure, a big torque is generated in this place.

The second design consisted in only one piece in crew shape, the joint disappeared and the stability improved, but it still was changed for the following disadvantages:

- High weight
- Big dimensions
- Low maneuverability

The final design reduced the dimensions of the piece, doing it thinner and adding two wheel supports that allow maintaining the distance between the wheels and therefore the stability of the structure.

Wheels, engine and engine bearing.

First, the omni wheel is chosen by catalogue, it must bear the third part of the weight. The calculations are shown in *Annex 1: Analytical calculations, section 5.1 Minimum power needed to move the wheel.* The chosen wheel is HANGFA QLM-20 that can bear a maximum load of 160kg.

With the chosen wheel specifications and determining a minimum advance velocity, it is possible to calculate the engine power needed. These calculations are shown in *Annex 1: Analytical calculations: Engine election.*

In accordance with the results, the chosen engine is PM63-50BG9, its catalogue is shown in *Annex 3: Catalogues*.

Concluding, knowing the engine dimensions and its geometry, it was needed to think the way to link it with the design.

The solution was to design a piece with the same shape and length and width dimensions with four concentric holes, the engine and this piece would be linked with four bolts.

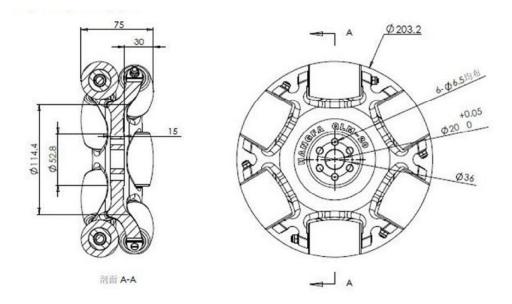


Figure 35: Omni wheel HAMFA QLM-20

Battery

The final design contains three wheels, two engines and 5 actuators (2 in the arms, 2 in the shoulders and one in the lower body). It is possible to calculate the consumed power and then choose the battery needed.

Calculations are in Annex 1: Analytical calculations, section 7 Battery calculations.

Finally, the chosen battery is TROJAN J185H-AC.

4.3 Chest

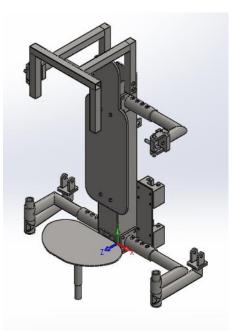


Figure 36: Chest subassembly

Main components:

- 1 x Security structure
- 4 x Tubular profile
- 2 x Retractile shoulder structure
- 2 x Rotating cylinder
- 2 x Shoulder pin
- 2 x Demountable ear
- 2 x Cooper hub
- 1 x Column
- 1 x Back support
- 1 x Seat support
- 1 x Seat
- 2 x Retractile support structure
- 2 x Tubular profile and support hairpin
- 1 x Cooper hub and tape
- 4 x Lineal slides

The main problem in this subassembly design was how to reach the user dimension range and how to give horizontal and vertical mobility to the arms subassemblies.

The design changed three times, the first design was created only to have a preview of how the shape should be and to visualize the dimensions of it. It was know that this design would not have any real finality. After having this preview, the next problems were found:

- It has not any extensible element, it was not reaching one of the main goals (it should be able to be used by different stature users).
- The chest-arm interface was created with a rectangular profile element, this shape is not the best election in this situation and it has to bear big torques.
- The vertical and horizontal arm movement is not contemplated.

In the second design some problems were solved, the rectangular profile elements were changed for cylindrical ones, this change improved the torque resistance, and also some new elements were created (Retractile support structure and retractile shoulder structure) to add some different joint positions that give a variable dimensioning to the final composition, reaching in this case the retractile goal. Finally, the most important change is the addition of a spherical element that allows the arm movement.

Even with these changes, some little problems were found:

- The dimensions of the column were too big and therefore the weight was creating an unnecessary big torque.
- The spherical element was working fine, but as the goal of the project is to raise loads of 50 kg, it was supposed that the element would break in a near future.

In the final design, these problems were solved, the dimension of the column was reduced and to add the lineal slides, a thin plate was welded in the new column. The spherical element was changed for a hub with a bolt crossing it, the hug gives the horizontal movement, while the bolt allows the vertical one.

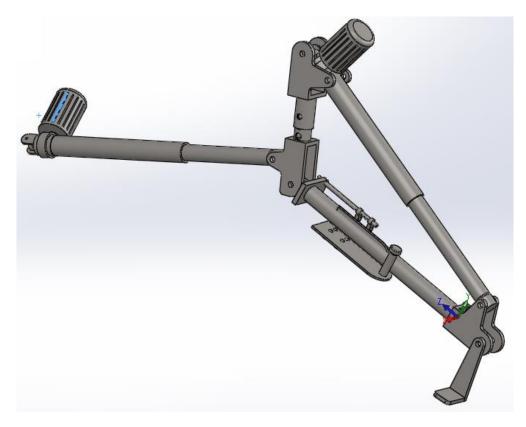


Figure 37: Arm subassembly

Main components:

The final arm subassembly is composed for two symmetric subassemblies; it was intentioned to create as much equal element that could be used in both arms, to maintain the design intention.

- 2 x Kneecap elbow arm
- 2 x kneecap shoulder arm
- 2 x Shovels
- 4 x Extensible tubular joint
- 4 x Arm support joint
- 1 x Left forearm
- 1 x right forearm
- 1 x Left arm support
- 1 x Right support

The arm design was not changing a lot after the first idea, it was based in the chest design to create the retractile possibility and it was also created with cylindrical profiles. The unique addition IS the arm support element; it allows the user to rest the arm and to create a joint between the user and the structure to transmit the mechanical energy, it is an essential element that should be combined with different sensors and electronic devices to make possible the objective of the exoskeleton (carry big weight without using a big force), the user's arms and the exoskeleton's arms should work synchronized, but it is a complementary work for this main project.

Shovels

To dimension the box handle is needed to know the minimum measurements of the shovel that will be used to hold the load.

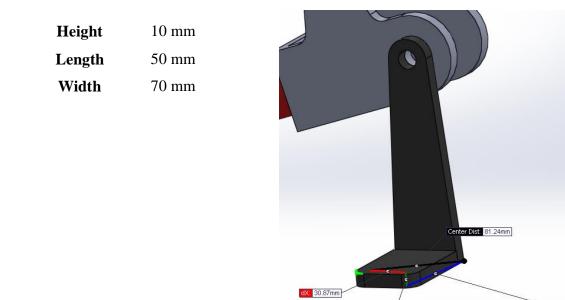


Figure 38: Snovei illustration

Imm

IZ: 74.48mm

The shovels will never be in distance lesser than 360 mm; all these measurements will be used to calculate the box handle dimensions in a following section.

4.3.2 Material

This section is important to know the final weight of the entire structure, but as this project will not be absolutely finished, it is possible that the final design version could suffer some changes in the chosen material, when the axis studies would be realized, it should be decided if the material has the correct specifications to reach our requirements or it should be changed to another one with better characteristics for our necessities.

The material chosen for the structural elements is AISI1020 steel, in the following picture (taken from the software SolidWorks) is possible to see the material specifications:

🗄 📲 SolidWorks Materials	*	Properties	Appearance	CrossH	latch Cu	istom A	Application Data	Favorites	
🚊 🔠 Steel	_	- Material I	properties						
1023 Carbon Steel Sheet (SS)				ult library	can not b	oe edited	d. You must first (copy the mate	rial to
201 Annealed Stainless Steel (SS)		a custom library to edit it.							
A286 Iron Base Superalloy		Model -	Model Type:						
AISI 1010 Steel, hot rolled bar		Moder							
→ AISI 1015 Steel, Cold Drawn (SS)		Units:		SI - N/mn	1^2 (MPa)		-		
AISI 1020		Catego		Steel					
AISI 1020 Steel, Cold Rolled		Catoge		oteer					
	≡	Name:		AISI 102	0				
AISI 1045 Steel, cold drawn									
			,						
AISI 316 Annealed Stainless Steel Bar (SS		Descrip	ition:						
→ AISI 316 Stainless Steel Sheet (SS)		Source							
→ AISI 321 Annealed Stainless Steel (SS)		Source	·						
→ AISI 347 Annealed Stainless Steel (SS)		Sustain	ability:	Defined					
→ SE AISI 4130 Steel, annealed at 865C			· [
→ B = AISI 4130 Steel, normalized at 870C		Property			Value	Units			
		Elastic Mo	dulue		200000	N/mm ⁴	19	_	<u> </u>
		Poissons			0.29	N/A	2		
→ AISI Type 316L stainless steel		Shear Mo			77000	N/mm [^]	2		
AISI Type A2 Tool Steel		Density			7900	kg/m^3	3		
		Tensile S	trength		420.51	N/mm [^]	<u>`2</u>		E
			sive Strength	in X		N/mm [^]	-		
		Yield Stre	-		351.57	N/mm [^]	<u>^2</u>		
			xpansion Co	efficient			10		
Cast Carbon Steel		Specific H	Conductivity		47 420	W/(m-	· · · · · · · · · · · · · · · · · · ·		
			amping Ratio		420	J/(Kg-r	N)		
Chrome Stainless Steel	-	,							
<pre></pre>			Apply	Close	Sa	ve	Config	Help	

Figure 39: AISI 1020 steel SolidWorks specifications /Source: SolidWorks oftware

This kind of steel is chosen as first option for its good fatigue resistance and the easy mechanization.

The total weight of the steel structure has a final weight of approximately 540 kg. It was calculated with the measurement tool from SolidWorks.

4.3.3 Box

Limit dimension of the box to carry.

First, it must be calculated the limit dimensions of the box that is needed to be elevated.

The worst situation is when it is needed to raise the load from the floor. Then, the limit dimensions of the box is when the exoskeleton is situated in the bottom dead center (BDC), the arms in this positions are in the closest distance from the floor.

In addition, in this position can be found interferences between the shovels and base structure when the arms are closed to its maximum angle (-10°), then some specifications have to be done before doing this study.

After testing the structure with SolidWorks, the position that makes possible to carry the load from the floor is this:

- Both arms completely extended and closed at -10°
- Both arms at -40° from the horizontal plane.
- Chest subassembly situated in its IDC.

Studying this position is possible to get the minimum volume that the box should have.

Width	360 mm
Length	309 mm
Height	360 mm

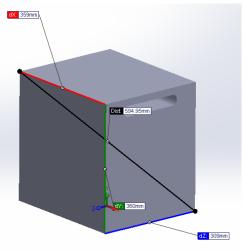


Figure 40: Example box dimensions

After having all this measurements, it is possible to define the minimum dimensions of the handle, it has to be positioned at 310 mm from the floor and it has to maintain the symmetry with the box to improve the stability.

Width	180 mm
Length	360 mm
Height	30 mm

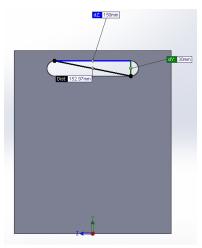


Figure 41: Example box handle

Next is showed a representation of how the exoskeleton would carry and raise a minimum size load.

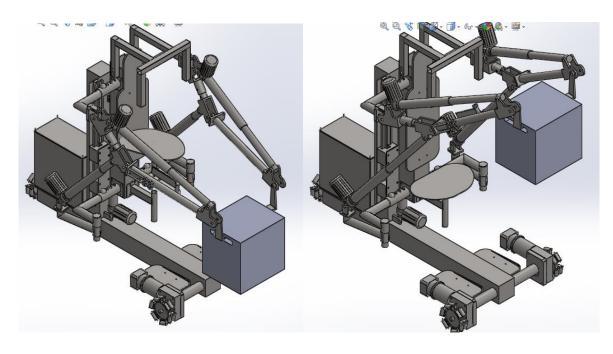


Figure 42: Exoskeleton carrying a load

Figure 43: Exoskeleton raising a load

4.3.4 Maximum height that the load could be raised

To determine this parameter, it is needed to move the exoskeleton until his maximum height position. This position is determined as:

- Arms completely extended
- Arm turned 40° over the horizontal plane
- Structure in the top dead center (TDP)

After positioning the exoskeleton in this position it was possible to measurement the total height that is possible to elevate the load.

Maximum stacking height 2084 mm

It is a good result, this measurement simulates the height that a normal human could raise a normal height, but in this case, it would be possible to do the same action but with a load two or three time heavier than a normal person could carry.

4.3.5 Ideal transporting position

The ideal position to transport the load is where the gravity center is lower, but as one of the goals of this project is to be care about the user comfort, the transport cannot be realized in the bottom dead center (BDC), where the user should be all time completely flexed. It I estimated that an average normal height is 500 mm, in this way the user is not in any of the extremes positions.

