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Abstract 

The design projected in this document has features specifications of an exoskeleton structure 

with loads operation finality. The entire structure is divided into three major  parts: the lower 

body, the chest, and the arms. Each part was considered separately, and all of the parts can be 

assembled together to create the main structure.  

 

In this document are collected all the corresponding designs of each element that will 

compound the final prototype. The lower body represents the base of the structure and 

supports, the weight of the other two parts and the advance, allowing them to move backwards 

as well as allowing rotational movement. The chest serves the purpose of a user cabin, where 

the operator will be placed to operate the exoskeleton. The purpose of the arms is to raise and 

carry loads.  

 

Although some parts of the study could not be completed due to time constraints, the 

exoskeleton has been designed for a real use. A user is needed to drive the structure and for 

this reason an anthropometrical study was completed in order to adapt the design to a real 

situation. 

 



 

The electrical design and the control system needed for the prototype functionality are not 

considered in this project. These sections could be studied at a later time by another person or 

team as a future complementary study for this project. 

 

As it is a prototype design, this project does not consider any law or design legislation. 

Additionally, no health and security study was done. 

 

 

          _________________________________________________________________________ 

          Language: English                                     Key words: Exoskeleton, mechanical, design. 

          _________________________________________________________________________ 
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1 Introduction 

The objective of this study is to create a Conceptual Design Review (CDR) of an 

exoskeleton. The study includes an anthropometrical study and the design and mechanical 

functionality of the structure. It is an open project aimed to be improved and finished later. 

 These following points will not be considered: 

 Electrical and electronic installation needed for operation. 

 Control and automation system that would allow for correct operation. 

As this is a conceptual design, security and health risks are not taken into account. 

As a mechanical engineering student, one of my wishes is to be able to create a machine 

from only one concept, and if it is possible, to make it capable of improving society, The 

reason for completing this project, is to address a current problem in society: 

Musculoskeletal disorder (MSD). 

According to the European Agency for Safety and Health at Work: 

 Musculoskeletal disorder is most common professional disease in the EU-27, 25% 

of European workers complain about back pain and 24% affirm to have muscular 

pain. 

 63% of EU-27 workers are exposed during one quarter part or more of their time to 

repetitive movements of the hands and arms, 47% are exposed to painful or 

extenuating postures and 33% are required to transport or move heavy loads. 

 Agriculture and construction are the sectors with the most workers exposed to 

physical risk and affected by MSD. However, all sectors are affected by it to some 

extent. 

 MSD is an expensive affliction due to direct costs (insurance, compensation, 

medical and administrative cost) and indirect costs due to loss in productivity. 

The lifting of medium and heavy weight loads is a problem for a lot of workers in different 

works and companies. Hundreds of kilograms of loads are transported by pallet lifters or 
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electric lift trucks, but some loads are too small to be carried by machines but also too 

heavy to be loaded by people. 

This exoskeleton has potential for use with this rank of loads, being a machine able to carry 

loads of zero to fifty kilograms. These are the loads that are commonly carried by people 

and can contribute to development of MSD. 

Some examples of situations in which the exoskeleton could be useful include: 

 Product unloading and transport in agriculture and cattle-raising sectors. 

 Baggage transport between an airport’s conveyor belts and aircraft loading. 

 Transportation and loading of packages in a post office. 

 

Necessary software 

The following software will be used for the calculations and design of the prototype: 

 Microsoft Office Excel  

 SolidWorks 

Microsoft Office Excel is a spreadsheet software that will be used for the analytic 

calculations of the needed parameters to check the validity of the design. These parameters 

will be represented in tables. This allows the data to be displayed in a visual and intuitive 

way that facilitates comprehension. 

SolidWorks is three-dimensional design software that includes tools for creating, 

simulating, publishing and administrating data in a simple and functional interface. 
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2 Definitions 
 

Exoskeleton 

In biology the term “exoskeleton” is used to describe the outer rigid structure of an insect or 

crustacean. In the robotic field, exoskeletons are the external rigid structures that give 

support to the people motor functions. Exoskeletons include a motor power system that 

gives part of the energy to the limb movement, and helps the user to move and  realize 

activities, such as carrying weight. 

An exoskeleton can be defined therefore as an external structural mechanism whose 

segments and joints correspond to the human body. It allows direct transmission of the 

mechanical power and information signals. Therefore, it must be adjustable or adaptable to  

different human body joints, with the objective of aligning the rotational centers. 

Special aspects as security, robustness and the robotic mechanism ability should be 

considered. 

 

Mechanical structure 

An exorobot or exoskeleton is formed by a series of linked elements joined by articulations 

that allow relative movement. There are three different kinds of joints: translational, 

rotational and mixed. 

Each of the independent movement that an articulation can make with respect to the above 

is called a degree of freedom. The sum of the robot’s articulation degrees of freedom is the 

total number of degrees of freedom of the entire robot. 

 

Actuators 

Actuators are responsible for generating movement of the elements that forms the 

exoskeleton. In robotics, an actuator’s classification is based on its power source: 
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pneumatic, electrical or hydraulic. Table 1 displays a summary of differences in the basic 

characteristics of actuator types: 

Table 1: Different actuator characteristics. 

Actuator type Advantages Disadvantages 

Pneumatic 

Low cost 

Fast 

Simple 

Robustness 

It requires a special installation 

Noisy 

Hydraulic 

Fast 

High load capacity 

Stability against static charges 

It requires a special installation 

Difficult maintenance 

Expensive 

Electrical 

Precise and trustable 

Noiseless 

Easy control 

Easy installation 

Restricted power 

 

The selection of the actuator will depend upon the following factors: cost, velocity, control, 

power, precision, weight, volume, maintenance and security. 

 

Biomechanics 

Biomechanics is the scientific discipline that studies existing mechanical structures, 

fundamentally from the human body. 

The study of biomechanical is present in different spheres, but three of them are currently 

the most important. 

- Medical biomechanics 

- Sport biomechanics 

- Occupational biomechanics 
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3 Design requirements 

The following section details the design requirements that the exoskeleton must fulfill. 

 

3.1  Anthropometric study 

 

3.1.1 Introduction 

After specifying the exoskeleton’s general aspects and its various parts, the necessary 

measurements of the arm elements will be determined. 

First, it must be considered that the machine designed will be used by a person. It is 

essential to have anthropometric studies where the dimensions of the elements are clearly 

defined, and movement limitations are imposed. The exoskeleton must fit the human body 

in order to guarantee commodity and security to the user. 

 

3.1.2 Data used 

The exoskeleton should be able to be  used for different physical and height size. In the pre-

design stage different anthropometric data were used to delimitate the movement range and 

the dimensions of its elements. 

The digital magazine “Elfdeportes” has collected a total of 29 anthropometric variables 

into a table (figure 1). These variables are defined through statistical techniques. The table 

shows, for each variable, a range of values that were taken into account when the 

dimensions of the machine were delimited. 

  



6 
 

 

 

Figure 1: Anthropometrical characteristics table (measurements in cm) / Source: “Elfdeportes” 
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Figure 2: Bidimensional representation for measurements identification / Source: “Elfdeportes” 

According to the previous table, the total and partial dimensions of each element were 

estimated. In an analog way, they were taken into account to define some movement 

ranges, such as the Top and Bottom Death Centers (TDC and BDC) in the bending actions. 

 

3.2  Interface definition 

The exoskeleton is divided in three subassemblies: arms, chest and lower body. These 

subassemblies were studied individually because each part has a dynamic movement with 

respect to the others. The joining elements that allow the dynamic movement are called 

interfaces. 

Two different interfaces could be found in the final structure: 

- Exoskeleton: Chest-arms 

- Exoskeleton: Chest-Lower body 
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3.3  General dimensions 

3.3.1 Preliminary arm dimensioning 

The initial values for the arm design were established in accordance with “Manual de 

Antropometria Normal Patológica”. 

