

WEBSHOP ENGINE

Design and implementation of an

eCommerce platform front office

LAHTI UNIVERSITY OF APPLIED
SCIENCES
Faculty of Technology
Degree Programme in Information
Technology
Software Engineering
Bachelor’s thesis
Spring 2016
Hans Selenius

Lahti University of Applied Sciences
Degree Programme in Information Technology

SELENIUS, HANS: Webshop engine
Design and implementation of an
eCommerce platform front office

Bachelor’s Thesis in software engineering, 52 pages

Spring 2016

ABSTRACT

This Bachelor’s thesis was commissioned by DevNet Oy and deals with
the company’s eCommerce suite. The thesis focuses on the design and
implementation of a webshop, or more specifically, a webshop front office
as part of the company’s larger eCommerce suite.

The eCommerce suite consists of three parts: the webshop itself, a back
office integrated into the company’s ERP system, and a REST API for
database transactions and communication between the two. The webshop
was designed using well-known, modern frameworks with the Laravel
MVC framework at its core for the back end, together with the AngularJS
framework for the front end logic. The shop is easily maintained, changed
and expanded with new features and functionality by a software
developer. It also features changeable themes in order to be easily
customized for the company’s various end users.

At the time of writing, the webshop application is undergoing customization
for deployment by several of the company’s clients and the first
implementations are expected to go online during early spring 2016.

Key words: Laravel, AngularJS, MVC, eCommerce

Lahden ammattikorkeakoulu
Tietotekniikan koulutusohjelma

SELENIUS, HANS: Verkkokauppasovellus
Verkkokaupan tekninen sunnittelu ja
toteutus

Ohjelmistotekniikan opinnäytetyö, 52 sivua

Kevät 2016

TIIVISTELMÄ

Opinnäytetyön toimeksiantajana toimi DevNet Oy. Opinnäytetyö käsittelee
yhtiön verkkokauppa-alustaa keskittyen itse verkkokauppasovelluksen
tekniseen suunitteluul ja toteutukseen.

Verkkokauppa-alusta on jaettu kolmeen osaan: varsinainen
verkkokauppasovellus, firman ERP-järjestelmä verkkokaupan
ohjauspaneeliina, sekä REST API -alustan tietokantakyselyjä ja edellä
mainittujen osien kommunikointia varten. Verkkokauppa on suuniteltu
hyödyntäen moderneja ja tunnetuimpia ohjelmistoviitekehyksiä, ja
sovelluksen ydin on rakennettu Laravel- ja AngularJS MVC -
sovelluskehysten ympärille. Verkkokauppa on helposti ylläpidettävissä,
räätälöitävissä ja muokattavissa uusilla ominaisuuksilla sovelluskehittäjän
näkökulmasta. Sovellus tukee myös eri ulkoasuteemojen käyttöä, jotta
kauppa olisi helposti räätälöitävissä firman eri asiakkaita varten.

Tällä hetkellä verkkokauppa räätälöidään useampien asiakkaiden
lopullista käyttöönottoa varten. Ensimmäisten oikeiden julkaisuiden
odotetaan tapahtuvan aikaisin kevään 2016 aikana.

Asiasanat: Laravel, AngularJS, MVC, eCommerce

TABLE OF CONTENTS

1 INTRODUCTION 1

2 OPERATIONAL ENVIRONMENT 2

2.1 Customer requirements 2

2.2 Frameworks 3

2.2.1 Laravel 3

2.2.2 AngularJS 4

2.2.3 jQuery 4

2.2.4 Bootstrap 5

2.3 Dependency and asset managers 5

2.3.1 Composer 5

2.3.2 Node and NPM 6

2.3.3 Gulp 6

2.3.4 Bower 6

3 STRUCTURE, THEMING AND TEMPLATING 7

3.1 Hierarchial structure 7

3.2 Themes 10

3.2.1 Blade templates 10

3.2.2 File and directory hiearachy 13

3.2.3 Theme switching and compilation 16

4 APPLICATION WORKFLOW AND FUNCTIONALITY 19

4.1 MVC 19

4.2 Routing and responses 21

4.3 Modules 24

4.3.1 Service modules 25

4.3.2 Template modules 25

4.3.3 Information workflow and examples 27

4.4 Retriving data 37

4.4.1 Sources of data 37

4.4.2 Communicating with the API 37

4.4.3 Securing the communication 40

4.5 Transforming data 41

4.5.1 The need for transformation 41

4.5.2 Transformers 42

4.5.3 Examples and variations 46

SOURCES 50

1 INTRODUCTION

The purpose of the project is the design and implementation of a

successor to DevNet Oy’s previous eShop eCommerce platform.

DevNet Oy (after this referred to as “DevNet”) is an Information

Technology (IT) solutions company based in Lahti, Finland. The company,

established in 2005, specializes in enterprise scale software development

services with a primary focus on, but not limited to, the web, i.e. websites

and other web-based software solutions. The company also offers hosting

services, e.g. webhotels and various server solutions, provided under

DevNet’s auxiliary business name, WMHost. DevNet also has a branch in

Jyväskylä, Finland, since spring 2014. (DevNet Oy 2016.)

The new eCommerce suite will have its back office directly integrated into

the company’s existing Enterprise Resource Planning (ERP) software in

order to centralize all of the end users’ business management into one big

system. The software suite will also feature an API (Application

Programmable Interface) for RESTful (Representational State Transfer)

communication with different front office clients including, but not limited

to, the company’s own implementations.

This study focuses on the structure and technical design as well as the

frameworks used for building the eCommerce platform’s front office, i.e.

the webshop itself (after this referred to as “the shop”).

