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ABSTRACT 

 

This Bachelor’s thesis was commissioned by DevNet Oy and deals with 
the company’s eCommerce suite. The thesis focuses on the design and 
implementation of a webshop, or more specifically, a webshop front office 
as part of the company’s larger eCommerce suite.  

The eCommerce suite consists of three parts: the webshop itself, a back 
office integrated into the company’s ERP system, and a REST API for 
database transactions and communication between the two. The webshop 
was designed using well-known, modern frameworks with the Laravel 
MVC framework at its core for the back end, together with the AngularJS 
framework for the front end logic. The shop is easily maintained, changed 
and expanded with new features and functionality by a software 
developer. It also features changeable themes in order to be easily 
customized for the company’s various end users. 

At the time of writing, the webshop application is undergoing customization 
for deployment by several of the company’s clients and the first 
implementations are expected to go online during early spring 2016. 
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TIIVISTELMÄ 

 

Opinnäytetyön toimeksiantajana toimi DevNet Oy. Opinnäytetyö käsittelee 
yhtiön verkkokauppa-alustaa keskittyen itse verkkokauppasovelluksen 
tekniseen suunitteluul ja toteutukseen. 

Verkkokauppa-alusta on jaettu kolmeen osaan: varsinainen 
verkkokauppasovellus, firman ERP-järjestelmä verkkokaupan 
ohjauspaneeliina, sekä REST API -alustan tietokantakyselyjä ja edellä 
mainittujen osien kommunikointia varten. Verkkokauppa on suuniteltu 
hyödyntäen moderneja ja tunnetuimpia ohjelmistoviitekehyksiä, ja 
sovelluksen ydin on rakennettu Laravel- ja AngularJS MVC  -
sovelluskehysten ympärille. Verkkokauppa on helposti ylläpidettävissä, 
räätälöitävissä ja muokattavissa uusilla ominaisuuksilla sovelluskehittäjän 
näkökulmasta. Sovellus tukee myös eri ulkoasuteemojen käyttöä, jotta 
kauppa olisi helposti räätälöitävissä firman eri asiakkaita varten. 

Tällä hetkellä verkkokauppa räätälöidään useampien asiakkaiden 
lopullista  käyttöönottoa varten. Ensimmäisten oikeiden julkaisuiden 
odotetaan tapahtuvan aikaisin kevään 2016 aikana. 

Asiasanat: Laravel, AngularJS, MVC, eCommerce 
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1 INTRODUCTION 

The purpose of the project is the design and implementation of a 

successor to DevNet Oy’s previous eShop eCommerce platform.  

DevNet Oy (after this referred to as “DevNet”) is an Information 

Technology (IT) solutions company based in Lahti, Finland. The company, 

established in 2005, specializes in enterprise scale software development 

services with a primary focus on, but not limited to, the web, i.e. websites 

and other web-based software solutions. The company also offers hosting 

services, e.g. webhotels and various server solutions, provided under 

DevNet’s auxiliary business name, WMHost. DevNet also has a branch in 

Jyväskylä, Finland, since spring 2014. (DevNet Oy 2016.) 

The new eCommerce suite will have its back office directly integrated into 

the company’s existing Enterprise Resource Planning (ERP) software in 

order to centralize all of the end users’ business management into one big 

system. The software suite will also feature an API (Application 

Programmable Interface) for RESTful (Representational State Transfer) 

communication with different front office clients including, but not limited 

to, the company’s own implementations. 

This study focuses on the structure and technical design as well as the 

frameworks used for building the eCommerce platform’s front office, i.e. 

the webshop itself (after this referred to as “the shop”). 
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2 OPERATIONAL ENVIRONMENT 

2.1 Customer requirements 

As decided by the company, the new eCommerce software suite will be 

consisting of 3 different parts/applications (Figure 1): a REST API for the 

database record transactions, the actual webshop itself (i.e. the front 

office, which this study focuses on), and a back office built as an extension 

to the company’s current ERP system. The software suite in question is 

built on top of a LAMP (Linux, Apache, MySQL/MariaDB, PHP) stack, in 

accordance with current company policies. 

FIGURE 1. The eCommerce suite and its components 

As depicted in Figure 1, both the front office and the back office will be 

utilizing the same centralized REST API for communication and for the 

eCommerce suite’s database transactions. The ERP system, being more 

than merely a back office for the eCommerce suite, has its own database. 