The ideal transporting position is got with:

- Arm-forearm angle at 100°
- Seat at 500 mm from the footrest
- Elbow actuator completely closed

After analyzing this position, a big problem was found; the visibility of the user can be reduced when the load is in front of him. It is a big problem that should be studied and tried to be solved in the next prototype design.

4.3.6 Manoeuvrability

In this section will be detailed which will be the needed workplace to use this exoskeleton prototype carrying the maximum load of 50 kg.

First, the width and height corridor measurements will be defined to have enough space for the exoskeleton realizing its goal.

These dimensions are established assuming that the user is working in the ideal position and having a marge of 10 cm between the exoskeleton and the walls.

The minimum wall height should be 1680 mm if we assume the last assumptions; it is not a problem because any industrial workplace has a minimum height of 3 or 4 meters.

To talk about the needed width, two different situations must be studied. It is considered the following carrying position:

- Arms completely extended
- Arms opened at their maximum angle from the vertical (20°)

Situations:

1- The exoskeleton does not need to rotate, only carry the weight in straight direction.

In this situation the dimensions between both arms is 1480, and bearing in mind the marge with the walls, the minimum corridor width must be 1580 mm

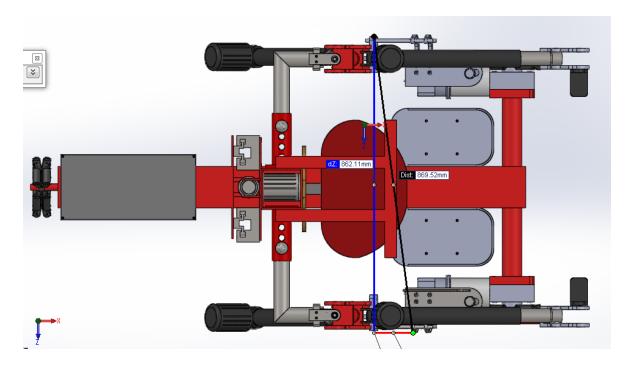


Figure 44: Absolute width dimension

2- The exoskeleton needs to rotate.

When the exoskeleton needs to rotate, it creates an imaginary pivoting axis in the middle point between the wheel, the length between this point and the back wheel represents a radius of an imaginary circumference. This radius has a length of 1400 mm.

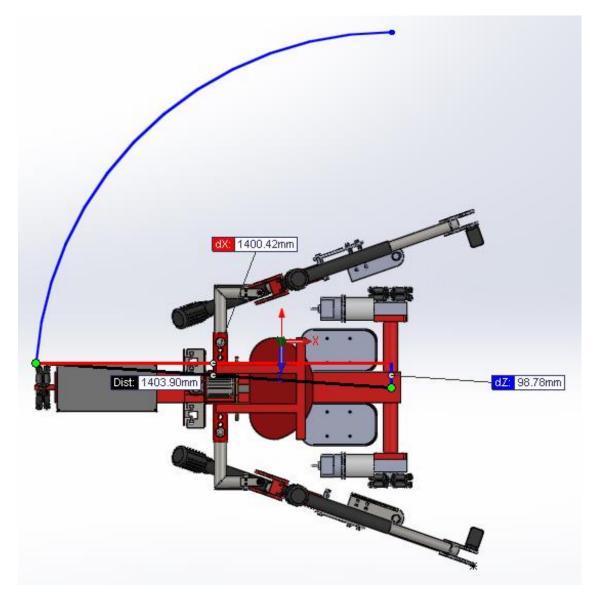


Figure 45: Pivoting radius

But as the arms in the most extended position, the distance from the pivoting axis to the farthest arm point must be added to the total measurement, also the marge with the walls have to be counted, finally being the minimum corridor width in this position, 2305 mm.

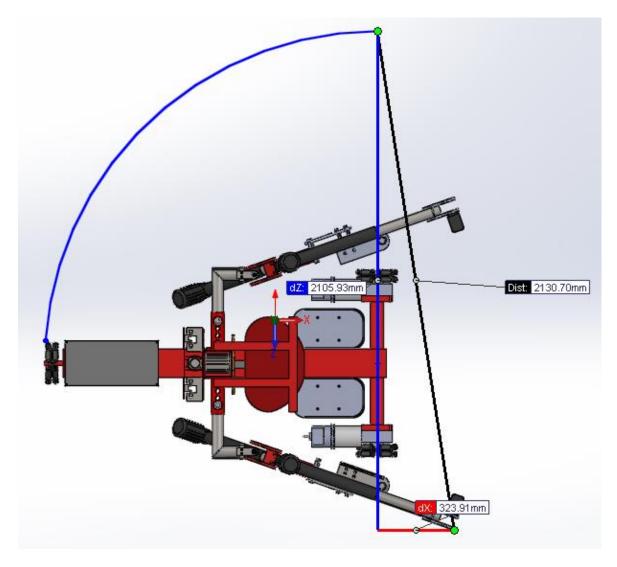


Figure 46: Absolute pivoting dimension.

4.3.7 Exoskeleton storage

As last, an important aspect in the industrial field is the machinery storage.

The most compressed position is the one that is used as storage position. This position was studied in section 3.5 *Global dimensioning*, but the measurements are shown in the following table.

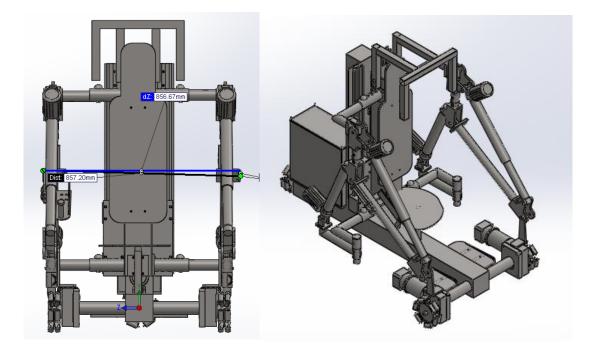


Figure 47: Storage width

Figure 48: Storage position

Table 17: Exoskeleton storage dimensions.

	SolidWorks rounded measurement	Final dimension (with 100 mm to the wall)
Width (mm)	860 mm	1060 mm
Length (mm)	1500 mm	1700 mm
Height (mm)	1450 mm	1550 mm

4.4 Final design

After the previous study and after drawing some different structures, it was chosen the one that can allow all the elements without interferences and at the same time can realize all the movement needed and described.

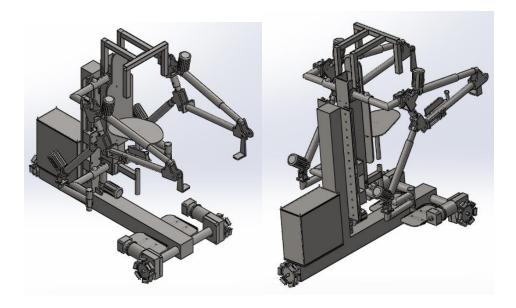


Figure 49: Final assembly (Front isometric view)

Figure 50: Final assembly (Back isometric view)

Finally, confirming the final design based in simplicity, profitability and easy assembly, it is possible to define the final components.

5 Budget

This section was created to have a cost estimation to compare it with machinery those are currently functional. It has to be emphasized that it is not a final version and the electronics part is not studied in this project, therefore this little economical comparison is show the situation where this study is right now.

To realize this budget, different table were created with an Excel worksheet.

Each subassembly was studied individually.

Lower body

Manufacturer bought elements		1200	€
Square and circular tubes (AISI1020)		30	€
Solid steel rod (AISI1020)		1	€
Steel plates (AISI1020)		25	€
Screws		25	€
Mechanized	Cutting	175	€
	Drilling	210	€
	Milling	100	€
	Lathing	100	€
Welding		280	€
Assembly		75	€
Total		<u>2221</u>	<u>€</u>
Chest			
Shoulder subassembly		900	€
Support subassembly		750	€
Column subassembly		740	€
Seat subassembly		230	€
Electrical actuation system		1500	€
Assembly		250	€
Total		<u>4370</u>	€
Arms			
Final pieces cost		470	€
Welding		90	€
Screws and hubs		140	€
Electrical actuation system		1500	€
Total		<u>2200</u>	€
Final assembly			
Total		17582	€

After doing this estimation, it was searched another machinery that could realize the same work as the exoskeleton.

Searching on internet, some devices were found, it was chosen the one that could realize the same objective in the most similar way.

The chosen device is a forklift, in specific the model WP 3000 from the company CROWN, its catalogue is added in Annex 2: Catalogues.

The main points that were studied are the general dimensions and the capacity to realize the work. The forklift dimensions show the range that compounds all the models.

	Exoskeleton	Forklift	
Height	1450	780-1197	mm
Width	860	712	mm
Length	1500	1799-1899	mm
Elevation height*	2048	750	mm
Rotation radius	1408	1534-1634	mm
Maximum raising weight	50	800	kg
Device weight (without battery)	540	490-535	kg
Price	17582 + Elect. Dev.	3000	€

Table 18: Machine comparison

*Maximum load raising height

The comparison gave promising results. The dimensions of the exoskeleton are little enough to be competitive in the market while in other aspects are even better; the elevation height is more than twice, allowing this better stack options, but on the other hand, the estimated price of the exoskeleton is extremely high to be an available option.

There are still some options to improve the exoskeleton and reduce the cost, it would be possible to change the material, even the design could be changed to give more stability reducing the dimensions or even increasing the load weight that could be carried.

6 Conclusion

The realization of this project was done following the engineering design processes, it was done a necessity recognition, followed by a problem definition, the synthesis of the design, the essential analysis and optimization was done until the third design, as it is a thesis report and the global goal of it is showing my engineering knowledge, the design process stopped in this point and it continued to the evaluation step to finally finished in the presentation.

In the final design, after realizing all needed modifications, I obtained a design that met all the requirements initially aimed, the anthropometrical dimension for the dimensioning are reflected in the design and the interfaces were successfully defined, allowing the desired movement without interferences. As a result, the final prototype studied is considered to be the simplest and the cheapest option.

Even the exoskeleton specifications are good enough to realize its goal; it still has to be improved in many ways. As the intention is to design an exoskeleton, the next versions should be evolved to a humanoid shape, the most important factor would be the movement system, the design should allow the user working in many different workspaces, not only in flat floors, the biggest restraint of this project.

Also, during the study it was possible to check that using the right element and materials, the lifting capacity of this dispositive could be highly improved, combining this fact with a good base stability, it would be possible to get a real exoskeleton that allows the user lifting huge loads in many different spaces. These improvements could hide the high manufacture cost and convert this project in a real market option.

7 Literature references

- /1/ Elfdeportes. Digital magazine. Antropometria: necessidade de constantes investigações para a efetiva contribuição na área da Ergonomia <u>http://www.efdeportes.com/efd149/antropometria-contribuicao-na-area-da-ergonomia.htm</u> Retrieved: 25.03/2016
- /2/ European Agency for Safety and Health at Work. *Transtornos musculoesqueléticos*. <u>https://osha.europa.eu/es/themes/musculoskeletal-disorders</u> Retrieved: 25.04.2016
- /3/ Felisberto, L. C.. Pascuoarelli, L. C. 2001. Dimensionamento preliminar de postos de trabalho e produtos – modelos antropométricos em escala. In: ENCONTRO NACIONAL DE ENGENHARIA DE PRODUÇÃO.Anais... VII International Conference on Industrial Engineering e Operations Management, Salvador. Proceedings, 1 CD ROM. Retrieved: 23.03.2016
- /4/ Lapunzina, P. Aielo H. 2002. Manual de antropometria normal y patologica: fetal, neonatal, niños y adultos. Elsevier España, p.503. <u>https://books.google.fi/books?id=6dqdadnpvckC&printsec=frontcover&hl=es#v=o</u> <u>nepage&q&f=false</u> Retrieved: 30.03.2016
- MUEBLESDOMOTICOS. Medidas para diseñar sillas o asientos. <u>http://mueblesdomoticos.blogspot.fi/2010/12/medidas-para-disenar-sillas-o-asientos.html</u> Retrieved: 05.04.2016
- /6/ NATIONAL AERONAUTICS AND SPACE ADMINISTRATION. Man-Systems Integration Standards. Revision B, July 1995. Volume I, Section 3 ANTHROPOMETRY AND BIOMECHANICS. <u>http://msis.jsc.nasa.gov/sections/section03.htm#_3.2_GENERAL_ANTHROPOMETRICS</u> Retrieved: 07.04.2016