2

2 OPERATIONAL ENVIRONMENT

2.1 Customer requirements

As decided by the company, the new eCommerce software suite will be

consisting of 3 different parts/applications (Figure 1): a REST API for the

database record transactions, the actual webshop itself (i.e. the front

office, which this study focuses on), and a back office built as an extension

to the company’s current ERP system. The software suite in question is

built on top of a LAMP (Linux, Apache, MySQL/MariaDB, PHP) stack, in

accordance with current company policies.

FIGURE 1. The eCommerce suite and its components

As depicted in Figure 1, both the front office and the back office will be

utilizing the same centralized REST API for communication and for the

eCommerce suite’s database transactions. The ERP system, being more

than merely a back office for the eCommerce suite, has its own database.

However, apart from the stock management (in the ERP system’s

database, which can also be accessed through the API), all data specific

3

to the eCommerce suite will be stored in its own, dedicated database

accessed solely through the API. Furthermore, the front office is designed

using well-known, modern frameworks, which are to be centralized around

the application’s Laravel core (as Laravel is the main framework used for

the back end and core structure of the application). The front office should

also to be easily maintained, changed and/or expanded with new features

and functionality from a developer’s point of view and should feature

changeable themes in order to be easily customized for the company’s

various end users.

2.2 Frameworks

A web “framework” is a type of foundation designed to help developers

build and provide important core functionality common to web applications.

The shop application attempts to make use of some of the more well

known frameworks in order to standardize workflow and make it as

accessible and maintainable as possible for both future webshop

implementations and developers. This chapter shortly describes the main

frameworks selected for the shop application.

2.2.1 Laravel

Laravel is an open source PHP framework created by Taylor Otwell, which

incorporates many of the best features from other well-known PHP

framworks such as CodeIgniter, Symphony, Zend, Yii, etc. The first

version was released in 2011. (Surguy 2013.)

Despite being a relatively new framework, Laravel has in a short time

become a standard-bearer for development of modern PHP applications. It

utilizes the Model-View-Controller (MVC) design pattern along with the

object-oriented programming paradigm and features such properties as

modularity, testability and configuration management. It also comes with

powerful capabilities for routing, a fluent query builder, Object Relation

Mapper (ORM) and ActiveRecord implementation, built-in authentication, a

template engine named Blade (partly inspired by ASP’s Razor template

4

language) as well as a command bus, which makes it easy to dispatch

events. (Bean 2015.)

The back end of the shop is built using Laravel 5 (version 5.1 at the time of

writing) and handles the server size processing, HTTP requests and

routing for the shop, as well as the data transactions between the shop

and the eCommerce platform’s REST API.

2.2.2 AngularJS

AngularJS is a popular open source JavaScript framework sponsored and

maintained by Google Inc., which has been used in some of the largest

and most complex web applications around (Freeman 2014).

AngularJS is an MVC framwork, where JavaScript objects are controllers,

the Document Object Model (DOM) are views and the object properties

store model data. It also features data binding, dependency injection and

directives. (Green & Seshadri 2013.)

AngularJS (version v1.4.8 at the time of writing) is used as the main

framework for the front end of the shop and most of the custom JavaScript

logic makes use of it. It is used for templating, presenting and sorting of

data, AJAX (Asynchronous JavaScript and XML) requests and

interactivity, as well as data-bindings to HTML elements.

2.2.3 jQuery

Though most of the JavaScript used by the shop comes in the form of

AngularJS, jQuery (version v.2.1.4 at the time of writing) is also available

for use and is mostly used for various jQuery plugins (such as the OWL

Carousel slider).

jQuery is a lightweight, cross-browser JavaScript library that simplifies

processes like DOM manipulation and event handling (The jQuery

Foundation 2016). Despite being depicted as a library rather than an

actual “framework”, it is still included in this list because of its worldwide

5

status and sheer usage and market share statistics. As of March 2016,

jQuery holds a JavaScript library market share of 95.9%, while the

absolute usage percentage across all websites is 69.4% (Q-Success

2016).

2.2.4 Bootstrap

Bootstrap is a responsive front-end framework for web applications. It

contains a grid system and styling for various user interface components

such as buttons, navs and tables. It also features many JavaScript plugins

for adding interactive elements. (Spurlock 2013.)

Bootstrap (version v3.3.5 at the time of writing) is the main framework

used for the themes, user interface and front end styling of the shop, as

well as some of the JavaScript components.

2.3 Dependency and asset managers

While the shop does feature a lot of custom written code, it also makes

use of various third-party assets, dependencies, modules and plugins in

both its back and front ends. Therefore, since manually copying and

moving all those assets around into their respective directories and files by

hand would be a tedious and tiring task (also very likely more prone to

errors), the shop uses a handful of various dependency and asset

managers in order to automize and ease the installation and maintenance

of said assets and dependencies.

2.3.1 Composer

Composer is a dependency manager for PHP. It allows installation and

management of various libraries on a per-project basis. (Adermann &

Boggiano.)

Composer is used to manage the PHP libraries and components used by

the back end of the shop, including Laravel.

6

2.3.2 Node and NPM

Node, also referred to as Node.js, is a well-known server-side JavaScript

environment based on Google Inc.’s runtime and is used for event-driven

applications. Node also comes with NPM (Node Package Manager), its

own package manager and repository for third-party dependencies and

modules. (Teixeira 2012.)

The shop does not really use Node for its back end code or custom

programming logic (since that is done using Laravel and PHP, as opposed

to Node and JavaScript), but for its package manager, NPM. Since the

shop requires access to a wide array of various modules and tools, NPM is

used to provide that possibility through its many packages. For instance,

Gulp and Bower (descriptions further below) both rely on Node.