 

 

Figure 3: Dimensions used in the arm design / Source: Manual de Antropometria Normal Patológica. 

 

Arm length (distance shoulder-elbow) 

It was designed to be used by the majority of the population. Thus, the design considered 

the extremes to be negligible, with the 5
th

 percentile for women as the minimum and the 

95
th
 percentile for man as the maximum (Figure 1).  

The following table presents the values mentioned: 

Table 2: Anthropometrical arm length measurements 

B, Arm length 

Age Woman Man 

16 years 
5% 50% 95% 5% 50% 95% 

27,9 cm 30,4 cm 33,4 cm 29,5 cm 32,9 cm 36,1 cm 

Finally, the dimensional range will be between 27,9 cm and 36,1 cm. 
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Figure 4: Adjustable arm length 

 

Forearm length 

Similarly, the extremes were not considered in the design of the forearm length, with the 5
th

 

percentile for woman as minimum and the 95
th

 percentile for man as the maximum.  

Table 3: Anthropometrical forearm length measurements. 

A, Forearm length 

Age Woman Man 

16 years 
5% 50% 95% 5% 50% 95% 

20,8 cm 23,3 cm 25,8 cm 22,7 cm 25,5 cm 28,1 cm 

 

The dimensional range is between 20,8 cm as minimum and 28,1 cm as maximum. 

In spite of having an arm length defined in concordance with the previous tables, the 

different constructive aspects that restrict the design must be considered. 
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In the case of the arm, the minimum measurement has been changed to 30 cm to account 

actuator installation conditions. Meanwhile, the maximum measurement of the forearm has 

been changed to 25 cm. 

It must be taken into account that the real mechanical forearm is much longer than the user 

human forearm, because it needs more longitude to pick the load. Therefore it is enough to 

set this length to 25 cm. The next table adds the anthropometrical design values. 

Table 4: Anthropometrical design measurements for the arm and the forearm 

Anthropometrical design  values 

 Minimum dimension Maximum dimension 

Shoulder-elbow length, B 30 cm 35 cm 

Elbow-wrist length, A 20 cm 25 cm 

 

 

 

 

 

Figure 5: Adjustable forearm length 
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Consequently, the majority of the population is represented by this specified set of values. 

The different parts of the mechanical arm will be dimensioned in such a way that the length 

of the elements can be regulated between these dimensions to adapt to the user.  

In accordance with the aforementioned, the mechanical forearm must be bigger than the 

user’s in order to reach the loads. The following table collects the final arm dimensions of 

the exoskeleton. 

 

Table 5: Dimensional range of the entire arm 

Measurement type Minimum value Maximum value 

Arm length (from shoulder axis to the “shovel” fixation point) 95 cm 100 cm 

 

In conclusion, the different arm positions are: 

Table 6: Different lengths for the different arm positions. 

Position number Biacromial width 

Position 1 95 cm 

Position 2 97,5 cm 

Position 3 100 cm 

 

 

 

Figure 6: Total adjustable arm length 
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3.3.2 Preliminary dimensioning of the shoulder-back set. 
 

The measurements that were useful to determine the general dimensions are as follows.. 

 

Biacromial distance (between deltoids) 

The chest width dimensions were defined using the anthropometrical measurements for the 

population found in the book “Manual de Antropometria Normal Patológica”. 

The attached table shows the biacromial back width values for men and women of 19 years 

old in different percentiles. 

 

Table 7: Biacromial distance for both sexes 

Biacromial distance 

Age Women Men 

19 years 
3% 50% 97% 3% 50% 97% 

34,1 cm 37,2 cm 40,4 cm 36,3  cm 40 cm 43,5 cm 

 

The minimum biacromial distance is 34,1 cm while the maximum one is 43,5 cm.  

These measurements do not include the deltoids distance, because it was impossible to find 

information regarding this, a distance was assumed. The minimum and maximum assumed 

distances are displayed in the following table. 

Table 8: Biacromial distance of the machine 

Measurement type Minimum value Maximum value 

Final shoulder distance 60 cm 77 cm 

The biacromial distance must be adjustable. In detail, it was decided that the back width 

will vary by 6 cm. The following table shows the final shoulder distances for each position. 
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Table 9: Adjustable position with biacromial distance. 

Position numbers Shoulder width 

Position 1 60 cm 

Position 2 66 cm 

Position 3 72 cm 

Position 4 78 cm 

 

 

 

Figure 7: Adjustable shoulder length 

 

Back height (seat-shoulders) 

In this case, the digital magazine “Elfdeportes” was used again to obtain the ranges and to 

establish the minimum and maximum values.  

As in the previous section, the minimum value corresponds to the 5
th
 percentile for women 

and the maximum corresponds to the 95
th

 percentile for men.  

The following table shows the back height values taken for men and women in different 

percentiles. 
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Figure 8: Maximum and minimum distance between seat and shoulders / Source: Elfdeportes 

Having these values as a reference and bearing in mind the physical limitation for the 

exoskeleton design (interferences with other pieces) the final dimension for the back are as 

follows: 

Table 10:  Dimensional range for the back height 

Measurements type Minimum value Maximum value 

Back height 45 cm 65 cm 

 

These values are the nominal measurements from the metallic seat base to the middle 

reference shoulder point. Around 2-5 cm corresponding to the padded final part width of 

the seat have to be added to these measurements. This is not an exact measurement, 

because it depends on the chosen material for this function. 

 

Figure 9: Adjustable back height 
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Seat dimensioning 

The aim of the seat is to provide commodity and the ergonomics for the user in the work 

place. The anthropometric measurements taken as reference are presented in the following 

table. 

 

Figure 10: Main distances for a sitting position person./Source: “Mueblesdomoticos” website 

 

 

Figure 11: Anthropometrical dimension of a sitting person / Source: “Mueblesdomoticos” website 

 

Such as the seat height has to be adaptable to the user, the most important measurement is 

the hip width dimension (G parameter in figure 10): 43,4 cm for the 95
th
 women percentile 

that represents the most unfavorable situation. For the design, the hip width will be set at 41 
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cm. Such as the seat is designed for human dimensions, these little variations are not 

representatives. 

The chosen depth is 25 cm. This dimension allows a relative commodity for the backside 

support point when the exoskeleton is in the maximum position from the floor. 

 

Figure 12: Final seat dimension 

 

Back support dimensions 

The back support in any common seat has to support the lumbar region such as essential 

function. The configuration of this has the objective of adapting the spinal profile but it will 

avoid the complete coupling that does not allow changing the position of the body. 

Considering the previously imposed conditions and the absence of concrete data about the 

referent pattern values to follow, the measurements were determined through an 

anthropometric study of some known people. These values are shown in the following 

figure. 

The shown measurements in mm allow a sufficient support for the user, giving enough 

comfort and stability sensation. Head support and back support compose a unique piece. 

410 mm 
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To determine the maximum height from the seat to the head support, the measurements 

were taken from “normal sitting height” (parameter E, Figure 13). 

 

Figure 13: Sitting individual anthropometrical dimensions. 

Considering the 95
th

 men percentile such  as the most unfavorable height situation with 

92,5 cm, and taking such as head support a point of 3,5 cm under the maximum height of it, 

it was determined a maximum permissible exoskeleton height of 89 cm, taking the 

minimum seat height such as reference. The measurement is shown in the following figure. 

  

  

Figure 14: Back support height 
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Head security structure dimensioning. 

Using the book “Felisberto e Pascuoarelli (2001)” the head security structure dimensions 

were established. 

Table 11: Human head anthropometrical dimensions. 