Catalogues

- /7/ EMD. *Gearbox BC-9* <u>http://www.parvalux.com/downloads</u> Retrieved: 13.04.2016
- /8/ HANGFA Omni wheel QML-20 <u>http://www.hangfa.com/EN/omniwheel/QLM20.html</u> Retrieved: 10.04.2016
- /9/ IGUS. DryLin TK-01 Lineal slide. http://www.igus.com/wpck/3576/DryLin_T_Einstellbares_Spiel Retrieved: 03.04.2016
- /10/ MECVEL. *Lineal Actuators ALI4 24-Vdc*. <u>http://www.mecvel.com/linear-actuator-ali4-ac/</u> Retrieved: 03.04.2016
- /11/ TROJAN. *Battery*. J185H-AC http://www.trojanbattery.com/product/j185h-ac/ Retrieved: 07.04.2016

Table of contents: Figures

Figure 1: Anthropometrical characteristics table (measurements in cm) / Source: "Elfdeportes"	6
Figure 2: Bidimensional representation for measurements identification / Source: "Elfdeportes"	7
Figure 3: Dimensions used in the arm design / Source: Manual de Antropometria Normal Patológica.	8
Figure 4: Adjustable arm length	9
Figure 5: Adjustable forearm length	10
Figure 6: Total adjustable arm length	11
Figure 7: Adjustable shoulder length	13
Figure 8: Maximum and minimum distance between seat and shoulders / Source: Elfdeportes	14
Figure 9: Ajustable back height	14
Figure 10: Main distances for a sitting position person./Source: "Mueblesdomoticos" website	15
Figure 11: Anthropometrical dimension of a sitting person / Source: "Mueblesdomoticos" website	15
Figure 12: Final seat dimension	16
Figure 13: Sitting individual anthropometrical dimensions.	17
Figure 14: Back support height	17
Figure 15: General head dimensions/Source: Elfdeportes	18
Figure 16: Security structure dimensions	19
Figure 17: Buttock-knees distance / Source:Elfdeportes	19
Figure 18: Hip width dimension for both sexes / Sources: Elfdeportes.	20
Figure 19: Maximum footrest dimension	21
Figure 20: Maximum opening angle (+20°)	22
Figure 21: Minimum opening angle (-10°)	22
Figure 22: Maximum raising angle (+40°)	22
Figure 23: Minimum raising angle (-60°)	22
Figure 24: Minimum elbow angle	23
Figure 25: Maximum elbow angle	23
Figure 26: Minimum seat height	24
Figure 27: Maximum seat height	25
Figure 28: Most compressed position	25
Figure 29: Most extended position	26
Figure 30: ALI4 24-Vdc./ Source: Actuator catalogue.	29
Figure 31: Lineal table DryLin TK01 / Source: Lineal guide catalogue	33
Figure 32: Lower body, Chest and Arms subassemblies	34
Figure 33: Lower body subassembly	35
Figure 34: Omni wheel HAMFA QLM-20	37
Figure 35: Chest subassembly	38
Figure 36: Arm subassembly	40
Figure 37: Shovel illustration	41
Figure 38: AISI 1020 steel SolidWorks specifications /Source: SolidWorks oftware	42
Figure 39: Example box dimensions	43
Figure 40: Example box handle	44
Figure 41: Exoskeleton carrying a load	43
Figure 42: Exoskeleton raising a load	44
Figure 43: Absolute width dimension	47
Figure 44: Pivoting radius	48

Figure 45: Absolute pivoting dimension.	49
Figure 46: Storage width	48
Figure 47: Storage position	50
Figure 48: Final assembly (Front isometric view)	49
Figure 49: Final assembly (Back isometric view)	51
Figure 50: Vectorial directions	4

Table of contents: Tables

Table 1: Different actuator characteristics.	4
Table 2: Anthropometrical arm length measurements	8
Table 3: Anthropometrical forearm length measurements.	9
Table 4: Anthropometrical design measurementments for the arm and the forearm	10
Table 5: Dimensional range of the entire arm	11
Table 6: Different lengths for the different arm positions.	11
Table 7: Biacromial distance for both sexes	12
Table 8: Biacromial distance of the machine	12
Table 9: Adjustable position with biacromial distance.	13
Table 10: Dimensional range for the back height	14
Table 11: Human head anthropometrical dimensions.	18
Table 12: Buttock-knee dimensional range	20
Table 13: Hip width dimensional range	20
Table 14: Arm movements' limitations	23
Table 15: Extreme exoskeleton dimensions	25
Table 16: Support plate measurements.	32
Table 17: Exoskeleton storage dimensions.	50
Table 18: Machine comparison	53

NOVIA UNIVERSITY OF APPLIED SCIENCES

Mechanical-Environmental Engineering

Bachelor's thesis:

Exoskeleton: Prototype design

Annex 1: Analytical calculations

Oscar Teruel Guisado

The degree program of Environmental Engineering Vaasa/Novia April 2016

Table of contents: Annex 1

1.	Ab	breviation and definitions1
<mark>2.</mark>	Ca	lculation referred to the actuator election3
3.	Ca	lculation referred to the lineal guide election4
3	.1	Calculation of the moment that the lineal guide must bear 4
<mark>4.</mark>	Fo	rce calculation on the slides -guide set11
4	.1	Stress caused by the frontal flexion (around the "x" axis)12
4	.2	Supported values verification
<mark>5.</mark>	Ca	lculations for wheel election13
5	.1	Minimum power needed to move the wheel
<mark>6.</mark>	En	gine election17
<mark>7.</mark>	<mark>Ba</mark>	ttery calculations18
7	.1	Total power needed for the set calculation

Analytical calculations

1. Abbreviation and definitions

	Symbol	Variable	<mark>SI Unit</mark>
Forces	F _{max}	Maximum force that the actuator has to bear	Ν
	F _x	Force in "x" axis	Ν
	N	Normal force	Ν
	F _{max}	All the weight over each wheel	N
	Fown_wheel	Weight of the own wheel	N
	F_{min}	Minimum force to move the wheel	N
Torques	T _{load}	Torque generated by the load	<mark>Nm</mark>
	T _{arm}	Torque generated by the arms	<mark>Nm</mark>
	T _{actuator}	Torque generated by the actuator	<mark>Nm</mark>
	Tchest	Torque generated by the chest	Nm
	T _{seat}	Torque generated by the seat	Nm
	T _{total}	Torque generated by the total sum of the load, arms,	Nm
	- 10141	chest, seat and actuator	
	T _{position_1}	Final torque module in position 1	Nm
	T _{position_2}	Final torque module in position 2	Nm
	T _{position_3}	Final torque module in position 3	Nm
	T _{fx}	Torque generated in the lineal guides on axis "x" in	Nm
	- 1A	position 1	
	T _{fz}	Torque generated in the lineal guides on axis "z" in	Nm
	- 12	position 2	

	Tresistant	Maximum torque generated by the wheel	<mark>Nm</mark>
	T _{starter}	Torque needed to start the movement	<mark>Nm</mark>
	T _{res}	Maximum torque generated by all the structure	Nm
Power	P _{wheel}	Power needed to move the wheel	W
	P _{total}	Power needed to supply all the devices	W
Velocities	v	Structure maximum velocity	m/s
	W	Wheel angular velocity	rad/s
04	d	Variable to represent the perpendicular distance in torque	mm
Others	ŭ	calculations	
	m _t	Total structure mass	kg
	m _{wheel}	Maximum mass that each wheel can carry	kg
	R	Radius of the wheel	mm
	μ_r	Eccentricity	mm
	a _{sim}	Simultaneity factor	

2. Calculation referred to the actuator election

To realize the calculation for the actuator that is situated in the base platform, is needed to know the approximate weight that it will bear. It is known that for this configuration, the actuator have to support the arm and back weight, and the user weight. These weights were obtained with the measurement tool from SolidWorks software with AISI1020 as chosen material.

In the following table are shown the different weights:

	Unit	Weight (kg)	Total (kg)
Arms	2	20	40
Back	1	75	75
Operator	1	100	100
Load	1	100	100
		·	315

Table 19: Sum of the weights that the actuator should bear.

$$F_{max} = 315 \ kg \cdot \frac{9.8 \ N}{1 \ kg} \approx 3100 \ N$$

Calculation the total reaction that it should bear and using a security marge, finally it was selected the actuator "ALI4 24-Vdc" that could bear a maximum of 4100N. See catalogue in *Annex 2: Catalogues*.

ALI4 24 Vdc											
Fmax Fmax (N)	Velocità Speed (mm/s)	Versione Version	Taglia motore Motor size	Potenza motore Motor power (KW)	Giri motore Motor speed (rpm)	Rapporti Riduzione Gearbox Reduction Ratio	D vite Screw D (mm)	Passo Pitch (mm)	Rendimento Efficiency	Corsa m Max stro ALI4-F	ax (mm) oke [mm] ALI4
600	100	M20	D.85		3000	1.4	18	8	0,31	1000	1040
1100	50	M21	D.85		3000	1.4	18	4	0,29	500	1040
2000	20	Maa	Dec		2000	1-10	1.9	A	0.28	500	200
4100	13	M23	D.85		3000	1:16	18	4	0.26	500	750
6800	7	M24	D.85		3000	1:30	18	4	0,22	500	580
10000	4	M25	D.85		3000	1:50	18	4	0,20	480	480

Figure 1: Catalogue detail showing the chosen actuator.

3. Calculation referred to the lineal guide election

3.1Calculation of the moment that the lineal guide must bear

To choose a lineal table that allows the alternative vertical movement, movement generated for the squat action, it must be considered the forces that act on the table. For that, the moments generated for the load are calculated in the union point of the lineal guides and the back. The loads that were considered are:

- 1- Raising load
- 2- Arm weight (including the flexion movement actuator)
- 3- The actuator that permits the raising and going down arm movement.
- 4- Chest weight
- 5- Maximum operator weight

Three different arm positions are chosen to decide which one is the most unfavorable. To consider the tree dimensional system, a vector analysis was done and **SI units** system was used.

All following matrix are based in the next vector expression:

 $\overline{T} = \overline{r} \cdot \overline{F}$

$$\bar{T} = \begin{bmatrix} \bar{\iota} & \bar{J} & \bar{k} \\ \bar{r_i} & \bar{r_j} & \bar{r_k} \\ \bar{F_i} & \bar{F_i} & \bar{F_k} \end{bmatrix}$$

Figure 51: Vectorial directions

The "i" vector direction corresponds to the exoskeleton width, the "j" vector direction to the exoskeleton height and finally the "k" vector direction to the exoskeleton length.

Position 1:

Arms at 0° from the horizontal plane, both loaded with weight.

- Load to raise

It is supposed that in this position the load is raised with both arms with the same force (50kg each arm).

Right arm load (50 kg)				Left ar	m load ((50 kg)
i	j	k		i	j	k
<mark>0.432</mark>	<mark>0.641</mark>	1.287		<mark>-0.432</mark>	0.641	1.287
0	<mark>-500</mark>	0		0	-500	0

- Arm weight (including the flexion actuator)

Left arm load (25 kg)			Right ar	m load (25 kg)
i	j	k	i	j	k
<mark>0.432</mark>	<mark>0.641</mark>	<mark>0.71</mark>	-0.432	<mark>0.641</mark>	<mark>0.71</mark>
0	-250	0	0	-250	0

- The actuator that permits the raising and going down arm movement.

Left actuator (5 kg)			Right actuator (5 kg)			
i	j	k		i	j	k
-0.391	0.32	0.323		<mark>0.391</mark>	<mark>0.32</mark>	0.323
0	<mark>-50</mark>	0		0	<mark>-50</mark>	0

- Chest weight.

Chest (75 kg)								
i	j	k						
0	<mark>0.361</mark>	0.11						
0	-750	0						

User weight

-

User (100kg)								
i	j	k						
0	<mark>0.052</mark>	0.31						
0	-1000	0						

The resultant torque that the lineal table should support is:

	i	j	k	Resultant (Nm)
T _{load}	1287	0	0	1287
T _{arm}	355	0	0	355
Tactuator	32.3	0	0	32.3
T _{chest}	82.5	0	0	82.5
T _{seat}	310	0	0	310
T _{total}	2066.8	0	0	2066.8

It can be observed that in this position the lineal guides only work in flexion around the "x" axis. The resultant moment in position 1 is:

$$\left|T_{position_1}\right| = \left|2067\overline{\iota} + 0\overline{J} + 0\overline{k}\right| = 2067 Nm$$

Position 2

Arms at 0° from the horizontal plane: Right arm loaded and turned 20° from the vertical plane, left arm without load.