2.3.3 Gulp

Gulp is a streaming build system. It is built with Node and can automate

and organize various development tasks quickly. (Maynard 2015.)

Gulp is used to keep track of, as well as compile and minify the shop’s

many JavaScript, CSS and SASS assets, both vendor/third-party and

custom, into just a few, concentrated files. The Laravel framework also

provides its own API, Elixir, for defining basic Gulp tasks (Otwell 2016e).

2.3.4 Bower

While Composer handles the back end assets of the shop, the various

front end assets, libraries and plugins are mainly managed by Bower.

Bower is a package manager optimized for the front end that manages

components that contain HTML, CSS, JavaScript, fonts and images.

Bower requires Node, NPM and Git (described further below). (Bower

2016.)

7

3 STRUCTURE, THEMING AND TEMPLATING

3.1 Hierarchial structure

Being a Laravel application for the most part, the shop follows the same

directory and information flow structure as provided by Laravel. Below is

an in-depth description of said structure and customizations for the shop.

FIGURE 2. The root directory

Figure 2 shows the application’s root directory structure (as provided by

Laravel 5.1):

 app: Contains the core code (Otwell 2016a). Most of the custom

directories and back end code for the shop is found inside this

8

directory and its subdirectories. In-depth description of the

subdirectories and their structure can be found further below.

 bootstrap: A few files that boostrap and configure autoloading

(Otwell 2016a).

 config: Contains the configuration files for the application (Otwell

2016a). This directory contains a lot of changeable custom settings

for the shop, such as product display settings, file paths, order

settings etc, for quick and easy configuration by the developer.

 database: Contains database migration and seeds (Otwell 2016a).

Not used by the shop, since all database transactions and other

tasks are handled through the separate eCommerce API.

 node_modules: Contains the various Node modules and assets for

the shop.

 public: Contains the front controller and various assets, such as

fonts, images, JavaScript files and stylesheets (Otwell 2016a). The

compiled and minified SASS (CSS) and JavaScript, both vendor

and custom, that are presented to the front end and seen by the

browser are found inside this directory and its subdirectories. In-

depth description of the subdirectories and structure can be found

further below.

 resources: Contains the view / Blade template files, as well as the

raw assets (SASS and JavaScript) and language files (Otwell

2016a). The resources directory also contains all theme specific

files for the shop. This includes the theme’s own SASS files,

AngularJS controllers, Angular services and other JavaScript files.

The themes and their structure are described more thoroughly in

their own chapter.

 storage: Contains various caches, logs and compiled Blade

templates (Otwell 2016a).

 tests: Contains automated tests (Otwell 2016a).

 vendor: Contains the Composer dependencies (Otwell 2016a).

9

FIGURE 3. The app directory

Figure 3 shows the app directory, which holds most of the custom back

end logic and contains the following subdirectories (only the first sublevel

listed). The directories marked with an asterisk (*) in the detailed

description below were not added by default (by Laravel):

 Console: Contains the Artisan commands (Otwell 2016a).

 Events: Contains event classes. Events can be used to tell the

application that some action has occurred (Otwell 2016a). For

instance, the shopping cart fires an CartWasUpdated event to notify

the rest of the shop that there has been some sort of change to it

that should be taken into account.

 Exceptions: Contains the exception handlers (Otwell 2016a).

 Handlers *: Contains the custom event handlers for the shop, such

as the SetCartUpdatedCookie handler, which is called when the

CartWasUpdated event is fired.

 Http: The controllers, the middleware and the requests (Otwell

2016a). The Models are also stored under this directory

(Http/Models).

 Jobs: Queable jobs for the application (Otwell 2016a).

 Listeners: Contains the handler classes for the events (Otwell

2016a). Not currently in use for any custom code. The custom event

handlers are found inside the Handlers directory instead.

10

 Modules *: Contains the custom back end modules (services and

facades). Described more thoroughly in their own chapter.

 Policies: Not used.

 Providers: Contains the back end service providers (Otwell 2016a).

The custom service providers for the shop are always part of a

module and are found under Modules instead, i.e. the shop does

not use this directory for its custom providers

 Transformers *: Contains the “transformer” classes for the shop.

Described more thoroughly in their own chapter.

3.2 Themes

The shop’s themes are designed to be easily switched, extended and

modified by a software developer. The themes for the shop consist mainly

of views in the form of Blade templates, styles CSS (vendor) and SASS

(custom styles) and JavaScript (mainly AngularJS for the custom code).

3.2.1 Blade templates

Blade templates have their own syntax for control structures (conditionals,

loops and such), extending layouts, displaying data etc (although use of

regular PHP code inside the template file is also supported). Blade also

supports template inheritance and sections, meaning that it is possible to

have a “main” layout file that contains and includes “sections” and/or sub-

views in other files. (Otwell 2016b.)

Blade templates use the @-sign for various control structures and

template features, for instance:

 @if and @else for conditional statements

 @extends to extend another template file

 @section to define a section

 @yield to display the contents of a given section

 @include to include a sub-view

11

The templates use curly braces for displaying data, such as PHP variables

and results from functions, for instance:

 {{ $my_variable }} to echo the contents of a variable

 {{ date(‘Y’) }} to echo the result of PHP’s date() function

Since many JavaScript frameworks also utilize the curly braces, Blade can

be instructed to ignore a statement with curly braces by adding an @-

symbol before the braces. (Otwell 2016b.)