Seat to head height (04) 

Women Men 

3% 50% 97% 3% 50% 97% 

81,5 cm 87,5 cm 92,5 cm 75,5 cm 82,5 cm 88,5 cm 

Head height from chin (23) 

Women Men 

3% 50% 97% 3% 50% 97% 

20,5 cm 22,5 cm 23,5 cm 18,5  cm 21,5 cm 23,5 cm 

Head height (24) 

Women Men 

3% 50% 97% 3% 50% 97% 

16,5 cm 17,5 cm 18,5 cm 13,5  cm 14,5 cm 15,5 cm 

Head depth (25) 

Women Men 

3% 50% 97% 3% 50% 97% 

17,5 cm 18,5 cm 9,5 cm 15,5  cm 17,5 cm 18,5 cm 

 

 

Figure 15: General head dimensions/Source: Elfdeportes 
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The measurements used in this section were the head width, height and depth, as well as the 

height from it to the seat.  Such as this element does not need to be adjustable, the 

measurements taken were the most unfavorable; the 95
th 

men percentile measurements were 

the chosen ones. 

  

 

 

 

 

 

 

Figure 16: Security structure dimensions 

 

The head is localized at 93 cm from the seat base, taking into account the most unfavorable 

user height (04 measurements from table 11). 

 

3.3.3 Lower body preliminary dimensions 

In this case all the data were found in the book “Felisberto e Pascuoarelli (2001)”. 

 Buttock-knees distance 

The distance between the back part of the seat to the footrest must be between 42 cm and 

53 cm approximately as is shown in the following table. 

 

Figure 17: Buttock-knees distance / Source: Elfdeportes 

Width 19 cm 

Depth 20 cm 

Height 24 cm 
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Table 12: Buttock-knee dimensional range 

Measurement type Minimum value Maximum value 

Buttock-knee distance 43 cm 52 cm 

 

Hip width  

Bearing in mind the user comfort, ergonomics and functionality, the distance between feet  

was also considered. The exoskeleton user will spend almost all the working day with feet 

in the same position, so this should be such as comfortable and natural as possible. 

For these reasons, it was decided that the ankle, knee and hip will be in the same vertical 

plane. For this design the hip width from the book “Felisberto e Pascuoarelli (2001)” was 

used. 

 

Figure 18: Hip width dimension for both sexes / Sources: Elfdeportes. 

 

As 30 cm is the 5
th

 women percentile and 41 cm is the 95
th

 women percentile, the 

measurements range is: 

 

Table 13: Hip width dimensional range 

Measurement type Minimum value Maximum value 

Hip distance 30 cm 41 cm 

 

To ensure that the entire dimensional specter was completed, it was decided that between 

14 cm and 48 cm from the vertical body are the footrest measurements. 

The aim is to change the position of the feet during the usage of the machine. 
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Figure 19: Maximum footrest dimension 

 

3.4  Movement range 

 

Once the interfaces are defined, the movement range of the adjustable elements was 

delimited. The delimited elements are: shoulder rotation in the horizontal plane, shoulder 

rotation in the vertical plane and the rise and decline movement in the squat action. 

 

3.4.1 Shoulder movement 
 

Movement in the horizontal plane 

The design is based on the idea that the user should be capable of holding different loads 

with different shapes and dimensions. It was defined that the horizontal movement range 

would be between -10º to 20º, it is supposed that the 0º is the position where the arm is 

perpendicular to the back support. 

This angle is conditioned by the ensemble stability and utilization, as the facility to pick up 

and discharge any kind of allowed load inside the exoskeleton use limitations. 

 

140 mm 
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              Figure 20: Maximum opening angle (+20º)                          Figure 21: Minimum opening angle (-10º) 

 

Movement in the vertical plane. 

In order to not put in danger the security of the user, it was decided to restrict the elevation 

angle from -70º to 40º from the horizontal plane. In this way, the load cannot be in any 

moment over the user head, avoiding losing the stability and the danger for the operator of 

the exoskeleton. 

The raising arm angle is limited for the maximum actuator force in the maximum rod 

extension. On the other hand, the going down angle is limited for the actuator dimensions. 

 

Figure 22: Maximum raising angle (+40º)      Figure 23: Minimum raising angle (-60º) 
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3.4.2 Elbow movement 

 

Arm flexion angle 

The minimum axial angle between the arm and the forearm is limited for the maximum 

extension of a human arm and it corresponds to the axial axis alignment. On the other hand, 

the maximum angle is restricted by the minimum extension possibility of the actuator. 

Table 14: Arm movements’ limitations 

Movement limitations 

 Angle (º) 

Arm over the horizontal plane 40 

Arm under the horizontal plane -60 

Minimum angle (arm 1 – forearm 1) 0 

Maximum angle (arm 1 – forearm 1) 90 

Maximum opening from vertical plane (arm 1- arm 2) 20 

Maximum closing from vertical plane (arm 1- arm 2) -10 

 

 

                      Figure 24: Minimum elbow angle                                                         Figure 25: Maximum elbow angle 
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3.4.3 Hip movement 

 

Movement limit: squat and stand up. 

The action was studied in an empirical way in an average person. In this way, a set of 

parameters were obtained for, in an ergonomic and comfort point of view, the user could 

realize this action in a functional and satisfactory manner. 

The most adequately feet-seat distance was obtained; this is between 42 cm and 53 cm. 

Then, it was defined a bottom dead center (BDC), it is the distance between the exoskeleton 

base to the seat in its lowest position, 30 cm. The distance from the exoskeleton base to the 

footrest is 6 cm, being at the end a total of 37 cm. 

On the other hand, it was assumed the distance from the exoskeleton base to the highest 

position of the seat, 80 cm, as the top dead center (TDC). Thus these values were 

considered enough to realize the movement in a functional way, avoiding the risk that could 

create the total extension or articulation of the knee, as it is done in the real life. 

 

Figure 26: Minimum seat height 
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Figure 27: Maximum seat height 

 

3.5  Global dimensioning 

Next, it is explained and shown the general exoskeleton dimensioning. 

The less compact configuration is when the arms are completely stretched at 40º over the 

horizontal plane, the shoulder in its larger position and the seat in its highest configuration 

and the highest position is when the arms are completely shrunk, the shoulders in its lowest 

position and the seat in its lowest configuration. 

Table 15: Extreme exoskeleton dimensions 

Case Height Length 

Less compact 2151 mm 1591 mm  

Most compact 1450mm 990mm 
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                             Figure 28: Most compressed position                                Figure 29: Most extended position 

 

3.6  Components unification 

 

With the goal of reducing costs and unify the assembly processes, it was tried that the 

similar functional elements had the same design, it is called “Design intention” in the 3D 

parametric design world. With that, the maintenance work is easier and the spare stock is 

reduced with all the advantages that it involves, like a smaller requirement in warehouse 

space.  

The following elements were dimensioned with design intention: 

- Footrest 

- Tubular profiles 

- Retractile shoulder structure 

- Rotating cylinder 

- Demountable ear 

- Retractile support structure 

- Tubular profile and support hairpin 
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4 Design evolution 
 

4.1  Common elements in the design 

4.1.1 Wheels 

One of the most important decisions was the wheel election, it should be capable to realize 

the progress and reverse movement, as the rotation in both directions. 

After comparing different kind of wheels, it was decided that the one that was more useful 

for this project is the “omni wheel”.  

The main omni wheel advantage in front of the common wheels is the disappearance of the 

dragging component. Consequently, the exoskeleton could rotate and advance in any 

direction without any restriction. In addition, the machine storage would be better with this 

kind of wheels. 

It is needed to know how much weight each wheel must bear, all the calculations are shown 

in “Annex 1: Analytical calculations”, and the method to choose the wheel in the section 

“Final design”. 

 

4.1.2 Actuator 

It was needed to decide which kind of device would be chosen to elevate the load and the 

weight of the operator. 