In this situation, it is supposed that the entire load is supported for only one arm. To do this calculation the load is multiplied for a security factor of 2. With this security factor is assumed that the dynamical load, the own weight or any other lateral unplanned impact are counted.

This kind of load is hypothetical and it is not possible in the real life.

Exoskeleton: Prototype design

Following the same procedure as in the position 1, it is showed the vector analysis that give as result the moment generated for each load:

- Load to raise

In this position, the most unfavorable situation would be that the maximum load (100 kg) was elevated with only one arm.

Right arm load (100 kg)			Left ar	m load	(0 kg)
i	j	k	i	j	k
<mark>0.747</mark>	<mark>0.641</mark>	1.21	<u>-0.431</u>	<mark>0.648</mark>	1.282
0	-1000	0	0	0	0

- Arm weight (including the flexion actuator)

Left arm load (25 kg)			Right arm load (25 kg)			
i	j	k		i	j	k
0.554	<mark>0.641</mark>	0.71		-0.344	<mark>0.641</mark>	<mark>0.71</mark>
0	<mark>-250</mark>	0		0	-250	0

- The actuator that permits the raising and going down arm movement.

Left ac	R		
i	j	k	
0.431	0.33	0.31	_
0	<mark>-50</mark>	0	

Right actuator (5 kg)							
i	j	k					
-0.39	0.33	0.31					
0	-50	0					

- Chest weight.

Chest (75 kg)					
i	j	k			
0	<mark>0.362</mark>	0.11			
0	<mark>-750</mark>	0			

User w	reight
--------	--------

User (100 kg)					
i	j	k			
0	0.055	0.31			
0	-1000	0			

The resultant moment that the lineal table should support is:

	i	j	k	Resultant (Nm)
T_load	1210	0	-747	1422.01
T_arm	355	0	-52.5	358.86
T_actuator	31	0	-2.05	31.07
T_chest	82.5	0	0	82.50
T_seat	310	0	0	310.00
T_total	1988.5	0	-801.55	2143.97

It can be observed that in this position the lineal guides work with frontal flexion around the "x" axis and with lateral flexion around the "z" axis. The resultant moment in the position 2 is:

$$|T_{position_2}| = |1989\bar{\iota} + 0\bar{J} - 802\bar{k}| = 2115 Nm$$

Position 3

Arms at 40° from the horizontal plane: right arm with a load turned 20° from the vertical plane, left arm without load.

As in the position 2, a security factor of 2 will be applied.

- Load to raise

In this position, the most unfavorable situation would be that the maximum load (100 kg) was elevated with only one arm.

Right a	Right arm load (100 kg)			Left a	rm load	(0 kg)
i	j	k		i	j	k
<mark>0.656</mark>	1.331	0.942		<mark>-0.431</mark>	0.639	1.278
0	-1000	0		0	0	0

- Arm weight (including the flexion actuator)

Left arm load (25 kg)			Right a	rm load	(25 kg)
i	j	k	i	j	k
0.51	<mark>0.952</mark>	<mark>0.559</mark>	-0.367	<mark>0.949</mark>	0.559
0	<mark>-250</mark>	0	0	<mark>-250</mark>	0

- The actuator that permits the raising and going down arm movement.

Left actuator (5 kg)			ft actuator (5 kg) Righ			(5 kg)
i	j	k		i	j	k
0.431	0.353	0.255		<mark>-0.431</mark>	0.353	0.255
0	<mark>-50</mark>	0		0	<mark>-50</mark>	0

- Chest weight.

Chest (75 kg)					
i	j	k			
0	0.353	0.11			
0	<mark>-750</mark>	0			

User weight

User (100 kg)								
i	j	k						
0	0.055	0.31						
0	-1000	0						

	i	j	k	Resultant (Nm)
T_load	942	0	-650	1144.49
T_arm	279.5	0	-35.75	281.78
T_actuator	25.5	0	0	25.50
T_chest	82.5	0	0	82.50
T_seat	310	0	0	310.00
T_total	1639.5	0	-685.75	1777.14

The resultant moment that the lineal table should support is:

It can be observed that in this position the lineal guides work with frontal flexion around the "x" axis and with lateral flexion around the "z" axis. The resultant moment in the position 3 is:

$$|T_{position_3}| = |1640\bar{\iota} + 0\bar{J} - 686\bar{k}| = 1777 Nm$$

After analyzing the results, it is clear that the most unfavorable frontal flexion is produced in the position 1, however, the biggest lateral flexion is in position 2. On the other hand, in any situation exist torsion forces (around "y" axis).

Having the most unfavorable moments that the lineal table must support (slides and guides set), it is searched one that fulfills the requirements and general dimensions of the design.

After searching in the catalogues from different manufacturers, it was checked that the best guide line is DryLinTTW-01-15. It can be seen in *Annex 2: Catalogues*.

To guarantee the correct operation and with the intention of sharing the forces and so making them lower, it is decided to place two slides in each guide.

The distance between guides is the needed to avoid interferences with the actuator and it is assumed that the vertical distance between both slides is the same length that one slide. The slide and guide dimensions are given for the manufactured in the catalogue.

4. Force calculation on the slides -guide set.

Stress caused by the lateral flexion (Around the "z" axis)

First it is studied the lateral flexion (around the "z" axis). It will be used the biggest moment value calculated in the previous section. This is the moment of the position 2:

$$|T_{position_2}| = |1989\bar{\iota} + 0\bar{j} - 801\bar{k}| = 2115 Nm$$

Therefore:

$$T_{fz} = 801 \ Nm$$

The moment respect the "z" axis is the force per distance since the application point to the gravity center. To do the force calculation it is assumed that only two slides will support the biggest part of the stress.

$$T_{fz} = 2 \cdot F_z \cdot d$$

Analytical calculations

T _{fz} (lateral shift)									
T _{fz}	801	Nm							
d	0.1075	m							
F _z	3726	N							

4.1 Stress caused by the frontal flexion (around the "x" axis)

Next is analyzed the frontal flexion phenomena (around "x" axis). For that it is taken the biggest moment (Tf_x) calculated in the previous section.

The chosen torque is the calculated in the position 1:

$$\left|T_{position_1}\right| = \left|2067\overline{\iota} + 0\overline{J} + 0\overline{k}\right| = 2067 Nm$$

Therefore:

$$T_{fx} = 2067 Nm$$

It is assumed that the 4 slides are supporting the stress, for that:

$$T_{fx} = 4 \cdot F_x \cdot d$$

Table 21: Frontal flexion stress calculation

	T _{fx} (frontal shift)										
T _{fx}	2067	Nm									
d	0.1075	m									
F _x	4807	Ν									

4.2 Supported values verification

Slides-guide catalogues were consulted to check the technical specifications; DryLin TTW0105 was the chosen model. The relation between the maximum admissible stress of the slide-guide set and its service condition is:

Table 22: Comparison between the admissible stress and service stress in both directions

Fz_adm (N)	Fz (N)	Fx_adm (N)	Fx (N)
7500	3726	14500	4807

In any situation, the admissible stress is reached. Therefore, the Dylin lineal table is definitely chosen for the exoskeleton design.

5. Calculations for wheel election

The three wheels that form the final exoskeleton design must bear the total weight of the structure, it contains: the arm and back, the user that is supposed as maximum 100 kg, the maximum load to carry, the base, the 5 actuators and the slides and guides.

Next, it is showed a table with the weights:

	Units	Weight (kg)	Total (kg)
Arms	2	25	50
Back	1	65	65
Operator	1	100	100
Load	1	100	100
Base	1	70	70
Actuators	5	0.9	4.5

Table 23: weight sum that onmi wheel wheels must bear

Exoskeleton: Prototype design

Lineal guide	2	0.7	1.4
Slides	4	0.12	0.48
			392

It must to be considered that the wheels also have to bear the battery and engines weight, these values are still unknown. It is supposed that the three wheels should bear 70 kg for these components.

$$m_t = 392 \ kg + 70 \ kg = 462 \ kg$$

$$m_{wheel} = \frac{462 \ kg}{3 \ wheels} \approx 154 \ kg$$

Calculating the total reaction that one of the omni wheels must to bear, it was chosen the QLM-20 Omni wheel that bears 160 kg exactly.

Product Details	Company Profile		
Quick Details			
Place of Origin:	Sichuan China (Mainland)	Brand Name:	HANGFA
weight:	2200g	diameter:	203.2mm
wheels:	12	bearings:	24
wheel material-	polyurethane	mount:	M6*6
load:	160KG		

Figure 52: QLM-20 catalogue details.

5.1Minimum power needed to move the wheel.

In real situations, the objects are not ideally rigid, they always have deformations. The contact is not in the generatrix where P and N are placed. It means that the reactions appear on the supports; reactions that create a torque that has to be beaten to start the wheel rotation. It is equivalent to consider that the N normal force is displaced a determined longitude (μ_r), it is the called rolling resistance coefficient.

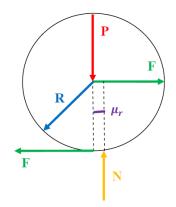


Figure 53: Wheel distribution forces.

$$T_{resistant} = \mu_r \cdot N$$
$$T = F \cdot R$$

In critical conditions, to start the rolling, the applied torque, that in this situation is the starter torque, must to be bigger that the resistant torque.

 $T_{starter} > T_{resistant}$

Being F the force applied on the wheel to move it.

$$F \cdot R > \mu_r \cdot N$$
$$F > \frac{\mu_r \cdot N}{R}$$

For the following values chosen for the wheel:

$$R = 101.1 mm$$

$$F_{max} = 1519 N$$

$$F_{own_wheel} = 20.58 N$$

$$N = P_{max} + P_{own} = 1519 + 20.58 = 1540 N$$

Exoskeleton: Prototype design

And assuming an eccentricity:

$$\mu_r = 5 mm$$

The minimum force needed to start the wheel movement:

$$F > \frac{\mu_r \cdot N}{R}$$

$$F > 5 mm \cdot 1540 N / 101.1 mm = 76.2 N$$

 $F_{min} = 76.2 N$

Finally, to calculate the power it should be assumed the exoskeleton speed (P in this section means power):

$$v = 1 m/s$$

$$P = F \cdot v$$

$$P_{wheel} = 76.22 N \cdot \frac{1 m}{s} = 76.22 W$$

Applying the security factor:

$$P_{wheel} = P_{wheel} \cdot n_{sec} = 76.22 \ W \cdot 2 = 152.44 \ W$$

Each wheel needs an engine of 155 W to start the movement.

6. Engine election

To choose an engine to transmit the movement to the wheels it should bear in mind some parameters, as the power, the torque that has to be transmitted and the velocity.

First, the resistance torque is calculated (T_{res}) , it is the torque needed to be beaten to start the movement of all the structure. Therefore:

$$T_{res} = \mu_r \cdot N = 7.7 \ Nm$$

 $P_{wheel} = T_{res} \cdot w$

$$w = \frac{P_{twheel}}{T_{res}} = \frac{155 W}{7.7 Nm} = 20.13 \frac{rad}{s} = 194 rpm$$

Defined the engine characteristics parameters, it is searched a commercial engine model capable to provide these values. The most appropriate is the MDPM6350GB9.

		PM63-	50GB9	
	Power	Speed	Torqu	e (Nm)
	(W)	(rpm)	Delrin	Bronze
	200	516	3.5	3.4
(j)	200	438	4.3	4.2
Continuous S1 duty assuming 24V supply)	218	303	6.4	6.2
us 51 24V :	200	219	8.3	8
nonu ng 2	218	100	*18.3	17.8
Continuo assuming	218	50	*33.3	*32.5
C(ass)	200	30	*47.7	*46.5
	200	20	*60	*58.3

Figure 54: Engine catalogue details. Model: MDPM6350GB9

7. Battery calculations

7.1Total power needed for the set calculation

To perform the total power calculation that all the set can consume, with all the elements working at the same time, it has to be counted as the wheel engines as the actuators in the arms, shoulders and platform.

 $P_{wheel} = 155 W$ $P_{actuator} = 550 W$ $P_{total} = 2 \cdot P_{wheel} + 5 \cdot P_{actuator}$ $P_{equip} = 2 \cdot 155 W + 5 \cdot 550 W = 3060 W = 3.06 kW$

The previous value is a theoretical value, because it is supposed that in any moment all the actuators and engines will work at the same time. Then, a simultaneity factor was applied.