Seen below is an actual example of how the shop utilizes the Blade

templating engine with some takes from the source code of the shop’s

default template (notice that the figures only contain the rows necessary to

illustrate an understandable example. This is done for clarity, since the full

files contain tens or even hundreds of rows of code depending on the file.

Parts where rows are missing are indicated with “…”).

The main template/layout file (defalt.blade.php) shown in Figure 4 uses the

@yield directive (line 67) to display the contents of the product page

(Figure 5). The product page (product.blade.php) uses the @extends

directive (line 1) to extend the main layout (default.blade.php) and

@section to define the “content” and “title” sections (lines 6 and 10) of the

main layout. It also uses the @if and @else conditionals (lines 2 and 4) to

check that the product data exists and to print data from the product array

using the curly braces syntax (e.g. line 23):

12

FIGURE 4. The main template file

13

FIGURE 5. The product page

3.2.2 File and directory hiearachy

The files specific to the selected theme are found under

resources/views/themes/<theme name> (where <theme name> is

replaced with the actual name of the theme). This is shown in Figure 6.

14

FIGURE 6. The theme specific directory

The views in this directory are divided into the following

subdirectories/categories:

 emails

 layouts

 pages

 partials

 modules

The emails directory contains the HTML emails for the theme, such as the

order confirmation and password reset emails.

The layouts directory contains the main template file, default.blade.php,

and holds the default layout for the whole site. The pages, partials and

front end modules are all included/called inside this file.

The pages directory contains specific page layouts, such as the layout for

the product presentation page (product.blade.php) or the checkout page

(checkout/checkout1.blade.php). Most pages are loaded as a section or

part of the main template file, but they can also be stand alone pages (if

the rest of the main theme is not needed for that particular page/view). The

pages are named using lowercase and underscores, e.g.

product.blade.php for the product information page.

15

The partials directory contains minor content blocks and/or sub-views such

as a menu or sidebar. For instance, partials/TopNav/TopNav.blade.php

contains the top menu for the shop and can be hooked into the layout

using Blade’s @include directive. Notice that the partial also has its own

directory, since there might be different variations of it used in different

places. Partials that require an extensive amount of JavaScript logic, AJAX

and own styling are referred to as “modules”, rather than “partials” and are

not found inside the partials directory, as they have their own directory and

logic. The partial files and directories are named using the Pascal case

capitilzation style, e.g. TopNav, MyPartial, etc.

The modules directory contains the directories and sub-views specific to

the modules. Like the partials, modules can also be included just about

anywhere using the @include directive, but usually require more extensive

logic than a simple partial. Modules are described more thoroughly in their

own chapter. The module files and directories are named using the Pascal

case capitalization style, e.g. QuickCart, MyModule, etc.

The SASS and JavaScript files for the theme are under the

resources/themes/<theme name>/assets where they go into their

respective js and sass subdirectories. The key styles for the theme are

found inside the sass directory’s theme.scss and variables.scss files.

The theme.scss file contains the base styles and look for the theme and

variables.scss contains some basic SASS variable values for the theme,

such as the theme’s base colors. The variable file is also a good place to

put any possible overrides of the Boostrap SASS variables. To avoid

clogging up the main stylesheet for the theme, the sass directory is also

further divided into its own subdirectories specific to modules, pages and

paritials, for when there is an extensive amount of custom styles required

for anything that fits under the description of those entities.

Like the sass directory, the js directory also contains its own module

subdirectory for module specific scripts (AngularJS files). Furthermore, the

js directory also holds the theme’s angular-default.js file, where the

16

AngularJS app used across the whole site as well as which AngularJS

third-party modules (not to be confused with the shop’s own modules) to

load are defined. The directory also contains a helpers.js file for some

generic JavaScript helper functions.

3.2.3 Theme switching and compilation

The theme for the shop can be easily switched by changing theme settings

(name and path of the theme) under config/theme.php. and in the

gulpfile.js file. The theme path can be fetched from the config or through

the globally shared $theme_path variable whenever a view is loaded

inside a Laravel controller or template. This makes it easy for the shop to

always knows in which theme’s directory to look. Figure 7 shows a view

being loaded in the PagesController controller

(app/Http/Controllers/PagesController.php) on line 43. Figure 8 shows the

TopNav partial (Blade sub-view) loaded in the main template file

(default.blade.php) using the @include directive on line 45.

FIGURE 7. Loading a view

FIGURE 8. Loading a partial

17

FIGURE 9. The public directory

The gulpfile (gulpfile.js) is the settings file for Gulp and Laravel Elixir. It

keeps track of all the “non-Blade-template” assets (i.e. SASS, CSS,

JavaScript, fonts, etc), or rather their input and output locations and

names, as well as the name of the theme itself (a variable in the file that

needs to be changed when the theme changes). When Gulp is run (from

the command line), it compiles and minifies all JavaScript and SASS +

CSS assets into the following public files (as seen in Figure 9):

 public/js/vendor.js: vendor/third-party scripts

 public/js/custom.js: deveoper’s own custom scripts

 public/css/vendor.css: vendor/third-party styles

 public/build/css/app-<unique suffix>.css: developer’s own custom

styles

The <unique suffix> part of the filename is automatically replaced with

a unique hash for so called “cache-busting”, i.e. to force the web

browser to load a fresh file instead of a possible cached one (Otwell

2016e). The right asset can then be automatically loaded inside the

18

template using Laravel’s global elixir function (Otwell 2016e). Figure 10

shows the assets being loaded in the default.blade.php view of the

shop’s theme. The stylesheets (vendor.css and app-<unique

suffix>.css) and scripts (vendor.js and custom.js) are being loaded

inside the <head> element. Note that Laravel’s elixir helper function is

being used to load the right asset for app.css.