The first idea was that the seat was rooted in the platform; in this situation the actuator 

shouldn’t raise the weight of the user. But, as the objective is that the exoskeleton has to be 

able to be driven for different heights people, it means that the seat should be adaptable, 

because the user must fit in the exoskeleton to have the shoulders in the correct height to 

concordance with the exoskeleton shoulders. 

The easiest way to solve that problem is that the shoulders and seat were joined and floating 

regarding the platform. With this solution, the user only has to sit and adjust the seat to 
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have the shoulders in the correct position. Then the actuator would move the entire floating 

load like a set until the user was in the most comfortable position with their feet in the 

footrest.  

 

Hydraulic actuator 

It is capable of carrying big load with precision, but in this prototype there is no need to 

carry excessive loads, then the disadvantages are bigger than the advantages it offers. 

Mainly the needed space for the oil deposit, the actuator dimension and the expensive 

maintenance are the reasons why this kind of actuator was not chosen. 

 

Pneumatic actuator 

The pneumatic actuator is capable to raise lower loads than the hydraulic actuators, but it 

works faster. In this prototype, this high speed is not needed, and it also was not chosen for 

the needed installation space that requires this kind of actuator, as the compressor and the 

air deposit. 

 

Electrical actuator 

The lineal electrical actuator is shown as the best choice for this prototype. It is able to raise 

big loads and the energy can be storage in batteries that feed as the wheels engines as the 

actuators engines. 

Another important fact is the energy cost of each actuator, being the electrical one the most 

profitable. 

Finally studying all the previous kind of actuators, the chosen one is the electrical actuator 

because is the one that fits better in this prototype.  
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With the maximum allowed load, maximum user weight and the exoskeleton arms and back 

weights, it can be done the stress force calculation that each actuator will bear. With this 

data, it was possible to choose the correct actuator through catalogues. The calculations can 

be found in the “Annex 1: Analytical calculations, section 2: Actuator election 

calculations”. 3090 N was obtained as the maximum load value, having this force; it was 

able to choose the actuator ALI4 24-Vdc. that has a capacity of 4100 N. 

 

Figure 30: ALI4 24-Vdc. / Source: Actuator catalogue. 

 

After contrasting different technologies to get arm movement, it was decided to also choose 

a combination of actuators to create the arm movement in the vertical plane. As this 

previous actuator can raise all the structure weight plus the load, it is also a good option to 

use the same model in the arm subassembly, because the measurements of it fits inside the 

design and the actuator in this mechanism do not need to raise as much weight. 

Being at the end a total of five actuators in the final assembly; one in the lower body-chest 

interface and a composition of two of them in each arm to create the “muscle” in the arms 

articulations. 
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4.1.3 Vertical profile, lineal guides and subjection plate 

The back and lower body union had to be made in a way explained in the previous section, 

the operator will be suspended regarding the platform and the actuator will move up and 

down. 

But both parts, lower body and the back must be joined, without restricting the up and 

down movement. This can be solved installing a lineal guide. In the back should be 

screwed the guides, and in the lower body would be placed the corresponding rails. To 

insert the rails, it was decided to weld a vertical square profile on the lower body, being this 

profile parallel to the back. 

Two kinds of guides were in mind: lineal guides with trapezoidal slide and lineal guides 

with straight slide. 

 

Lineal guides with trapezoidal slides 

This kind of guides present a high assembly complexity due to its geometry, they also are 

more expensive than the straight lineal guides. 

On other hand, due to the need to place the actuator centered between both guides, the only 

feasible solution was adding a U profile. To this profile would be welded the trapezoidal 

slides, and the guides would be screwed to the base vertical profile. 

 

Lineal guides with straight slides 

However, analyzing the configuration of the lineal guides with straight slides, I can be seen 

that the simplicity in its geometry is the biggest advantage, as in the economical field as in 

the maintenance and assembly. 

In this case, to add this element in the design there is any need to add any profile, because it 

can be screwed in the back or in the vertical base profile. 
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Due to these advantages, finally the lineal guides with straight slides were the chosen ones 

for the prototype.  

Next will be explained which configuration was chosen to add the actuator and why finally 

was decide to add two lineal guides instead of one. 

 

Two guides election 

At first, it was considered to use a unique guide-slides set (from now on advance it will be called 

“lineal table”). Finally, the design was changed because the situation of this lineal table was not 

fitting with the electrical lineal actuator, also the stability of the chest-arms set was not enough, thus 

finally, it was decided to use two lineal tables to guarantee the correct operation. 

 

Support plate 

As the final design has in consideration using two linear tables, it is needed to add a support 

plate; the central column has not enough space to screw both of them.  The dimension of it 

must to be fit into the design, guarantying the no interference with the other elements. 

- Height: The height of the plate has the same longitude than the lineal tables, all the 

plate-guides set is installed in the same direction than the back electrical actuator 

direction (490 mm).  It is decided to add a little dimensional marge (in this case is 

55 mm each side) to avoid impacts on the top and bottom dead point (TDP-BTP). 

The final height of the support plate is 600 mm. 

 

- Width: This value has to be enough to accommodate to lineal guides and allows the 

alternative vertical actuator movement. On the same way, a security marge is added 

(30 mm in total). The final width is 260 mm.  Enough to satisfy the previous 

necessities. 
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- Thickness: The value was procured to fit in the preliminary design. However, it 

should be enough to withstand all the service tension and resist the stress caused for 

the screwed unions used in the guides. Bearing in mind this requests, the final 

thickness value is 10 mm. 

The first material thought to be used to construct the support plate was aluminum, but as 

the central column would be made of steel, some considerations must to be done when two 

different material have to be welded.   

Two materials with different fusion points and different dilatation coefficients could 

generate internal tensions that would raise the service weld bead fragility and the corrosion 

risk.  To weld steel and aluminum, some chemical compounds are generated, these 

compounds are brittle and for avoiding then, it is need to use special welding technics. 

Finally, to reduce cost and facilitate the assembly, the material chosen for the support plate 

is AISI1020 steel, the same used in the structure. 

Table 16: Support plate measurements. 

Magnitude Measurement (mm) Marge (mm) 
Total measurement 

(mm) 

Width 200 30·2 =60 260 

Height 490 55·2 =110 600 

Thickness 10 0 10 

 

 

Two slides per guide 

If only one slide per guide is put in the design, this will support the entire torque of all the 

structure, because the gravity center is between them. However, if two slides are put in each 

guide, the distance from each slide to the gravity center rise, decreasing the stress supported 

per each one. 

In this way it is observed that for a same torque, the stress supported per each slide is lower 

when the distance between the slides and the gravity center rises. 
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In Annex 1: Analytical calculations, section 3: Calculation referred to the lineal guide 

election, are some suppositions for the arm and load positions. From this analysis is 

obtained that the worse position is where one arm is at 0º while the other is at 20º outward 

and supporting the totality of the load. 

After this analysis, all the following studies will be done in the same position, because is 

the worst one. If the design is favorable in this position, it means that it is favorable for all 

the others positions. 

 

Figure 31: Lineal table DryLin TK01 / Source: Lineal guide catalogue 

 

 

4.1.4 Engine and engine bearing/Battery 

This element will be related with the chosen wheel and the final weight of the structure. 

These two elements will be defined when the final design will be over. 

Depending on the engine and actuator consumption, it will be chosen a battery with 

different capacities, this element also will be defined when the final design will be over. 
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4.2  Subassemblies  

The following pictures show the different subassemblies that compounds the final structure. 

 

Figure 32: Isometric view. Chest, arms and lower body subassemblies. 