 $a_{sim} = 0.7$ $P_{tequip} = P_{equip} \cdot a_{sim} = 3.06 \ kW \cdot 0.7 = 2.142 \ kW$

NOVIA UNIVERSITY OF APPLIED SCIENCES

Mechanical-Environmental Engineering

Bachelor's thesis:

Exoskeleton: Prototype design

Annex 2: Catalogues

Oscar Teruel Guisado

The degree program of Environmental Engineering Vaasa/Novia April 2016

Exoskeleton: Prototype design

Modello ALI4

- Motore a magneti permanenti CE
- Motore A.C. monofase-trifase CE
- Riduttore vite senza fine ruota elicoidale
- Stelo filettato trapezoidale o a ricircolo di sfere (VRS)
- Asta traslante in acciaio cromato
- Lubrificazione a grasso
- Attuatore IP 65, testato secondo norma CEI EN 60529 motore C.A. IP55 standard - IP65 a richiesta motore C.C. IP44 standard - IP65 a richiesta
- Temperatura di funzionamento -10°C +60°C
- Impiego intermittente S3 30% (5 min) a 30°C*
- · Fine corsa, potenziometro ed encoder a richiesta

(*) Per impieghi diversi contattare il Ns. Ufficio Tecnico

Model ALI4

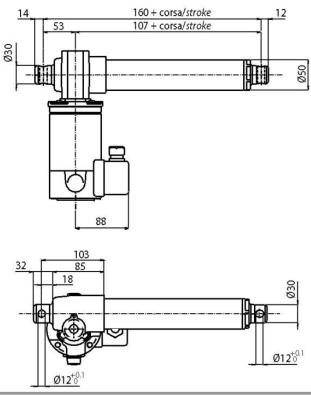
- Permanent magnet motor CE
- Three phase or single phase motor CE
- Worm gearbox
- Acme lead screw or ballscrew (VRS)
- Chrome plated steel push rod
- Grease lubricated
- Actuator IP65, tested according to rule CEI EN 60529
 A.C. motor IP 55 standard IP65 on request
- D.C. motor IP 44 standard IP65 on request
- Working temperature range −10°C +60°C
- Intermittent duty S3 30% (5 min) a 30°C*
- Limit switches, potentiometer and encoder on request

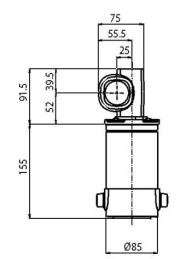
(*) For any special duty please contact our technical dept.

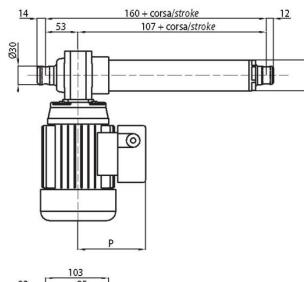
	ALI4 - (Vac)										
Fmax Fmax	Velocità Speed	Versione Version	Taglia motore Motor size	Potenza motore Motor power	Giri motore Motor speed	Rapporti Riduzione Gearbox Reduction Ratio	D vite Screw D	Passo Pitch	Rendimento Efficiency	Corsa m Max stro	
(N)	(mm/s)			(KW)	(rpm)		(mm)	(mm)		ALI4-F	ALI4
2100	93	MO1	IEC71	0,55	2800	1.4	18	8	0,31	1000	1040
3900	47	MO2	IEC71	0,55	2800	1.4	18	4	0,29	500	770
5300	23	M03	IEC71	0,37	1400	1.4	18	4	0,29	500	660
8600	9	M04	IEC71	0,25	1400	1:10	18	4	0,28	500	520
9400	6	M05	IEC63	0,18	1400	1:16	18	4	0,26	495	495
10000	3	M06	IEC63	0,13	1400	1:30	18	4	0,22	485	485
10000	2	M07	IEC56	0,09	1400	1:50	18	4	0,20	480	480

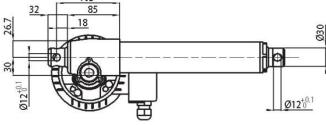
ALI4-VRS (ballscrew 16x5) (Vac)											
Fmax Fmax	Velocità Speed	Versione Version	Taglia motore Motor size	Potenza motore Motor power	Giri motore Motor speed	Rapporti Riduzione Gearbox Reduction Ratio	D vite Screw D	Passo Pitch	Rendimento Efficiency	Corsa m Max stro	ax (mm) ke [<i>mm</i>]
(N)	(mm/s)			(KW)	(rpm)		(mm)	(mm)		ALI4-F	ALI4
2500	58	M08	IEC63	0,25	2800	1.4	16	5	0,77	625	825
3100	29	M09	IEC63	0,18	1400	1.4	16	5	0,77	625	825
3400	23	M10	IEC56	0,14	2800	1:10	16	5	0,74	625	780
5000	15	M11	IEC56	0,14	2800	1:16	16	5	0,38	620	620
6000	7	M12	IEC56	0,09	1400	1:16	16	5	0,68	620	620
7500	4	M13	IEC56	0,09	1400	1:30	16	5	0,59	570	570

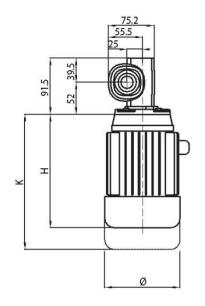
	ALI4-VRS (ballscrew 20x5) (Vac)												
Fmax Fmax	Velocità Speed	Versione Version			Taglia motore Motor size	Potenza motore Motor power	Giri motore Motor speed	Rapporti Riduzione Gearbox Reduction Ratio	D vite Screw D	Passo Pitch	Rendimento Efficiency	Corsa m Max stro	
(N)	(mm/s)			(KW)	(rpm)		(mm)	(mm)	· · · · · · · · · · · · · · · · · · ·	ALI4-F	ALI4		
3000	58	M32	IEC63	0,25	2800	1.4	20	5	0,77	625	880		
3800	29	M33	IEC63	0,18	1400	1.4	20	5	0,77	625	850		
4200	23	M34	IEC56	0,14	2800	1:10	20	5	0,74	625	850		
6000	15	M35	IEC56	0,14	2800	1:16	20	5	0,38	620	800		
7500	7	M36	IEC56	0,09	1400	1:16	20	5	0,68	620	800		
9000	4	M37	IEC56	0,09	1400	1:30	20	5	0,59	570	720		


Fmax Fmax	Speed	Versione Version	Taglia motore Motor size	Potenza motore Motor power	Motor speed		Screw D	Pitch		Max stro	ke [mm]
(N)	(mm/s)			(KW)	(rpm)		(mm)	(mm)		ALI4-F	ALI4
600	100	M20	D.85		3000	1.4	18	8	0,31	1000	1040
1100	50	M21	D.85		3000	1.4	18	4	0,29	500	1040
2800	20	M22	D.85		3000	1:10	18	4	0,28	500	905
4100	13	M23	D.85		3000	1:16	18	4	0,26	500	750
6800	7	M24	D.85		3000	1:30	18	4	0,22	500	580
10000	4	M25	D.85		3000	1:50	18	4	0,20	480	480




ATTUATORE SENZA FINE CORSA / ACTUATOR WITHOUT LIMIT SWITCHES


ALI4 - versione C.C. / D.C. Version



ALI4 - versione C.A. / A.C. Version

Ø50

DIA	MENSIONI MOTORI C.A. / A.C. MO	TORS D	IMENSI	ONS	
GR./SIZE	VERSIONE / TYPE	н	К	Ø	Р
54	Standard	168		116	108
56	Autofrenante / Brake motors		200		
63	Standard	190		129	110
63	Autofrenante / Brake motors		235		
71	Standard	220		146	121
71	Autofrenante / Brake motors		267		

edizione - edition

DryLin® T | Technical Information

- With a low rate of inertia, high accelerations and short term extreme speeds up to 30 m/s are possible
- DryLin®T linear guide systems run dry. Dirt cannot settle in lubricants
- Recommended for use in food, medical, and clean room technologies, as no lubricants are present
- The corrosion resistance of DryLin® T means that it can also be used in wet environments
- High pressure washdown does not damage the system
- Vibration dampening and extremely quiet operation
- The aluminium rail provides good thermal dissipation. The aluminium only retains heat at continuously high speeds
- The combination of anodized aluminium and iglidur® J results in a low initial breakaway force
- DryLin® T is dimensionally interchangeable with standard ball bearing systems

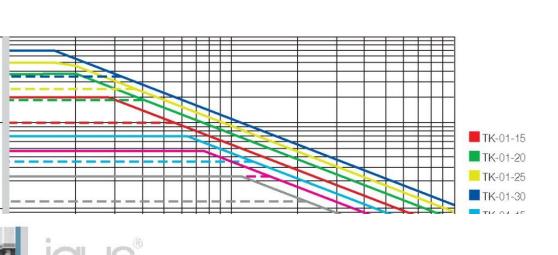
Picture 60.1: DryLin® T in a demanding packaging machine application

Туре	C _{0Y} [kN]	C _{0(-Y)} [kN]	C _{OZ} [kN]	M _{OX} [Nm]	M _{OY} [Nm]	M _{OZ} [Nm]	
04-09	0,48	0,48	0,24	3,4	1,8	1,8	
04-12	0,96	0,96	0,48	9,2	4,4	4,4	
04-15	1,4	1,4	0,7	17	8	8	
01-15	4	4	2	32	25	25	
01-20	7,4	7,4	3,7	85	45	45	
01-25	10	10	5	125	65	65	
01-30	14	14	7	200	100	100	

10000

1000

100


DryLin[®] T

Mox COY Ζ Coz Moz M٥ C0(-Y) Y

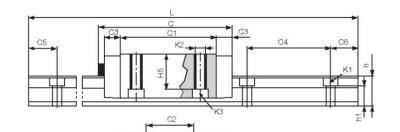

Graph 61.1: Designation of load directions

Table 61.1: DryLin® T-01 - Permissible static load capacity

they BOALED

DryLin® TK-01... | Adjustable clearance | mm

DryLin[®] T

Phone +44 (0) 16 04 - 67 72 40 Fax +44 (0) 16 04 - 67 72 45

+44 (0) 16 04

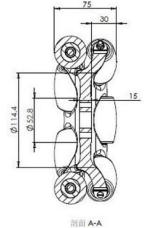
HANGFA QLM-20 OMNIWHEEL

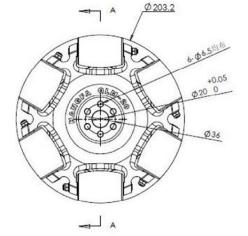
	200mm double aluminum omni robot wheel	Supplier Details
Promotion Price: Wholesale Price: Min. Order: Shipping: Quantity:	US \$205.00 / Piece US \$216.00 / Piece 4 Pieces Please confirm the quantity of the goods. Ships out within 5 days. Estimated Delivery Time: 5-10 days	Hangfa Hydraulic Engineering Co., Ltd (Chengdu) 3 Years Gold Supplier 7 Transactions 37 Products sold Visit Minisite K Contact Now
Quantity.	Add to My Favorites	

Q See larger image

Product Details:

Product Details


Company Profile


Quick Details

Place of Origin:	Sichuan China (Mainland)	Brand Name:	HANGFA	Model Number:	QLM-20
weight:	2200g	diameter:	203.2mm	wide:	75mm
wheels:	12	bearings:	24	hub material:	aluminum
wheel material:	polyurethane	mount:	M6*6	hole:	20mm
load:	160KG				

QLM-20 Dimensional:

Model Number: QLM-20
Diameter: 203.2mm
Width: 75mm
Number of Rollers: 12
Number of Bearings: 24
Hub Material: Aluminum
Roller Material: Polyurethane
Hole size: 20
Mount: 6*6mm Key
Weight: 2200g
Load Capacity: 160Kg

PM63-50 / PM63-75 / PM63-100 with GB9 gearbox

standard motor-gearbox configured and customised for your application

Permanent magnet DC 1500 - 8000 rpm	up to IP66	up to 900 Watts	12 - 240V DC	Class F	Ferrite magnets; aluminium end castings;	single piece steel body; replaceable carbon	brushes; spade connectors	Ventilated motor with internal fan (IP2x);	encoder to RoHS standard; 12V or 24V 2Nm	failsafe holding brake
MOTOR SPEED	PROTECTION	POWER	VOLTAGE	INSULATION	CONSTRUCTION			EXTRAS		

Worm and wheel 12.5:1, 25:1, 30:1, 60:1, 75:1 up to 95% CONSTRUCTION RATIOS EFFICIENCY MATERIALS GEARBOX OPTIONS SHAFT

Stainless steel shaft; black finish; dog clutch Steel worm shaft; CNC machined aluminium housing; sealed for life - maintenance free; cushioned 1-piece coupling; steel output shaft with 2 ball-bearings single or double up to 25mm diameter Delrin or phosphor bronze