FIGURE 10. Loading the assets

19

4 APPLICATION WORKFLOW AND FUNCTIONALITY

4.1 MVC

Laravel is a Model-View-Controller (MVC) architecture framework

(Principe & Yoon 2015). Being a Laravel application at its core, the shop

relies on MVC for its information workflow.

The MVC approach basically means separating the application

components into different areas of logic, i.e. “views”, “controllers” and

“models”, thereby allowing for easier maintenance and expansion. In a

traditional description of MVC (Figure 11), the controller handles the

business logic and input and updates the model when necessary, the

model oversees the data and relays information about its changes to the

controller and/or view, and the view handles the presentation of said data

to the user (Principe & Yoon 2015).

20

FIGURE 11. Typical MVC workflow

The shop’s back end differs from the traditional example, in how it does

not really use models that much. Nor does it directly update the state of

the views (the modules that use AngularJS in the front end actually bind

some data directly to a model). The MVC structure of the shop as a whole

is better described by Figure 12 where the Model would be replaced by the

eCommerce suite’s API from where the shop retrieves its data (described

in more detail in its own subchapter).

21

FIGURE 12. A typical collaboration of the MVC components (jmkim dot

com, licensed under CC BY-SA 4.0)

4.2 Routing and responses

The application’s HTTP routes, optional parameters, middleware and

mappings are defined in the app/Http/routes.php (Otwell 2016d). Most of

the shop’s routes are mapped directly to some controller action. An

example of HTPP GET routes with parameters mapped to controller

methods can be seen in Figure 13 on the following page.

After the routing, the controllers inside the app/Http/Controllers’ directory

load some type of suitable response for the selected route. This could be,

for instance, a Blade view as seen in Figure 14 on line 63, where the

getPageById method in the PagesController controller

(app/Http/Controllers/PagesController.php) returns a Blade view as the

response content using Laravel’s view helper method. It could also be a

JSON response for AJAX calls made from an AngularJS controller after

handling possible pre-requisites (such as retrieving, storing or parsing data

required by the view in question). Figure 15 shows the addToCart method

in the CartsController controller (app/Http/Controllers/CartsController.php)

22

returning a JSON reponse on line 48. This request could, for instance,

originate from the addToCart function in the CategoryProductsController

AngularJS controller

(assets/js/modules/controllers/CategoryProductsController.js in the

theme’s directory under resources). This can be seen in Figure 16, where

an HTTP POST request to the back end takes place.

Some pre-requisites, such as checks for authenticated users are handled

by middleware assigned directly through certain routes in the routes file

(Figure 17).

FIGURE 13. HTTP GET routes mapped to controller methods

FIGURE 14. Returning a view in the PagesController class

23

FIGURE 15. Returning a JSON response in the CartsController class

FIGURE 16. POST request in AngularJS controller

24

FIGURE 17. Auth middleware assigned to route group

4.3 Modules

The modules are the core of the shop’s custom functionality and features

and a vital part of the applications information workflow. The term

“modules” is in this context used as an umbrella term for all of the shop’s

custom service providers, facades as well as sub-views, which require an

extensive amount of their “own” logic in the form of AngularJS controllers,

services/factories and/or backend processing. The modules can be loosely

divided into:

 service modules: A custom class along with a service provider and

possibly a facade.

 template modules: Blade sub-views that require their own set of

back end or front end logic in the form of Laravel or AngularJS

controllers and services.

25

The template modules always rely on some back end controller or service

module (otherwise, they would be referred to as “partials” instead). The

service modules can be used by back end controllers or in a Blade

template file through direct service injection.

4.3.1 Service modules

The service modules are custom services found under app/Http/Modules

inside their own subdirectories and consist of a Laravel service provider, a

custom class for the functionality (bound to the Laravel service container

via the provider) and more often than not, a facade for convenient access.

Service providers extend Laravel’s abstract

Illuminate\Support\ServiceProvider class and are used for registering

bindings into Laravel’s service container, i.e. allowing, for instace, a

custom class to be available for use throughout the application without

manual instantiation (Otwell 2016f). A Laravel facade extends the

Illumnate\Support\Facades\Facade class and serves as a “static proxy” to

the classes in the service container, allowing access to objects from the

container (Otwell 2016c). The service provider can be registered in

config/app.php (Otwell 2016f).

4.3.2 Template modules

The template modules consist of one or more Blade views. For instance,

the FeaturedCategories module is meant for displaying a specific set of

“featured” categories on various pages or in various parts of a template, so

it stands to reason that it may have several different views or variants

depending on where it needs to be displayed. As opposed to the partials,

the modules usually also have some logic in the form of an AngularJS

controller, directive, service, factory or other code. If backend logic is

needed, the modules can also have their own Laravel controllers and

services. The Blade views and the front end assets (JavaScript, SASS)

are located under resources/views/themes/<theme name>/assets (Figure

18) and divided as follows:

26

FIGURE 18. The theme’s assets directory

 js/modules/controllers/<module name>Controller.js: AngularJS

controller named after the module using it, e.g.

FeaturedCategoriesController.js for the FeaturedCategories

module. Besides the controller, the files may also contain

AngularJS directives.

 js/modules/service/<module name>Factory.js or

js/modules/service/<module name>Service.js: AngularJS service or

factory named after the module using it, e.g.

AlertMessagesFactory.js for the AlertMessages module.

 sass/modules/<module name>.scss: SASS stylesheet specific to

the module, e.g. FeaturedCategories.scss

 modules/<module name>: This directory contains the Blade views

for the module. Can contain multiple files, usually the default file is

27

named after the module, e.g.

modules/QuickCart/QuickCart.blade.php for the QuickCart module’s

default view.