 

 

Figure 33: Lower body, Chest and Arms subassemblies 
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4.2.1 Lower body 

 

 

Figure 34: Lower body subassembly 

Main components: 

- 1 x Crew profile 

- 3 x Omni wheels 

- 3 x Engines 

- 3 x Engine fixing piece 

- 2 x Footrest 

- 2 x Lineal guide 

- 1 x Lineal guide support plate 

- 1 x Actuator 

- 1 x Box battery 

- 1 x Battery tape 

Analyzing this design, it can be observed that the exoskeleton could realize the needed 

movements without an engine in the back wheel; it means a weight reduction and energy 

savings for the needed battery storage. 
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The lateral movement is erased to convert it into two actions, rotation and advance (two 

wheels rotating into opposite directions). 

The principal structure changed a total of 3 times, first it was a composition of two square 

pieces, one was the base and the other was the lower body interface, it was designed to be 

able to mount and dismount both pieces; this design was changed for some inconveniences: 

- A square base do not give enough stability to the entire structure, the gravity center 

was displaced too much. 

- The joint between both parts was a useless idea, this exoskeleton is not designed to 

be dismounted and the join is one of the weakest points in the structure, a big torque 

is generated in this place. 

The second design consisted in only one piece in crew shape, the joint disappeared and the 

stability improved, but it still was changed for the following disadvantages: 

- High weight 

- Big dimensions 

- Low maneuverability 

The final design reduced the dimensions of the piece, doing it thinner and adding two wheel 

supports that allow maintaining the distance between the wheels and therefore the stability 

of the structure. 

 

Wheels, engine and engine bearing. 

First, the omni wheel is chosen by catalogue, it must bear the third part of the weight. The 

calculations are shown in Annex 1: Analytical calculations, section 5.1 Minimum power 

needed to move the wheel. The chosen wheel is HANGFA QLM-20 that can bear a 

maximum load of 160kg.  

With the chosen wheel specifications and determining a minimum advance velocity, it is 

possible to calculate the engine power needed. These calculations are shown in Annex 1: 

Analytical calculations: Engine election. 
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In accordance with the results, the chosen engine is PM63-50BG9, its catalogue is shown in 

Annex 3: Catalogues. 

Concluding, knowing the engine dimensions and its geometry, it was needed to think the 

way to link it with the design. 

The solution was to design a piece with the same shape and length and width dimensions 

with four concentric holes, the engine and this piece would be linked with four bolts. 

 

Figure 35: Omni wheel HAMFA QLM-20 

 

 

Battery 

The final design contains three wheels, two engines and 5 actuators (2 in the arms, 2 in the 

shoulders and one in the lower body). It is possible to calculate the consumed power  and 

then choose the battery needed. 

Calculations are in Annex 1: Analytical calculations, section 7 Battery calculations. 

Finally, the chosen battery is TROJAN J185H-AC. 
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4.3  Chest 

 

Figure 36: Chest subassembly 

Main components: 

- 1 x Security structure 

- 4 x Tubular profile 

- 2 x Retractile shoulder structure 

- 2 x Rotating cylinder 

- 2 x Shoulder pin 

- 2 x Demountable ear 

- 2 x Cooper hub 

- 1 x Column 

- 1 x Back support 

- 1 x Seat support 

- 1 x Seat 

- 2 x Retractile support structure 

- 2 x Tubular profile and support hairpin 

- 1 x Cooper hub and tape 

- 4 x Lineal slides 
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The main problem in this subassembly design was how to reach the user dimension range 

and how to give horizontal and vertical mobility to the arms subassemblies.  

The design changed three times, the first design was created only to have a preview of how 

the shape should be and to visualize the dimensions of it. It was know that this design 

would not have any real finality. After having this preview, the next problems were found: 

- It has not any extensible element, it was not reaching one of the main goals (it 

should be able to be used by different stature users). 

- The chest-arm interface was created with a rectangular profile element, this shape is 

not the best election in this situation and it has to bear big torques. 

- The vertical and horizontal arm movement is not contemplated.  

In the second design some problems were solved, the rectangular profile elements were 

changed for cylindrical ones, this change improved the torque resistance, and also some 

new elements were created (Retractile support structure and retractile shoulder structure) to 

add some different joint positions that give a variable dimensioning to the final 

composition, reaching in this case the retractile goal. Finally, the most important change is 

the addition of a spherical element that allows the arm movement.  

Even with these changes, some little problems were found: 

- The dimensions of the column were too big and therefore the weight was creating 

an unnecessary big torque. 

- The spherical element was working fine, but as the goal of the project is to raise 

loads of 50 kg, it was supposed that the element would break in a near future. 

In the final design, these problems were solved, the dimension of the column was reduced 

and to add the lineal slides, a thin plate was welded in the new column. The spherical 

element was changed for a hub with a bolt crossing it, the hug gives the horizontal 

movement, while the bolt allows the vertical one. 
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4.3.1  Arms 

 

Figure 37: Arm subassembly 

Main components: 

The final arm subassembly is composed for two symmetric subassemblies; it was 

intentioned to create as much equal element that could be used in both arms, to maintain the 

design intention. 

- 2 x Kneecap elbow arm 

- 2 x kneecap shoulder arm 

- 2 x Shovels 

- 4 x Extensible tubular joint 

- 4 x Arm support joint  

- 1 x Left forearm 

- 1 x right forearm 

- 1 x Left arm support 

- 1 x Right support 
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The arm design was not changing a lot after the first idea, it was based in the chest design 

to create the retractile possibility and it was also created with cylindrical profiles. The 

unique addition IS the arm support element; it allows the user to rest the arm and to create a 

joint between the user and the structure to transmit the mechanical energy, it is an essential 

element that should be combined with different sensors and electronic devices to make 

possible the objective of the exoskeleton (carry big weight without using a big force), the 

user’s arms and the exoskeleton’s arms should work synchronized, but it is a 

complementary work for this main project. 

 

Shovels 

To dimension the box handle is needed to know the minimum measurements of the shovel 

that will be used to hold the load. 

 

 

 

 

 

 

 

 

 

 

The shovels will never be in distance lesser than 360 mm; all these measurements will be 

used to calculate the box handle dimensions in a following section. 

Height  10 mm 

Length  50 mm 

Width  70 mm 

Figure 38: Shovel illustration 



42 
 

 

4.3.2  Material 

This section is important to know the final weight of the entire structure, but as this project 

will not be absolutely finished, it is possible that the final design version could suffer some 

changes in the chosen material, when the axis studies would be realized, it should be 

decided if the material has the correct specifications to reach our requirements or it should 

be changed to another one with better characteristics for our necessities. 

The material chosen for the structural elements is AISI1020 steel, in the following picture 

(taken from the software SolidWorks) is possible to see the material specifications: 

 

Figure 39: AISI 1020 steel SolidWorks specifications /Source: SolidWorks oftware 

This kind of steel is chosen as first option for its good fatigue resistance and the easy 

mechanization. 

The total weight of the steel structure has a final weight of approximately 540 kg. It was 

calculated with the measurement tool from SolidWorks. 
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4.3.3  Box 

 

Limit dimension of the box to carry. 

First, it must be calculated the limit dimensions of the box that is needed to be elevated. 

The worst situation is when it is needed to raise the load from the floor. Then, the limit 

dimensions of the box is when the exoskeleton is situated in the bottom dead center (BDC), 

the arms in this positions are in the closest distance from the floor. 

In addition, in this position can be found interferences between the shovels and base 

structure when the arms are closed to its maximum angle (-10º), then some specifications 

have to be done before doing this study. 

After testing the structure with SolidWorks, the position that makes possible to carry the 

load from the floor is this: 

- Both arms completely extended and closed at -10º 

- Both arms at -40º from the horizontal plane. 

- Chest subassembly situated in its IDC. 

Studying this position is possible to get the minimum volume that the box should have. 

 

 

 

 

 

 

 

                                                                Figure 40: Example box dimensions 

Width  360 mm 

Length  309 mm 

Height  360 mm 
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After having all this measurements, it is possible to define the minimum dimensions of the 

handle, it has to be positioned at 310 mm from the floor and it has to maintain the 

symmetry with the box to improve the stability. 