WO	PM63-50GB9			PM63-	PM63-75GB9			PM63-	PM63-100GB9			Gearbox GB9	c GB9	
Speed		Torque (Nm)	Power	Speed	Torque (Nm)	(MM) :	Power	Speed	Torque (Nm)	(Nm) :	Datio	Effectionerut	Momentary overload (Nm)	ntary d (Nm)
(udu)) Delrin	Bronze	ŝ	(mqr)	Delrin	Bronze	(M)	(mq1)	Delrin	Bronze			Delrin	Bronze
516	3.5	3.4	247	560	4	3.9	270	515	4.8	4.6	12.5	95%	171	359
438	4.3	4.2	247	424	5.3	5.1	270	380	6.4	6.2	12.5	95%	171	359
303	6.4	6.2	256	334	6.9	6.7	275	300	8.2	80	12.5	94%	171	359
219	8.3	80	247	212	10	9.8	270	190	12.2	11.9	25	80%	192	359
100	*18.3	17.8	256	93	22.9	*22.3	275	103	*24.2	23.6	30	87%	145	160
50	*33.3	*32.5	256	47	*41.5	*39.4	275	51	*40.7	*39.6	60	79%	148	316
30	*47.7	*46.5	247	33	*53.3	*50.6	270	30	*65.5	*63.8	60	76%	104	316
20	•60	*58.3	247	22	*76.3	*74.3	270	21	*86.2	*81	75	70%	104	266
500	5.8	5.6	356	544	5.9	5.8	380	504	6.8	6.6	12.5	95%	171	359
420	6.8	6.6	356	408	7.8	7.7	380	368	9.3	6	12.5	95%	171	359
288	10.1	10	365	316	10.3	9.8	385	292	11.8	11.5	12.5	94%	171	359
210	13	12.6	356	204	*15	*14.6	380	184	*17.8	17.3	25	%06	192	359
103	*26.3	*25.6	365	90	*33.9	*33.1	385	98	*32.7	*31.8	30	87%	145	160
52	*47.7	*46.5	365	45	*61.6	*60.1	385	49	*59.4	*57.9	60	26%	148	316
33	*69.2	*67.5	356	32	*80.9	*78.9	375	29	*94	*91.6	60	76%	104	316
20	*103.2	2 *100.7	356	19	•	*106.4	375	19	·	*128	75	70%	104	266

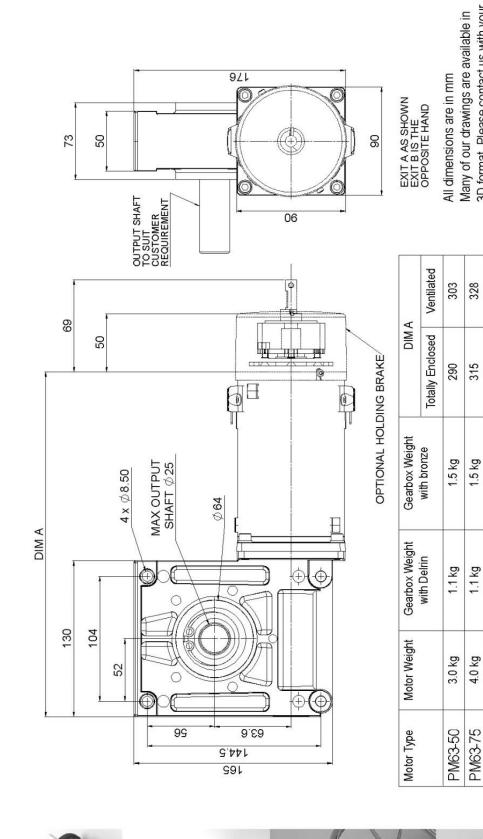
Notes: Designed to operate with PWM controllers.

Graphs are available showing the motor performance throughout the speed range. The GB9 gearbox may be coupled with many of our other standard AC or DC motors. 5 For customers who require

offer a totally bespoke design service to fit the application; at zero cost premium. This service enables customers to outline any number of mechanical, even aesthetic requirements in order to realise their preferred 5 excess of 5000 units per year electrical, environmental motor-gearbox solution.

a member of our sales team on +44 (0)1202 512 575 or visit our website at www.parvalux.com To find out more please contact for further information.

"Gearbox life may be less than 5000 hours. Contact us for application advice. ⁴ Maximum theoretical efficiency.



drawing for PM63-50 / PM63-75 / PM63-100

standard motor-gearbox configured and customised for your application

0

1

For customers who require in excess of 5000 units per year we offer a totally bespoke design service to fit the application; at zero cost premium. This service enables customers to outline any number of mechanical, electrical, environmental or even aesthetic requirements in order to realise their preferred motor-gearbox solution. To find out more please contact a member of our sales team on +44 (0)1202 512 575 or visit our website at www.parvalux.com for further information.

PARVALUX

3D format. Please contact us with your

requirements

353

340

1.5 kg

1.1 kg

4.0 kg

PM63-100

00001

J185H-AC DATA SHEET

for Renewable Energy and Backup Power Applications

SIGNATURE LINE

- MODEL: J185H-AC with Bayonet Cap
- DIMENSIONS: inches (mm)
- BATTERY: Flooded/wet lead-acid battery
- COLOR: Maroon (case/cover)
- MATERIAL: Polypropylene

PRODUCT SPECIFICATION

BCI GROUP	TYPE			CAPACIT	(Y ^A Amp-H	ours (AH)			ENERGY (kWh)	VOLTAGE	TERMINAL	DIM	NSIONS [®] Inches	(mm)	WEIGHT Ibs.
SIZE	TIPE	2-Hr Rate	5-Hr Rate	10-Hr Rate	20-Hr Rate	48-Hr Rate	72-Hr Rate	100-Hr Rate	100-Hr Rate	VULIAGE	Туре**	Length	Width	Height ⁽	(kg)
					S	IGNATU	RE LINE	- DEEP-	CYCLE FI	OODED B	ATTERIES				
921	J185H-AC*	146	185	207	225	240	245	249	2.99	12 VOLT	6	15 (381)	7 (178)	14-5/8(371)	128 (58)

CHARGING INSTRUCTIONS

CHARGER VOLTAGE SE	TTINGS (AT 77°F/25°C)
	Voltage per cell
Absorption charge	2.35-2.45
Float charge	2.20
Equalize charge	2.58

Do not install or charge batteries in a sealed or non-ventilated compartment. Constant under or overcharging will damage the battery and shorten its life as with any battery.

OPERATIONAL DATA

Operating Temperature	Self Discharge	Specific Gravity
-4°F to 113°F (-20°C to +45°C). At temperatures below 32°F (0°C) maintain a state of charge greater than 60%.	Up to 4% per week	The specific gravity at 100% state-of-charge is 1.280

TERMINAL CONFIGURATIONS

CHARGING TEMPERATURE COMPENSATION

To the Voltage Reading -- Subtract 0.005 volt per cell (VPC) for every 1°C above 25°C or add 0.005 volt per cell for every 1°C below 25°C.

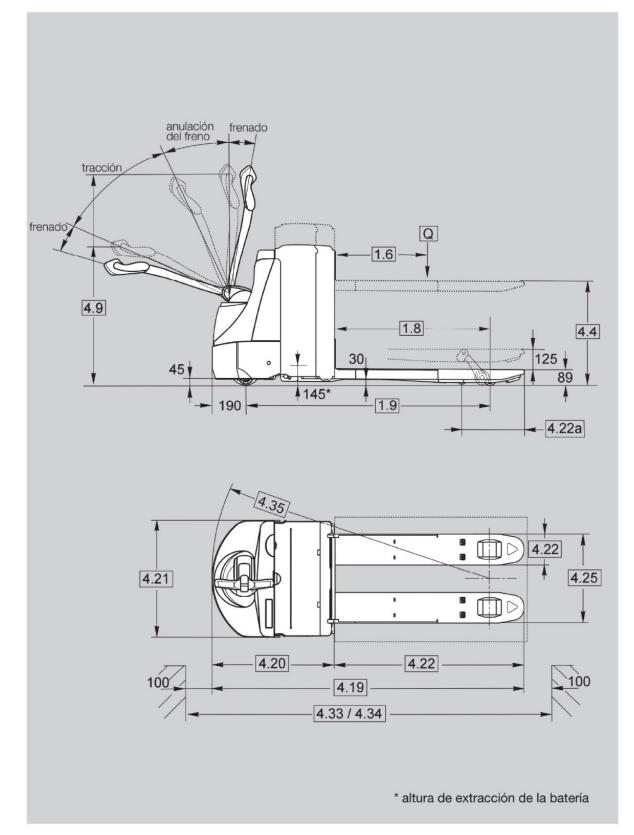
EXPECTED LIFE VS. TEMPERATURE

Chemical reactions internal to the battery are driven by voltage and temperature. The higher the battery temperature, the faster chemical reactions will occur. While higher temperatures can provide improved discharge performance the increased rate of chemical reactions will result in a corresponding loss of battery life. As a rule of thumb, for every 10°C increase in temperature the reaction rate doubles. Thus, a month of operation at 35°C is equivalent in battery life to two months at 25°C. Heat is an enemy of all lead acid batteries, FLA, AGM and gel alike and even small increases in temperature will have a major influence on battery life.

A. The amount of amp-hours (AH) a battery can deliver when discharged at a constant rate at 77% (25%) and maintain a voltage above 1.75 V/cell. Capacities are based on peak performance.

B. Dimensions are based on nominal size. Dimensions may vary depending on type of handle or terminal.

C Dimensions taken from bottom of the battery to the highest point on the battery. Heights may vary depending on type of terminal. "Additional terminals available.


Trojan's battery testing procedures adhere to both BCI and IEC test standards.

Serie WP 3000

Transpaleta de conductor acompañante de gran altura de elevación

Serie WP 3000

Especificaciones

	1.1	Fabricante				Crown Equipme	nt Corporation
	1.2	Modelo				WP 308	0-2.0
ntormacion general	1.3	Alimentación				eléct	rica
gen	1.4	Conductor				acompa	ñante
UO	- 10500		transpaleta	Q	t	2.0	
nac	1.5	Capacidad de carga	apilador	Q	kg	800	
TOT	1.6	Centro de la carga		С	mm	600	
-	1.8	Distancia hasta la carga	patas de carga elevadas/bajadas	X	mm	900 /	
	1.9	Batalla	patas de carga elevadas/bajadas	y	mm	1343 / 1399	1443 / 1499
0	2.1	Peso	sin batería		kg	490	535
Pesos	2.2		con carga delante / detrás		kg	947 / 1696 (968/1702)	982 / 1765
ĩ	2.3	Carga por eje	sin carga delante / detrás		kg	495 / 148 (516/154)	562 / 185
-	3.1	Tipo de ruedas			-	Vulko	llan
	3.2		delante		mm	Ø 250	x 85
cos	3.3	Tamaño de ruedas	detrás		mm	Ø 82 x	110
mat	3.4	Otras ruedas	ruedas estabilizadoras		mm	Ø 90 >	< 50
Neumaticos	3.5	Ruedas	cantidad (x = tracción) del. / det.			1x + 2	2/2
	3.6	Analas da vía	delante	b10	mm	478	3
	3.7	Ancho de vía	detrás	b11	mm	370	D
	4.3	Elevación libre		h2	mm	536	5
	4.4	Altura de elevación		h2 + h13 + h5	mm	750	C
	4.6	Elevación inicial		hs	mm	125	5
	4.9	Altura brazo timón	en pos. conducción mín. / máx.	h14	mm	780 / 1	197
	4.15	Altura de las horquillas	bajadas	h13	mm	89	E.
ŝ	4.19	Longitud total ² ³	patas de carga bajadas	l1	mm	1799	1899
Dimensiones	4.20	Long. unidad tracción	patas de carga elev./bajadas	12	mm	665 / 649	765 / 749
ens	4.21	Anchura total		b1	mm	712	2
E	4.22	Dimensiones horquillas		AxAxF	mm	60 x 186	x 1150
	4.22a	Longitud punta horq. 3			mm	390	3
	4.25	Ancho entre horquillas		b5	mm	540	C
	4.32	Distancia hasta el suelo	centro de la batalla	m ₂	mm	30	l.
	4.34	Ancho pasillo trabajo *	palé 800x1.200 largo, patas de carga elev./bajadas	Ast	mm	2034 / 2050	2134 / 2150
	4.35	Radio de giro 1	patas de carga elevadas	Wa	mm	1534	1634
0	5.1	Velocidad de desplazamiento	con / sin carga		km/h	5,5 /	6,0
endimiento	5.2	Velocidad de elevación	con / sin carga		m/s	0,11 /	0,17
dim	5.3	Velocidad de descenso	con / sin carga		m/s	0,15/	0,13
Hen	5.8	Pendiente máx. superable	con/sin carga, rég. 5 min.		%	10/	25
	5.10	Freno de servicio				eléctr	ica
	6.1	Motor de tracción	régimen a S2 60 min.		kW	1,5	5
s	6.2	Motor de elevación	régimen a S3 15 %		kW	1,3	3
Motores	6.3	Batería	según DIN 43535			no, A	В
Mo	0.0	Tamaño máx. comp. batería		FxAxA	mm	146 x 660 x 591 (683)	212 x 624 x 627
	6.4	Tensión de la batería	capacidad nominal K5		V/Ah	24 / 150 (200)	24 / 250
	6.5	Peso de la batería			kg	153 (180)	212
	8.1	Tipo de controlador	tracción			transis	stor