Should the module require its own back end Laravel controller for

something like an AngularJS AJAX requests, it would be in

app/Http/Controllers/Modules/<module name>/<module

name>Controller.php. Some modules also have their own service module

in app/Modules.

4.3.3 Information workflow and examples

This chapter contains examples of typically structured modules that are

currently present and functional in the shop, as well their workflow

explained through figures.

The FullSearch module, is a typical example of a template module.

Consisting of a Blade view (Figure 19), an AngularJS controller (Figure

20), and its own SASS stylesheet (Figure 21), most of the template

modules are built following this pattern. Notice the Blade view in Figure 19

defining the AngularJS controller for the module through the ng-controller

attribute on line 2. Also, notice some of the brackets being prefixed with

the @-sign, in order to be parsed by AngularJS rather than Blade. This

module is designed to make AJAX calls from its AngularJS controller to

perform simultaneous “live” searches for products, categories and pages

related to a search query. Figure 22 shows the AngularJS controller

watching for changes to the search query (line 43) and querying the back

end for results through an XMLHttpRequest. The module does not have its

own back end controller, but queries a more generic controller (not limited

to any specific module), SearchController (app/Http/SearchController.php)

for results (Figure 22). Figure 23 shows the module being loaded in a view

using the @include directive on line 10.

28

FIGURE 19. The FullSearch module’s Blade view

29

FIGURE 20. The FullSearch module’s AngularJS controller

30

FIGURE 21. The FullSearch module’s SASS stylesheet

31

FIGURE 22. Fraction of the SearchController class

32

FIGURE 23. Loading the FullSeach module

Another module worth mentioning is the ContactForms module, for

generating and processing various contact forms. This module qualifies as

both a template module and a service module, since it requires both in

order to function. The module does not have an AngularJS controller,

since no AJAX or other interactivity that would require the use of

JavaScript is currently present, but rather fetches the data it needs directly

from the ContactForms service (Figure 24) injected into the module’s view

(Figure 25). The injection of the ContactForms service

(app/modules/ContactForms/ContactForms.php) into the ContactForms

view (modules/ContactForms/ContactForms.blade.php inside the theme’s

directory) through the @inject directive can be seen in Figure 25 on line 6.

33

FIGURE 24. Fraction of the ContactForms service

34

FIGURE 25. The ContactForms module’s view

The ContactForms service also needs a service provider and a facade in

order to be registered by the application. Figure 26 below shows the

service provider of the ContactForms module registering the

ContactForms class into Laravel’s service container. The facade can be

seen in Figure 27.

35

FIGURE 26. The service provider

FIGURE 27. The facade

Since the back end logic for processing the forms needs to be very

specific in order to fit the module, it also features its own, dedicated back

end controller for processing the POST data from the forms. Figure 28

shows a fraction of the ContactForms module’s controller

(app/Http/Modules/ContactForms/ContactFormsController.php). Notice the

controller calling the ContactForm service’s get method through the facade

(line 34) mentioned earlier.

36

FIGURE 28. Fraction of the ContactForms module’s controller

Yet another module that differs from the ones mentioned above is the

Eshop module. This service module fetches any needed data from the

eCommerce platform’s API, e.g. products, categories, pages etc. This is

an example of a module that is not directly related to or used by any of the

template modules. It is, however, crucial to several back end controllers

and services. For instance, the SearchController mentioned earlier utilizes

37

the Eshop module (through the Eshop module’s facade) to fetch data from

the API. The logic of this module is described more thoroughly later on in

the text.

4.4 Retriving data

4.4.1 Sources of data

The shop needs to retrieve and manipulate a vast number of data

regarding products, customers, orders and other things expected of the

front office for an eCommerce platform. The shop is not directly connected

to a relational database (i.e. does not directly execute SQL queries via its

back end), but fetches and stores data by communicating with the

eCommerce platform’s API (which, in turn, is connected to a relational

database, although that’s beyond the scope of this report) using HTTP

requests. Sessions and cookies are also used by the shop to help keep

track of some of the changing data, such as the shopping cart and

currently logged in customers, or simply to remember some choices made

by a visitor. However, most of the dynamic data that the shop requires is

constantly retrived and stored back and forth through the API mentioned

above, even the authenticatable users and the actual contents of the

shopping cart (the cookie merely acts as an identifier).

4.4.2 Communicating with the API

The shop transfers data to and from the eCommerce suite’s API (after this

referred to simply as “the API”) via an HTTP request using the Eshop

service module (under app/Modules/Eshop). This module makes use of

the Guzzle client for its requests. Guzzle is a PHP HTTP client that

provides a simple interface for asynchronous and synronous requests

(Dowling 2016). It can be installed using Composer (Dowling 2016). The

Guzzle client is injected through the module’s service provider

(app/Modules/Eshop3/EshopServiceProvider.php), seen in Figure 29

below.

38

The EshopAPI service (app/Modules/Eshop3/EshopAPI.php), seen in

Figure 30, contains readily made methods for HTTP GET, POST, PUT and

DELETE requests, which are used in a majority of the back end controllers

throughout the application via the module’s facade. Figure 31 shows the

ProductsController (app/Http/Controllers/ProductController.php) controller

fetching API data by calling the service’s api_get method via the Eshop

facade. The call to the service through the facade can be seen on line 37.

FIGURE 29. The Eshop service provider

39

FIGURE 30. Fraction of the EshopAPI service

40

FIGURE 31. Controller method fetching API data though the Ehop facade

4.4.3 Securing the communication

To secure the communication between the shop and the API, the module

uses Hash-based Message Authentication Code (HMAC) implemented

through PHP’s hash_hmac function.