 

 

 

 

 

 

 

                                                     Figure 41: Example box handle 

 

Next is showed a representation of how the exoskeleton would carry and raise a minimum 

size load. 

 

 

                      Figure 42: Exoskeleton carrying a load                                       Figure 43: Exoskeleton raising a load 

 

Width  180 mm 

Length  360 mm 

Height  30 mm 
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4.3.4  Maximum height that the load could be raised 

 

To determine this parameter, it is needed to move the exoskeleton until his maximum 

height position. This position is determined as: 

- Arms completely extended 

- Arm turned 40º over the horizontal plane 

- Structure in the top dead center (TDP) 

 After positioning the exoskeleton in this position it was possible to measurement the total 

height that is possible to elevate the load. 

 

It is a good result, this measurement simulates the height that a normal human could raise a 

normal height, but in this case, it would be possible to do the same action but with a load 

two or three time heavier than a normal person could carry. 

 

4.3.5  Ideal transporting position 

The ideal position to transport the load is where the gravity center is lower, but as one of 

the goals of this project is to be care about the user comfort, the transport cannot be realized 

in the bottom dead center (BDC), where the user should be all time completely flexed. It I 

estimated that an average normal height is 500 mm, in this way the user is not in any of the 

extremes positions. 

The ideal transporting position is got with: 

- Arm-forearm angle at 100º 

- Seat at 500 mm from the footrest 

- Elbow actuator completely closed 

Maximum stacking height 2084 mm 
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After analyzing this position, a big problem was found; the visibility of the user can be 

reduced when the load is in front of him. It is a big problem that should be studied and tried 

to be solved in the next prototype design. 

 

4.3.6  Manoeuvrability 

In this section will be detailed which will be the needed workplace to use this exoskeleton 

prototype carrying the maximum load of 50 kg. 

First, the width and height corridor measurements will be defined to have enough space for 

the exoskeleton realizing its goal.  

These dimensions are established assuming that the user is working in the ideal position 

and having a marge of 10 cm between the exoskeleton and the walls. 

The minimum wall height should be 1680 mm if we assume the last assumptions; it is not a 

problem because any industrial workplace has a minimum height of 3 or 4 meters.  

To talk about the needed width, two different situations must be studied. It is considered the 

following carrying position: 

- Arms completely extended 

- Arms opened at their maximum angle from the vertical (20º) 
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Situations: 

1- The exoskeleton does not need to rotate, only carry the weight in straight direction. 

In this situation the dimensions between both arms is 1480, and bearing in mind the marge 

with the walls, the minimum corridor width must be 1580 mm 

 

 

Figure 44: Absolute width dimension 
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2- The exoskeleton needs to rotate. 

When the exoskeleton needs to rotate, it creates an imaginary pivoting axis in the middle 

point between the wheel, the length between this point and the back wheel represents a 

radius of an imaginary circumference. This radius has a length of 1400 mm. 

 

Figure 45: Pivoting radius 
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But as the arms in the most extended position, the distance from the pivoting axis to the 

farthest arm point must be added to the total measurement, also the marge with the walls 

have to be counted, finally being the minimum corridor width in this position, 2305 mm.  

 

 

Figure 46: Absolute pivoting dimension. 
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4.3.7  Exoskeleton storage 

As last, an important aspect in the industrial field is the machinery storage. 

The most compressed position is the one that is used as storage position.  This position was 

studied in section 3.5 Global dimensioning, but the measurements are shown in the 

following table. 

 

Figure 47: Storage width                   Figure 48: Storage position 

 

 

Table 17: Exoskeleton storage dimensions. 

 SolidWorks rounded 

measurement  

Final dimension (with 100 mm to the wall) 

Width (mm) 860 mm 1060 mm 

Length (mm) 1500 mm 1700 mm 

Height (mm) 1450 mm 1550 mm 
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4.4  Final design 

After the previous study and after drawing some different structures, it was chosen the one 

that can allow all the elements without interferences and at the same time can realize all the 

movement needed and described.  

 

  Figure 49: Final assembly (Front isometric view)                     Figure 50: Final assembly (Back isometric view)  

 

Finally, confirming the final design based in simplicity, profitability and easy assembly, it 

is possible to define the final components. 

 

5 Budget 

This section was created to have a cost estimation to compare it with machinery those are 

currently functional.  It has to be emphasized that it is not a final version and the electronics 

part is not studied in this project, therefore this little economical comparison is show the 

situation where this study is right now. 

To realize this budget, different table were created with an Excel worksheet. 

Each subassembly was studied individually. 
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Lower body 

   Manufacturer bought elements 

 

1200 € 

Square and circular tubes (AISI1020) 

 

30 € 

Solid steel rod (AISI1020) 

 

1 € 

Steel plates (AISI1020) 

 

25 € 

Screws 

 

25 € 

Mechanized Cutting 175 € 

 

Drilling 210 € 

 

Milling 100 € 

 

Lathing 100 € 

Welding 

 

280 € 

Assembly 

 

75 € 

Total 

 

2221 € 

    Chest 

   Shoulder subassembly 

 

900 € 

Support subassembly 

 

750 € 

Column subassembly 

 

740 € 

Seat subassembly 

 

230 € 

Electrical actuation system 

 

1500 € 

Assembly 

 

250 € 

Total 

 

4370 € 

    Arms 

   Final pieces cost 

 

470 € 

Welding 

 

90 € 

Screws and hubs 

 

140 € 

Electrical actuation system 

 

1500 € 

Total 

 

2200 € 

    Final assembly  

   Total 

 

17582 € 
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After doing this estimation, it was searched another machinery that could realize the same 

work as the exoskeleton. 

Searching on internet, some devices were found, it was chosen the one that could realize 

the same objective in the most similar way. 

The chosen device is a forklift, in specific the model WP 3000 from the company CROWN, 

its catalogue is added in Annex 2: Catalogues. 

The main points that were studied are the general dimensions and the capacity to realize the 

work. The forklift dimensions show the range that compounds all the models.  

 

Table 18: Machine comparison 

 Exoskeleton Forklift  

Height 1450 780-1197 mm 

Width 860 712 mm 

Length 1500 1799-1899 mm 

Elevation height* 2048 750 mm 

Rotation radius 1408 1534-1634 mm 

Maximum raising weight 50 800 kg 

Device weight (without battery) 540 490-535 kg 

Price 17582 + Elect. Dev. 3000 € 

*Maximum load raising height 

 

The comparison gave promising results. The dimensions of the exoskeleton are little 

enough to be competitive in the market while in other aspects are even better; the elevation 

height is more than twice, allowing this better stack options, but on the other hand, the 

estimated price of the exoskeleton is extremely high to be an available option. 

There are still some options to improve the exoskeleton and reduce the cost, it would be 

possible to change the material, even the design could be changed to give more stability 

reducing the dimensions or even increasing the load weight that could be carried.  
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6 Conclusion 

The realization of this project was done following the engineering design processes, it was 

done a necessity recognition, followed by a problem definition, the synthesis of the design, 

the essential analysis and optimization was done until the third design, as it is a thesis 

report and the global goal of it is showing my engineering knowledge, the design process 

stopped in this point and it continued to the evaluation step to finally finished in the 

presentation. 

In the final design, after realizing all needed modifications, I obtained a design that met all 

the requirements initially aimed, the anthropometrical dimension for the dimensioning are 

reflected in the design and the interfaces were successfully defined, allowing the desired 

movement without interferences. As a result, the final prototype studied is considered to be 

the simplest and the cheapest option. 