¹ Patas de carga bajadas +56 mm
² Patas de carga elevadas +16 mm
³ Horquilla de 1.200 mm de longitud +50 mm

* El cálculo Ast se aplica a las horquillas de 1.150 mm y 1.200 mm de longitud,

con compartimento para batería de 200 Ah (opcional), utilizar los valores entre paréntesis

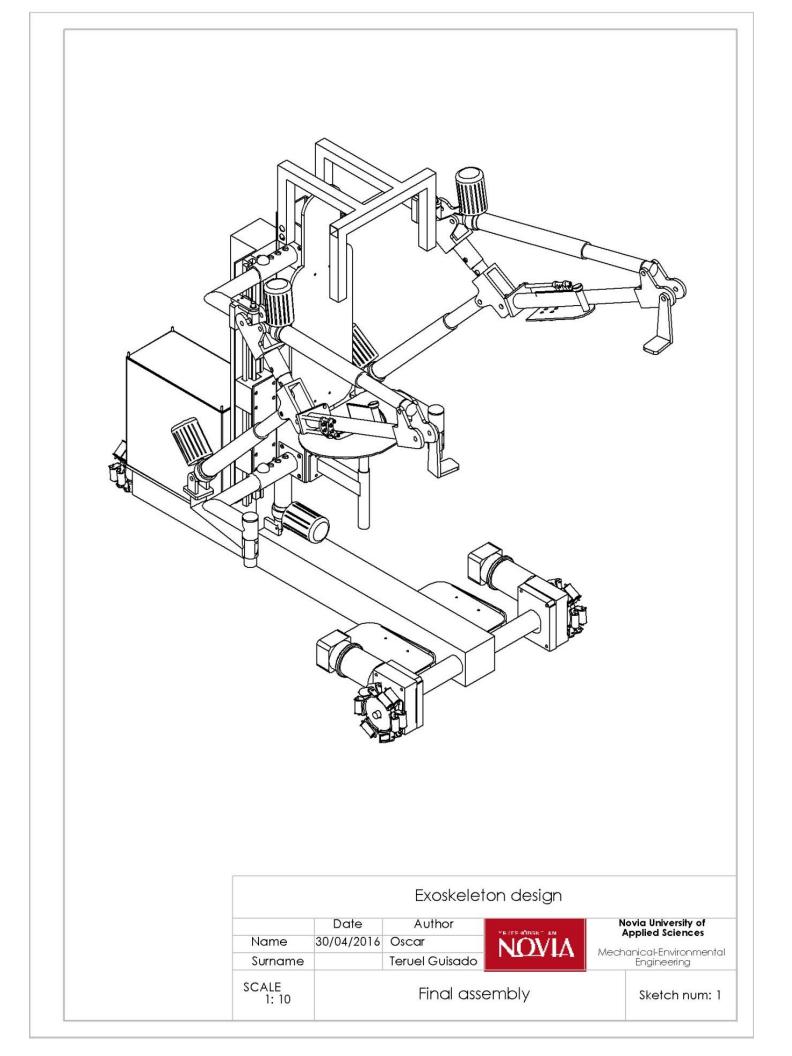
NOVIA UNIVERSITY OF APPLIED SCIENCES

Mechanical-Environmental Engineering

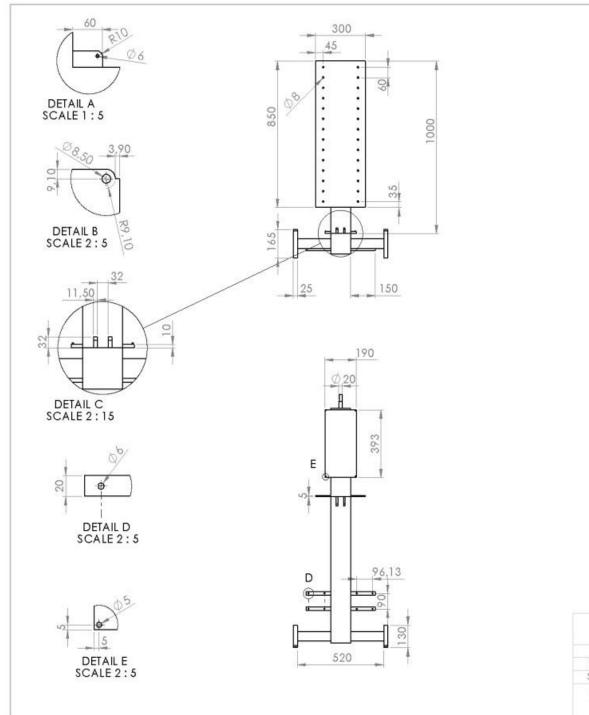
Bachelor's thesis:

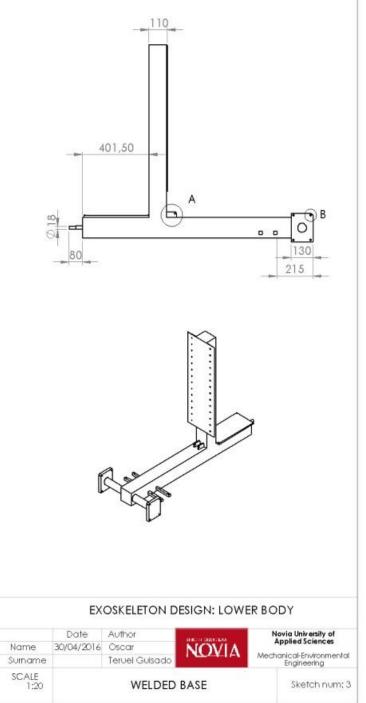
Exoskeleton: Prototype design

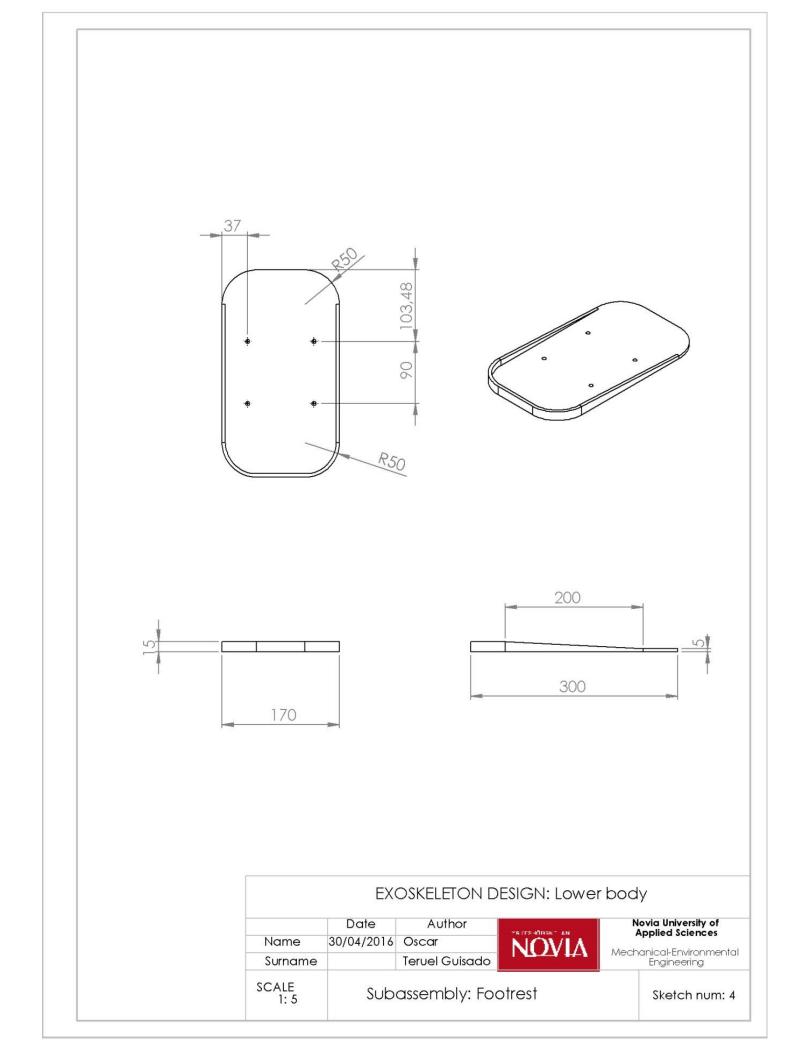
Annex 3: Construction drawings

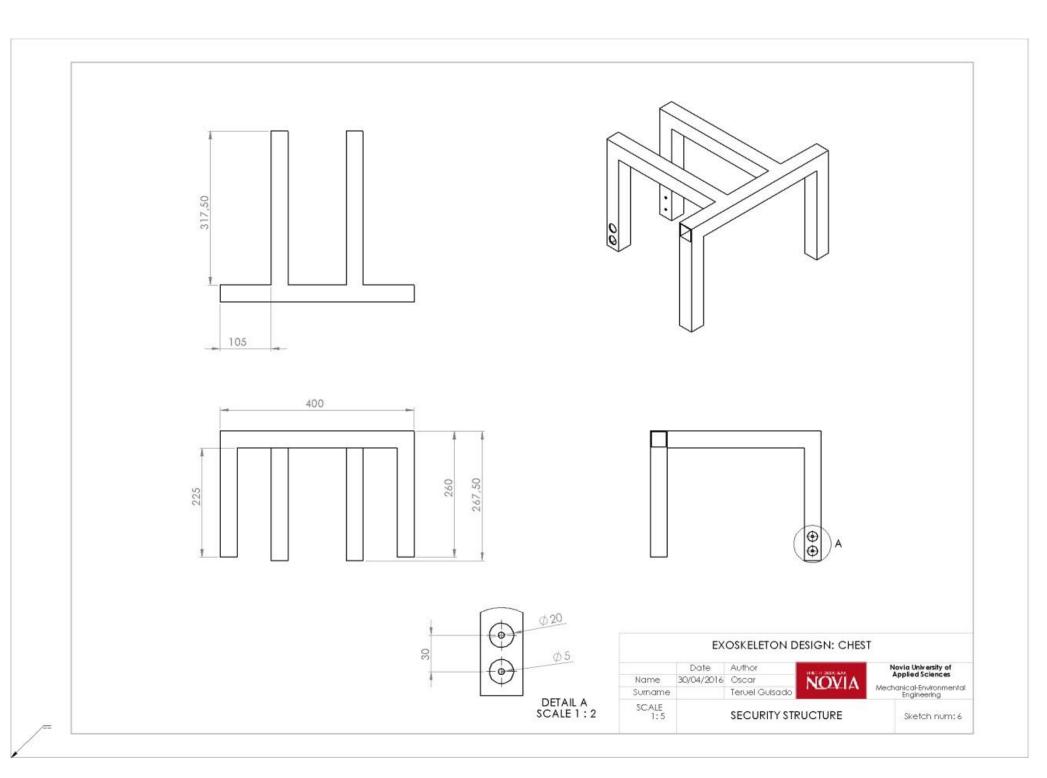

Oscar Teruel Guisado

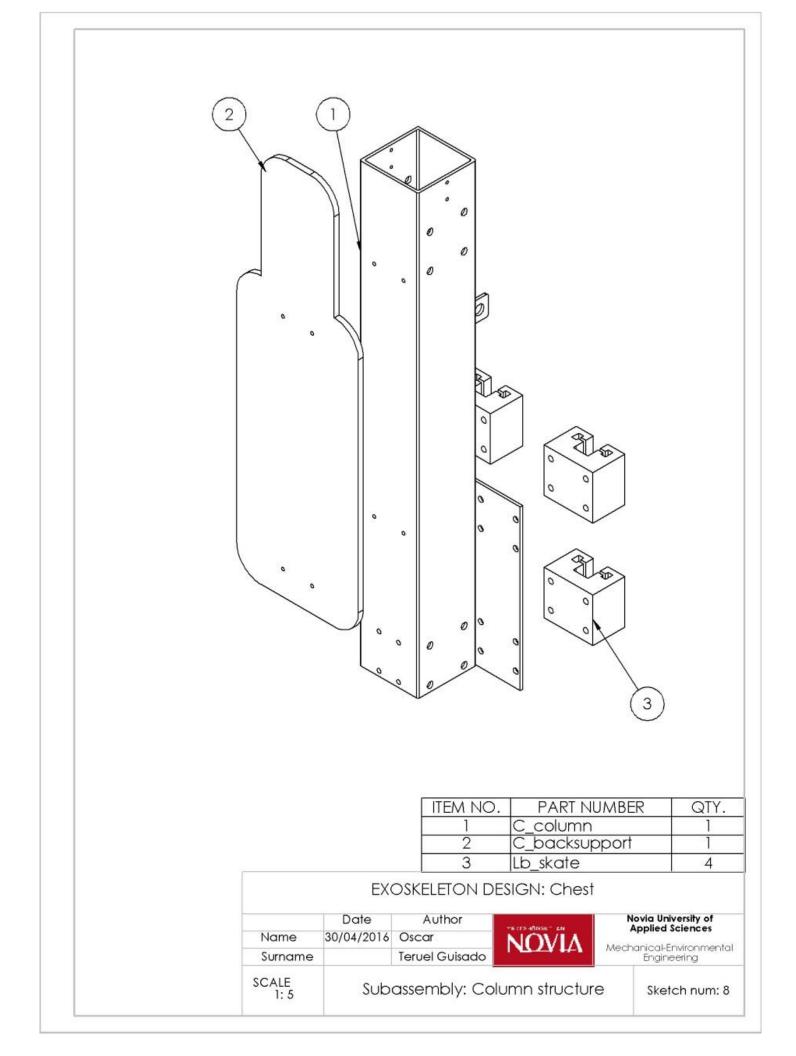
The degree program of Environmental Engineering Vaasa/Novia April 2016


Exoskeleton: Prototype design


Table of contents


Final assembly	Sketch Num: 1
Subassembly: Lower body	Sketch Num: 2
Welded base	Sketch Num: 3
Footrest	Sketch Num: 4
Subassembly: Chest	Sketch Num: 5
Security structure	Sketch Num: 6
Subassembly: Shoulder	Sketch Num: 7
Subassembly: Column	Sketch Num: 8
Subassembly: Seat	Sketch Num: 9
Subassembly: Support	Sketch Num: 10
Subassembly: Arms	Sketch Num: 11
Subassembly: Hand support	Sketch Num: 12


	ITEM NO. PART NUMBER G	QTY.
	1 Lb_weldedbase	1
	2 Lb engine	2
		3
	MECANIZED	
	1 Ib footrast	2
	4 Lb_footrest	2
	4 Lb_footrest 5 Lb_boxbattery	2 1 1
16 4 13	4 Lb_footrest 5 Lb_boxbattery 6 Lb_battery_tape	1
	4 Lb_footrest 5 Lb_boxbattery 6 Lb_battery_tape	1
16 4 13	4 Lb_footrest 5 Lb_boxbattery 6 Lb_battery_tape 7 Lb_actuator guide 8 Lb_guideback 9 Lb_actuatorcilinder	1 1 1
16 4 13	4 Lb_footrest 5 Lb_boxbattery 6 Lb_battery_tape 7 Lb_actuator guide 8 Lb_guideback 9 Lb_actuatorcilinder 10 Lb_M20 hembra	1 1 2 1 1
16 4 13	4 Lb_footrest 5 Lb_boxbattery 6 Lb_battery_tape 7 Lb_actuator guide 8 Lb_guideback 9 Lb_actuatorcilinder 10 Lb_M20 hembra 11 Lb_m8,5 macho	1 1 2 1 1 8
	4 Lb_footrest 5 Lb_boxbattery 6 Lb_battery_tape 7 Lb_actuator guide 8 Lb_guideback 9 Lb_actuatorcilinder 10 Lb_M20 hembra 11 Lb_m8,5 macho 12 Lb_M6 hembra	1 1 2 1 1 8 8
	4 Lb_footrest 5 Lb_boxbattery 6 Lb_battery_tape 7 Lb_actuator guide 8 Lb_guideback 9 Lb_actuatorcilinder 10 Lb_M20 hembra 11 Lb_M6,5 macho 12 Lb_M6 hembra 13 Lb_M6 macho	1 1 2 1 1 8 8 8 8
	4 Lb_footrest 5 Lb_boxbattery 6 Lb_battery_tape 7 Lb_actuator guide 8 Lb_guideback 9 Lb_actuatorcilinder 10 Lb_M20 hembra 11 Lb_m8,5 macho 12 Lb_M6 hembra 13 Lb_M6 macho 14 Lb_screwedbold M6_battery	1 1 2 1 1 8 8 8 8 4
	4 Lb_footrest 5 Lb_boxbattery 6 Lb_battery_tape 7 Lb_actuator guide 8 Lb_guideback 9 Lb_actuator cilinder 10 Lb_M20 hembra 11 Lb_M6,5 macho 12 Lb_M6 hembra 13 Lb_Screwedbold M6_battery 15 Lb_bolt actuator	1 1 2 1 1 8 8 8 8 4
	4 Lb_footrest 5 Lb_boxbattery 6 Lb_battery_tape 7 Lb_actuator guide 8 Lb_guideback 9 Lb_actuator cilinder 10 Lb_M20 hembra 11 Lb_m8,5 macho 12 Lb_M6 hembra 13 Lb_Screwedbold M6_battery 14 Lb_solt actuator 16 Lb_M8 bolt guide	1 1 2 1 1 8 8 8 8 4 1 28
	4 Lb_footrest 5 Lb_boxbattery 6 Lb_battery_tape 7 Lb_actuator guide 8 Lb_guideback 9 Lb_actuatorcilinder 10 Lb_M20 hembra 11 Lb_M6,5 macho 12 Lb_M6 hembra 13 Lb_M6 macho 14 Lb_screwedbold M6_battery 15 Lb_M8 bolt guide 17 Lb_M40 actuator	1 1 2 1 1 8 8 8 8 4
	4 Lb_footrest 5 Lb_boxbattery 6 Lb_battery_tape 7 Lb_actuator guide 8 Lb_guideback 9 Lb_actuatorcilinder 10 Lb_M20 hembra 11 Lb_m8,5 macho 12 Lb_M6 hembra 13 Lb_M6 macho 14 Lb_screwedbold M6_battery 15 Lb_M8 bolt guide 17 Lb_M40 actuator EXOSKELETON DESIGN: LOWER BODY	1 1 2 1 1 8 8 8 4 1 28 1
	4 Lb_footrest 5 Lb_boxbattery 6 Lb_battery_tape 7 Lb_actuator guide 8 Lb_guideback 9 Lb_actuatorcillinder 10 Lb_M20 hembra 11 Lb_M6,5 macho 12 Lb_M6 hembra 13 Lb_M6 macho 14 Lb_screwedbold M6_battery 15 Lb_bolt actuator 16 Lb_M40 actuator 17 Lb_M40 actuator EXOSKELETON DESIGN: LOWER BODY	1 1 2 1 1 8 8 8 4 1 28 1
	4 Lb_footrest 5 Lb_boxbattery 6 Lb_battery_tape 7 Lb_actuator guide 8 Lb_guideback 9 Lb_actuatorcillinder 10 Lb_M20 hembra 11 Lb_M8,5 macho 12 Lb_M6 hembra 13 Lb_M6 macho 14 Lb_screwedbold M6_battery 15 Lb_bolt actuator 16 Lb_M8 bolt guide 17 Lb_M40 actuator EXOSKELETON DESIGN: LOWER BODY	1 1 2 1 1 1 8 8 8 8 8 4 1 1 28 1
	4 Lb_footrest 5 Lb_boxbattery 6 Lb_battery_tape 7 Lb_actuator guide 8 Lb_guideback 9 Lb_actuatorcilinder 10 Lb_M20 hembra 11 Lb_m8,5 macho 12 Lb_M6 hembra 13 Lb_M6 macho 14 Lb_screwedbold M6_battery 15 Lb_bolt actuator 16 Lb_M40 actuator 2 EXOSKELETON DESIGN: LOWER BODY	1 1 2 1 1 1 8 8 8 8 8 4 1 1 28 1



	PART NUMBER umn curitystructure pularprofile cksupport	QTY. 1 1 4
	actablestructuresupport	2
	actableshoulderstructure	2
	operhub atorycylinder	4
	ependentear	2
	ulderbolt	2
	cularprofiles_supportfork	2
	operhub_tape	2
	itsupport	1
		1
	41	
12 C_CO 13 C_sec 14 C_sec 15 Lb_skc	ate	4
12 C_CO 13 C_Sec 14 C_Sec 15 Lb_sta 16 Lb_sta	ate 6 macho	4
12 C_CO 13 C_sec 14 C_sec 15 Lb_sko 16 Lb_M	ate	
12 C_CO 13 C_sec 14 13 14 EXOSKELE	ate 6 macho ON DESIGN: Chest	4
12 C_CO 13 C_sec 14 C_sec 15 Lb_sko 16 Lb_M	ate 5 macho ON DESIGN: Chest	4 iversity of Sciences
12 C_CO 13 C_sec 14 13 14 EXOSKELE	onte 6 macho TON DESIGN: Chest Novia Un Applied Mechanical-1	4 iversity of Sciences

000		
Ē	ITEM NO. PART NUMBER 1 C_tubularprofile	QTY.
	1 C_tubularprofile 2 C_retractableshoulderstructure 3 C_Cooperhub	QTY. 1 1 2
	1 C_tubularprofile 2 C_retractableshoulderstructure 3 C_Cooperhub 4 C_rotatorycylinder	1
	1 C_tubularprofile 2 C_retractableshoulderstructure 3 C_Cooperhub 4 C_rotatorycylinder 5 C_independentear	1 1 2
	1 C_tubularprofile 2 C_retractableshoulderstructure 3 C_Cooperhub 4 C_rotatorycylinder	1 1 2 1 1
	1 C_tubularprofile 2 C_retractableshoulderstructure 3 C_Cooperhub 4 C_rotatorycylinder 5 C_independentear 6 C_shoulderbolt	1 1 2 1 1 1
	1 C_tubularprofile 2 C_retractableshoulderstructure 3 C_Cooperhub 4 C_rotatorycylinder 5 C_independentear 6 C_shoulderbolt 7 C_M14 bolt EXOSKELETON DESIGN: Chest	1 1 2 1 1 1 1 1
Name	1 C_tubularprofile 2 C_retractableshoulderstructure 3 C_Cooperhub 4 C_rotatorycylinder 5 C_independentear 6 C_shoulderbolt 7 C_M14 bolt EXOSKELETON DESIGN: Chest	1 1 2 1 1 1

2			
			ITEM NO.PART NUMBERQTY.1C_seatsupport12C_seat1
		EX	OSKELETON DESIGN: Chest
	N.L.	Date	Author Novia University of Applied Sciences
	Name Surname	30/04/2016	Oscar Teruel Guisado
	SCALE 1:5		Subassembly: Seat Sketch num: 9

	ITEM NO.PART NUMBERQTY.1C_tubularprofile12C_retactablestructu12resupport13C_reticularprofiles_s14C_cupperhub_tape15C_M14 bolt1
Name Surname SCALE 1:5	EXOSKELETON DESIGN: Chest Date Author 30/04/2016 Oscar Teruel Guisado Mechanical-Environmental Engineering Subassembly: Support structure Sketch num: 10

		Image: Text NO. PART NUMBER QTY. 3 2 0 0 2 0 0 0 3 2 0 0 1 A forearm 1 2 a sowel 1 3 A_kneecap_elbow 1 4 erarm 1 5 a armrest 1 6 a.guidehitch 2 7 a.guide 2 8 A_actuator guide 2 9 A_actuator cilinder 2
	Date	OSKELETON DESIGN: Arms Author Novia University of
Name	Date 30/04/2016	Oscar Applied Sciences
Surname	1. 1991/V 2011	Teruel Guisado
SCALE 1: 7	Sub	assembly: Arm Sketch num: 11

	1)
ITEM NO.PART NUMBERO1a_guidehitch2a_guide3a_armrest	2 2 2 1
EXOSKELETON DESIGN: Arm Date Author Name 30/04/2016 Oscar Surrame Teruel Guisado Mechanical-Enviro	nmental
Surname Teruel Guisado Media Incoreiring SCALE 1: 2 Subassembly: Forearm support Sketch r	9