As the articles “Create a HMAC-SHA authentication implementation for

PHP” by P. Brown (2016) and “API Authentication: HMAC with

Public/Private Hashes” by C. Cornutt (2016) explain, the idea behind

HMAC is that both participants have access to a set of so-called public

and private keys. The public key, which could be some sort of random

character string, is used to identify the shop, while the private key is used

when generating some sort of hash or Message Authentication Code

(MAC). The shop and the API both know the values of the public and

private keys. The shop then generates a hash where the private key is

included. The hash is passed along as a header with the public key in

every request to the API. The API, which recognizes the shop through the

public key, then attempts to generate the same hash using the private key.

If the hashes match when compared, the API knows that both must have

41

been using the same private key. The private key itself is never passed

along, so it will not be compromised even if the generated hash is

intercepted. The hash itself could be used though, unless it contains some

sort of changing value. Figure 32 illustrates the process of a hash (MAC)

being generated on both sides using the private key (K), and verified. In

this example, the hash is generated from the message itself along with the

private key (K), although the hash generated using the private key could

as well be based on some other token as long as both the sender and the

receiver know what the hashing process is based upon.

FIGURE 32: Example of HMAC-based communication

4.5 Transforming data

4.5.1 The need for transformation

Since the data from the API may contain various fields and data that the

shop may or may not want to make directly available to the front end, the

data needs to be manipulated or “transformed” by the back end before

use. This is especially important in the case of AJAX requests, since the

data that is returned is directly accessible through the browser (though it

may or may not actually be clearly visible to the naked eye in the user

42

interface). In most cases, this simply means defining which properties of

the object obtained from the API the array used for final output to the front

end should contain. Some of the transformers also contain functionality

beyond simple definitions, such as various calculations and permission

checks. that the shop needs for a certain entity, be it by the back end or

the front end. Many types of data, such as information regarding the

shopping cart or product data is needed by several controllers in serveral

different places of the shop. Thus, having a centralized way of

transforming the data is vital for re-usability and for standardizing the

output. This means not having to calculate and/or define the same things

over and over again every time some type of data is fetched from the API.

4.5.2 Transformers

The data tranformers are classes located within the app/Transformers

directory and they all extend from the same abstract Transformer parent

class (app/Transformers/Transformer.php). The abstract transformer

class, seen in Figure 33, contains readily made methods for transforming

objects and arrays, either as single items or as a collection of items. Notice

the abstract method, transform, defined on line 63. This method contains

no logic of its own, but must be defined by all the other transformers that

extend the Transformer class. It is also needed by the Transformer’s

transformCollection and transformArrayCollection methods, since both

utilize the transform method for transforming data.

The child classes are only required to contain one single method,

transform (as defined by an abstract method with the same name in the

Transform parent class), which handles the transformation of a certain

entity, e.g. customer, product or shopping cart. The transformers are

usually injected into the back end controllers on a per-required basis

through the controller’s constructor. Figure 34 illustrates the

ProductTransformer transformer

(app/Transformers/ProductTransformer.php) being injected into the

ProductsController controller (app/Http/Controllers/ProductsController.php)

43

through the class constructor on line 18. Notice that the full namespace of

the transformer is actually App\Transformers\ProductsTransformer as

defined by the use keyword before the class on line 8. The transformer

can then be used to transform a collection of data or a single object, both

of which are illustrated by Figures 35 and 36. Figure 35 illustrates the

CategoryProducts module-specific controller

(app/Http/Controllers/Modules/CategoryProducts/CategoryProductsControl

ler.php) using the ProductTransformer transformer

(app/Transformers/ProductTransformer.php) to transform a collection of

products (objects) from the API (line 56) before returning it as a JSON

response to the front end (line 57). Figure 36 illustrates the

ProductsController controller (app/Http/Controllers/ProductsController.php)

using the ProductTransformer transformer to transform a single product /

object (line 41) before returning the reponse, i.e. loading the product

information view and passing along the data (43).

44

FIGURE 33. The abstract Transformer class

45

FIGURE 34. Injecting the transformer through the constructor

FIGURE 35. Transforming a collection of items

46

FIGURE 36. Transforming a single item

4.5.3 Examples and variations

The CustomerTransformer transformer

(app/Transformers/CustomerTransformer.php) illustrated in Figure 37 is a

simple example of a typical transformer class. This transformer only

defines and type-casts various properties of a customer (object) obtained

from the API and has no other methods beyond the obligatory transform

method. Notice that the customer object may contain more properties than

the ones that are returned by its transformer.

47

FIGURE 37. The CustomerTransformer transformer

The CartTransformer transformer

(app/Transformers/CartTransformer.php) illustrated in Figure 38 serves

well as a more advanced example. This transformer contains multiple

methods and has several tasks vital to the functionality of the shop beyond

the scope of simply determining which object properties are needed. For

instance, it calculates the total sum, weight and volume of the shopping

cart and related products. Notice that it also relies on other transformers to

work, such as the ProductTransformer transformer for transforming the

products (line 69).

48

FIGURE 38. Fraction of the CartTransformer transformer

49

SUMMARY

The project aimed at making an easily maintainable and expandable

webshop as part of a larger eCommerce suite, using well-known MVC

frameworks. The main challenges involved getting the different parts of the

eCommerce suite working together and designing the overall structure and

interaction between the webshop’s various frameworks, as well as the

interaction between the back and the front ends. Furthermore, the

hierarchial structure and information flow would require a well thought-out

structure early on in order to be open for changes, customization and

expansion later on.