Even the exoskeleton specifications are good enough to realize its goal; it still has to be 

improved in many ways. As the intention is to design an exoskeleton, the next versions 

should be evolved to a humanoid shape, the most important factor would be the movement 

system, the design should allow the user working in many different workspaces, not only in 

flat floors, the biggest restraint of this project.  

Also, during the study it was possible to check that using the right element and materials, 

the lifting capacity of this dispositive could be highly improved, combining this fact with a 

good base stability, it would be possible to get a real exoskeleton that allows the user lifting 

huge loads in many different spaces. These improvements could hide the high manufacture 

cost and convert this project in a real market option. 
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1. Abbreviation and definitions 

 

 Symbol Variable SI Unit 

Forces Fmax Maximum force that the actuator has to bear N 

 Fx Force in “x” axis N 

 N Normal force N 

 Fmax All the weight over each wheel N 

 Fown_wheel Weight of the own wheel N 

 Fmin Minimum force to move the wheel N 

Torques Tload Torque generated by the load Nm 

 Tarm Torque generated by the arms Nm 

 Tactuator Torque generated by the actuator Nm 

 Tchest Torque generated by the chest Nm 

 Tseat Torque generated by the seat Nm 

 Ttotal 

Torque generated by the total sum of the load, arms, 

chest, seat and actuator 

Nm 

 Tposition_1 Final torque module in position 1 Nm 

 Tposition_2 Final torque module in position 2 Nm 

 Tposition_3 Final torque module in position 3 Nm 

 Tfx 

Torque generated in the lineal guides on axis “x” in 

position 1 

Nm 

 Tfz 

Torque generated in the lineal guides on axis “z” in 

position 2 

Nm 
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 Tresistant Maximum torque generated by the wheel Nm 

 Tstarter Torque needed to start the movement Nm 

 Tres Maximum torque generated by all the structure Nm 

Power Pwheel Power needed to move the wheel W 

 Ptotal Power needed to supply all the devices W 

Velocities v Structure maximum velocity m/s 

 w Wheel angular velocity rad/s 

Others d 

Variable to represent the perpendicular distance in torque 

calculations 

mm 

 mt Total structure mass kg 

 mwheel Maximum mass that each wheel can carry kg 

 R Radius of the wheel mm 

 μr Eccentricity mm 

      Simultaneity factor  
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2. Calculation referred to the actuator election 
 

To realize the calculation for the actuator that is situated in the base platform, is needed to 

know the approximate weight that it will bear. It is known that for this configuration, the 

actuator have to support the arm and back weight, and the user weight. These weights were 

obtained with the measurement tool from SolidWorks software with AISI1020 as chosen 

material. 

In the following table are shown the different weights: 

 

Table 19: Sum of the weights that the actuator should bear. 

 Unit Weight (kg) Total (kg) 

Arms 2 20 40 

Back 1 75 75 

Operator 1 100 100 

Load 1 100 100 

   315 

 

             
     

    ⁄         

Calculation the total reaction that it should bear and using a security marge, finally it was 

selected the actuator “ALI4 24-Vdc” that could bear a maximum of 4100N. See catalogue 

in Annex 2: Catalogues. 

 

 

Figure 1: Catalogue detail showing the chosen actuator. 
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3. Calculation referred to the lineal guide election 
 

 

3.1 Calculation of the moment that the lineal guide must bear 

 

To choose a lineal table that allows the alternative vertical movement, movement generated 

for the squat action, it must be considered the forces that act on the table. For that, the 

moments generated for the load are calculated in the union point of the lineal guides and the 

back. The loads that were considered are: 

1- Raising load 

2- Arm weight (including the flexion movement actuator) 

3- The actuator that permits the raising and going down arm movement. 

4- Chest weight 

5- Maximum operator weight 

Three different arm positions are chosen to decide which one is the most unfavorable. 

To consider the tree dimensional system, a vector analysis was done and SI units system 

was used. 

All following matrix are based in the next vector expression: 

 

 ̅   ̅   ̅ 

 

 

 ̅  [

 ̅  ̅  ̅
  ̅   ̅   ̅

  ̅   ̅   ̅̅ ̅
] 

 

 

Figure 51: Vectorial directions 



Analytical calculations  5 
 

Exoskeleton: Prototype design 

The “i” vector direction corresponds to the exoskeleton width, the “j” vector direction to 

the exoskeleton height and finally the “k” vector direction to the exoskeleton length.  

 

Position 1: 

Arms at 0º from the horizontal plane, both loaded with weight. 

 

- Load to raise 

 

It is supposed that in this position the load is raised with both arms with the same force 

(50kg each arm). 

 

Right arm load (50 kg)  Left arm load (50 kg) 

 i j k  i j k 

0.432 0.641 1.287  -0.432 0.641 1.287 

0 -500 0  0 -500 0 

 

- Arm weight (including the flexion actuator) 

 

Left arm load (25 kg)  Right arm load (25 kg) 

i j k  i j k 

0.432 0.641 0.71  -0.432 0.641 0.71 

0 -250 0  0 -250 0 

 

- The actuator that permits the raising and going down arm movement. 

 

Left actuator (5 kg)  Right actuator (5 kg) 

i j k  i j k 

-0.391 0.32 0.323  0.391 0.32 0.323 

0 -50 0  0 -50 0 
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- Chest weight. 

Chest (75 kg) 

i j k 

0 0.361 0.11 

0 -750 0 

- User weight 

User ( 100kg) 

i j k 

0 0.052 0.31 

0 -1000 0 

 

The resultant torque that the lineal table should support is: 

 

  i j k Resultant (Nm) 

Tload 1287 0 0 1287 

Tarm 355 0 0 355 

Tactuator 32.3 0 0 32.3 

Tchest 82.5 0 0 82.5 

Tseat 310 0 0 310 

Ttotal 2066.8 0 0 2066.8 

 

It can be observed that in this position the lineal guides only work in flexion around the “x” 

axis. The resultant moment in position 1 is: 

 

|           |  |     ̅    ̅    ̅|          

 

Position 2 

Arms at 0º from the horizontal plane: Right arm loaded and turned 20º from the vertical 

plane, left arm without load. 

In this situation, it is supposed that the entire load is supported for only one arm. To do this 

calculation the load is multiplied for a security factor of 2. With this security factor is 

assumed that the dynamical load, the own weight or any other lateral unplanned impact are 

counted. 

This kind of load is hypothetical and it is not possible in the real life.  
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Following the same procedure as in the position 1, it is showed the vector analysis that give 

as result the moment generated for each load:  

- Load to raise 

In this position, the most unfavorable situation would be that the maximum load (100 kg) 

was elevated with only one arm. 

 

Right arm load (100 kg)  Left arm load (0 kg) 

i j k  i j k 

0.747 0.641 1.21  -0.431 0.648 1.282 

0 -1000 0  0 0 0 

 

 

- Arm weight (including the flexion actuator) 

 

Left arm load (25 kg)  Right arm load (25 kg) 

i j k  i j k 

0.554 0.641 0.71  -0.344 0.641 0.71 

0 -250 0  0 -250 0 

 

 

- The actuator that permits the raising and going down arm movement. 

 

Left actuator (5 kg)  Right actuator (5 kg) 

i j k  i j k 

0.431 0.33 0.31  -0.39 0.33 0.31 

0 -50 0  0 -50 0 
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- Chest weight. 

 

Chest (75 kg) 

i j k 

0 0.362 0.11 

0 -750 0 

 

- User weight 

 

User (100 kg) 

i j k 

0 0.055 0.31 

0 -1000 0 

 

The resultant moment that the lineal table should support is: 

  i j k Resultant (Nm) 

T_load 1210 0 -747 1422.01 

T_arm 355 0 -52.5 358.86 

T_actuator 31 0 -2.05 31.07 

T_chest 82.5 0 0 82.50 

T_seat 310 0 0 310.00 

T_total 1988.5 0 -801.55 2143.97 

 

 

It can be observed that in this position the lineal guides work with frontal flexion around 

the “x” axis and with lateral flexion around the “z” axis. The resultant moment in the 

position 2 is: 

 

 

|           |  |     ̅    ̅      ̅|          
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Position 3 

Arms at 40º from the horizontal plane: right arm with a load turned 20º from the vertical 

plane, left arm without load. 