The current structure of the application allows both the themes and

business logic to be customized in order to meet current and future needs

presented by the customer/end-user. Themes and custom logic can be

modified or switched completely. The shop can also be expanded with

new features by adding various types of modules, should a need for

completely new features arise. As future implementations and custom

shop’s are made and published, the total number of readily-made features,

modules and themes to select from is naturally expected to grow. In the

long run, this could be expected to speed up development and publishing

as developers will only need to make minor improvements and

modifications to existing modules and themes, rather than needing to

actually develop completely new functionality.

At the time of writing, the shop is undergoing customer-specific

customizations to its themes and modules in order to be deployed for the

commissioning company’s end-users. The first site is expected to go

online during spring 2016.

50

SOURCES

Adermann, N. & Boggiano, J. 2016. Composer – Introduction [referenced

20 Feb 2016].

Available on: https://getcomposer.org/doc/00-intro.md

Bean, M. 2015. Laravel 5 Essentials.

Bower 2016. Bower [referenced 1 March 2016].

Available on: http://bower.io/

Branas, R. 2014. AngularJS Essentials. Packt Publishing Ltd.

Brown. P. 2014. Create a HMAC-SHA authentication implementation for

PHP [referenced 12 March 2016].

Available on: http://culttt.com/2014/05/21/create-hmac-sha-authentication-

implementation-php/

Cornutt, C. 2013. API Authentication: HMAC with Public/Private Hashes

[referenced 1 March 2016].

Available on: https://websec.io/2013/02/14/API-Authentication-Public-

Private-Hashes.html

DevNet Oy. 2016. DevNet Oy – DevNet lyhyesti [referenced 1 Feb 2016].

Available on: http://www.devnet.fi/yritys

Dowling, M. 2015. Guzzle, PHP HTTP client – Guzzle Documentation

[referenced 1 March 2016].

Available on: http://docs.guzzlephp.org/en/latest/index.html

Dowling, M. 2015. Overview – Guzzle Documentation [referenced 1 March

2016].

Available on: http://docs.guzzlephp.org/en/latest/overview.html#installation

Freeman, A. 2014. Pro AngularJS. Apress.

Green, B. & Seshadri, S. 2013. AngularJS. O’Reilly Media, Inc.

Maynard, T. 2015. Getting Started with Gulp. Packt Publishing Ltd.

https://getcomposer.org/doc/00-intro.md
http://bower.io/
http://culttt.com/2014/05/21/create-hmac-sha-authentication-implementation-php/
http://culttt.com/2014/05/21/create-hmac-sha-authentication-implementation-php/
https://websec.io/2013/02/14/API-Authentication-Public-Private-Hashes.html
https://websec.io/2013/02/14/API-Authentication-Public-Private-Hashes.html
http://www.devnet.fi/yritys
http://docs.guzzlephp.org/en/latest/index.html
http://docs.guzzlephp.org/en/latest/overview.html#installation

51

Otwell, T. 2016a. Application structure – Laravel – The PHP Framework

For Web Artisans [referenced 1 March 2016].

Available on: https://laravel.com/docs/5.1/structure

Otwell, T. 2016b. Blade Templates – Laravel – The PHP Framework For

Web Artisans [referenced 1 March 2016].

Available on: https://laravel.com/docs/5.1/blade

Otwell, T. 2016c. Facades – Laravel – The PHP Framework For Web

Artisans [referenced 1 March 2016].

Available on: https://laravel.com/docs/5.1/facades

Otwell, T. 2016d. HTTP Routing – Laravel – The PHP Framework For

Web Artisans [referenced 1 March 2016].

Available on: https://laravel.com/docs/5.1/routing

Otwell, T. 2016e. Laravel Elixir – Laravel – The PHP Framework For Web

Artisans [referenced 1 March 2016].

Available on: https://laravel.com/docs/5.1/elixir

Otwell, T. 2016f. Service Providers – Laravel – The PHP Framework For

Web Artisans [referenced 1 March 2016].

Available on: https://laravel.com/docs/5.1/providers

Principe, M. & Yoon, D. 2015. Proceedings of the International Conference

on e-Learning, e-Business, Enterprise Information Systems, and e-

Government (EEE) – A WEB APPLICATION USING MVC

FRAMEWORKS.

Q-Success. 2016. Usage Statistics and Market Share of JavaScript

Libraries for Websites, March 2016 [referenced 30 Feb 2016].

Available on:

http://w3techs.com/technologies/overview/javascript_library/all

Spurlock, J. 2013. Bootstrap. O’Reilly Media, Inc.

https://laravel.com/docs/5.1/structure
https://laravel.com/docs/5.1/blade
https://laravel.com/docs/5.1/facades
https://laravel.com/docs/5.1/routing
https://laravel.com/docs/5.1/elixir
https://laravel.com/docs/5.1/providers
http://w3techs.com/technologies/overview/javascript_library/all

52

Surguy M. 2013. Maxoffsky - History of Laravel PHP framework,

Eloquence emerging [referenced 20 Feb 2016].

Available on: http://maxoffsky.com/code-blog/history-of-laravel-php-

framework-eloquence-emerging

Teixeira, P. 2012. Professional Node. js: Building Javascript based

scalable software. John Wiley & Sons.

The jQuery Foundation. 2016. jQuery [referenced 20 Feb 2016].

Available on: http://jquery.com

http://maxoffsky.com/code-blog/history-of-laravel-php-framework-eloquence-emerging
http://maxoffsky.com/code-blog/history-of-laravel-php-framework-eloquence-emerging
http://jquery.com/