As in the position 2, a security factor of 2 will be applied. 

 

- Load to raise 

In this position, the most unfavorable situation would be that the maximum load (100 kg) 

was elevated with only one arm. 

Right arm load (100 kg)  Left arm load (0 kg) 

i j k  i j k 

0.656 1.331 0.942  -0.431 0.639 1.278 

0 -1000 0  0 0 0 

 

 

- Arm weight (including the flexion actuator) 

Left arm load (25 kg)  Right arm load (25 kg) 

i j k  i j k 

0.51 0.952 0.559  -0.367 0.949 0.559 

0 -250 0  0 -250 0 

 

 

- The actuator that permits the raising and going down arm movement. 

Left actuator (5 kg)  Right actuator (5 kg) 

i j k  i j k 

0.431 0.353 0.255  -0.431 0.353 0.255 

0 -50 0  0 -50 0 
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- Chest weight. 

Chest (75 kg) 

i j k 

0 0.353 0.11 

0 -750 0 

 

- User weight 

User (100 kg) 

i j k 

0 0.055 0.31 

0 -1000 0 

 

The resultant moment that the lineal table should support is: 

  i j k Resultant (Nm) 

T_load 942 0 -650 1144.49 

T_arm 279.5 0 -35.75 281.78 

T_actuator 25.5 0 0 25.50 

T_chest 82.5 0 0 82.50 

T_seat 310 0 0 310.00 

T_total 1639.5 0 -685.75 1777.14 

 

It can be observed that in this position the lineal guides work with frontal flexion around 

the “x” axis and with lateral flexion around the “z” axis. The resultant moment in the 

position 3 is: 

|           |  |     ̅    ̅      ̅|          

 

After analyzing the results, it is clear that the most unfavorable frontal flexion is produced 

in the position 1, however, the biggest lateral flexion is in position 2. On the other hand, in 

any situation exist torsion forces (around “y” axis).  

Having the most unfavorable moments that the lineal table must support (slides and guides 

set), it is searched one that fulfills the requirements and general dimensions of the design. 
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After searching in the catalogues from different manufacturers, it was checked that the best 

guide line is DryLinTTW-01-15. It can be seen in Annex 2: Catalogues. 

To guarantee the correct operation and with the intention of sharing the forces and so 

making them lower, it is decided to place two slides in each guide. 

The distance between guides is the needed to avoid interferences with the actuator and it is 

assumed that the vertical distance between both slides is the same length that one slide. 

The slide and guide dimensions are given for the manufactured in the catalogue. 

 

 

4. Force calculation on the slides -guide set. 
 

Stress caused by the lateral flexion (Around the “z” axis) 

First it is studied the lateral flexion (around the “z” axis). It will be used the biggest 

moment value calculated in the previous section. This is the moment of the position 2: 

 

|           |  |     ̅    ̅      ̅|          

 

Therefore:   

           

 

The moment respect the “z” axis is the force per distance since the application point to the 

gravity center. To do the force calculation it is assumed that only two slides will support the 

biggest part of the stress. 
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Table 20: Lateral flexion stress calculation (Fx) 

Tfz (lateral shift) 

Tfz 801 Nm 

d 0.1075 m 

Fz 3726 N 

 

4.1  Stress caused by the frontal flexion (around the “x” axis) 

 

Next is analyzed the frontal flexion phenomena (around “x” axis). For that it is taken the 

biggest moment (Tfx) calculated in the previous section. 

The chosen torque is the calculated in the position 1: 

|           |  |     ̅    ̅    ̅|          

 

Therefore:  

            

 

It is assumed that the 4 slides are supporting the stress, for that: 

           

Table 21: Frontal flexion stress calculation 

Tfx (frontal shift) 

Tfx 2067 Nm 

d 0.1075 m 

Fx 4807 N 
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4.2  Supported values verification 

 

Slides-guide catalogues were consulted to check the technical specifications; DryLin 

TTW0105 was the chosen model. The relation between the maximum admissible stress of 

the slide-guide set and its service condition is: 

 

Table 22: Comparison between the admissible stress and service stress in both directions 

Fz_adm (N) Fz (N) Fx_adm (N) Fx (N) 

7500 3726 14500 4807 

 

In any situation, the admissible stress is reached. Therefore, the Dylin lineal table is 

definitely chosen for the exoskeleton design. 

 

 

5. Calculations for wheel election 
 

The three wheels that form the final exoskeleton design must bear the total weight of the 

structure, it contains: the arm and back, the user that is supposed as maximum 100 kg, the 

maximum load to carry, the base, the 5 actuators and the slides and guides. 

Next, it is showed a table with the weights: 

 

Table 23: weight sum that onmi wheel wheels must bear 

 Units Weight (kg) Total (kg) 

Arms 2 25 50 

Back 1 65 65 

Operator 1 100 100 

Load 1 100 100 

Base 1 70 70 

Actuators 5 0.9 4.5 
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Lineal guide 2 0.7 1.4 

Slides 4 0.12 0.48 

   392 

 

It must to be considered that the wheels also have to bear the battery and engines weight, 

these values are still unknown. It is supposed that the three wheels should bear 70 kg for 

these components. 

                       

       
      

        ⁄         

Calculating the total reaction that one of the omni wheels must to bear, it was chosen the 

QLM-20 Omni wheel that bears 160 kg exactly.  

 

Figure 52: QLM-20 catalogue details. 

 

 

5.1 Minimum power needed to move the wheel. 

In real situations, the objects are not ideally rigid, they always have deformations. The 

contact is not in the generatrix where P and N are placed. It means that the reactions appear 

on the supports; reactions that create a torque that has to be beaten to start the wheel 

rotation. It is equivalent to consider that the N normal force is displaced a determined 

longitude (μr), it is the called rolling resistance coefficient. 
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Figure 53: Wheel distribution forces. 

 

                

      

In critical conditions, to start the rolling, the applied torque, that in this situation is the 

starter torque, must to be bigger that the resistant torque. 

                    

Being F the force applied on the wheel to move it. 

         

  
    

 ⁄  

For the following values chosen for the wheel: 
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And assuming an eccentricity: 

        

The minimum force needed to start the wheel movement: 

  
    

 ⁄  

                     ⁄         

            

Finally, to calculate the power it should be assumed the exoskeleton speed (P in this section 

means power): 

        

      

               
   

 
         

Applying the security factor: 

                                      

 

Each wheel needs an engine of 155 W to start the movement. 
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6. Engine election 

 

To choose an engine to transmit the movement to the wheels it should bear in mind some 

parameters, as the power, the torque that has to be transmitted and the velocity. 

First, the resistance torque is calculated (Tres), it is the torque needed to be beaten to start 

the movement of all the structure. Therefore: 

 

                 

 

              

 

  
       

    
⁄             ⁄        

   

 
         

Defined the engine characteristics parameters, it is searched a commercial engine model 

capable to provide these values. The most appropriate is the MDPM6350GB9. 

 

 

Figure 54: Engine catalogue details. Model: MDPM6350GB9 
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7. Battery calculations 

 

7.1 Total power needed for the set calculation   

 

To perform the total power calculation that all the set can consume, with all the elements 

working at the same time, it has to be counted as the wheel engines as the actuators in the 

arms, shoulders and platform. 

             

                

                            

                                      

The previous value is a theoretical value, because it is supposed that in any moment all the 

actuators and engines will work at the same time. Then, a simultaneity factor was applied. 
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