However, apart from the stock management (in the ERP system’s 

database, which can also be accessed through the API), all data specific 
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to the eCommerce suite will be stored in its own, dedicated database 

accessed solely through the API. Furthermore, the front office is designed 

using well-known, modern frameworks, which are to be centralized around 

the application’s Laravel core (as Laravel is the main framework used for 

the back end and core structure of the application). The front office should 

also to be easily maintained, changed and/or expanded with new features 

and functionality from a developer’s point of view and should feature 

changeable themes in order to be easily customized for the company’s 

various end users. 

2.2 Frameworks  

A web “framework” is a type of foundation designed to help developers 

build and provide important core functionality common to web applications. 

The shop application attempts to make use of some of the more well 

known frameworks in order to standardize workflow and make it as 

accessible and maintainable as possible for both future webshop 

implementations and developers. This chapter shortly describes the main 

frameworks selected for the shop application. 

2.2.1 Laravel 

Laravel is an open source PHP framework created by Taylor Otwell, which 

incorporates many of the best features from other well-known PHP 

framworks such as CodeIgniter, Symphony, Zend, Yii, etc. The first 

version was released in 2011. (Surguy 2013.) 

Despite being a relatively new framework, Laravel has in a short time 

become a standard-bearer for development of modern PHP applications. It 

utilizes the Model-View-Controller (MVC) design pattern along with the 

object-oriented programming paradigm and features such properties as 

modularity, testability and configuration management. It also comes with 

powerful capabilities for routing, a fluent query builder, Object Relation 

Mapper (ORM) and ActiveRecord implementation, built-in authentication, a 

template engine named Blade (partly inspired by ASP’s Razor template 
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language) as well as a command bus, which makes it easy to dispatch 

events. (Bean 2015.) 

The back end of the shop is built using Laravel 5 (version 5.1 at the time of 

writing) and handles the server size processing, HTTP requests and 

routing for the shop, as well as the data transactions between the shop 

and the eCommerce platform’s REST API. 

2.2.2 AngularJS 

AngularJS is a popular open source JavaScript framework sponsored and 

maintained by Google Inc., which has been used in some of the largest 

and most complex web applications around (Freeman 2014). 

AngularJS is an MVC framwork, where JavaScript objects are controllers, 

the Document Object Model (DOM) are views and the object properties 

store model data. It also features data binding, dependency injection and 

directives. (Green & Seshadri 2013.) 

AngularJS (version v1.4.8 at the time of writing) is used as the main 

framework for the front end of the shop and most of the custom JavaScript 

logic makes use of it. It is used for templating, presenting and sorting of 

data, AJAX (Asynchronous JavaScript and XML) requests and 

interactivity, as well as data-bindings to HTML elements. 

2.2.3 jQuery 

Though most of the JavaScript used by the shop comes in the form of 

AngularJS, jQuery (version v.2.1.4 at the time of writing) is also available 

for use and is mostly used for various jQuery plugins (such as the OWL 

Carousel slider). 

jQuery is a lightweight, cross-browser JavaScript library that simplifies 

processes like DOM manipulation and event handling (The jQuery 

Foundation 2016). Despite being depicted as a library rather than an 

actual “framework”, it is still included in this list because of its worldwide 
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status and sheer usage and market share statistics. As of March 2016, 

jQuery holds a JavaScript library market share of 95.9%, while the 

absolute usage percentage across all websites is 69.4% (Q-Success 

2016). 

2.2.4 Bootstrap 

Bootstrap is a responsive front-end framework for web applications. It 

contains a grid system and styling for various user interface components 

such as buttons, navs and tables. It also features many JavaScript plugins 

for adding interactive elements. (Spurlock 2013.) 

Bootstrap (version v3.3.5 at the time of writing) is the main framework 

used for the themes, user interface and front end styling of the shop, as 

well as some of the JavaScript components. 

2.3 Dependency and asset managers 

While the shop does feature a lot of custom written code, it also makes 

use of various third-party assets, dependencies, modules and plugins in 

both its back and front ends. Therefore, since manually copying and 

moving all those assets around into their respective directories and files by 

hand would be a tedious and tiring task (also very likely more prone to 

errors), the shop uses a handful of various dependency and asset 

managers in order to automize and ease the installation and maintenance 

of said assets and dependencies.  

2.3.1 Composer 

Composer is a dependency manager for PHP. It allows installation and 

management of various libraries on a per-project basis. (Adermann & 

Boggiano.) 

Composer is used to manage the PHP libraries and components used by 

the back end of the shop, including Laravel. 
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2.3.2 Node and NPM 

Node, also referred to as Node.js, is a well-known server-side JavaScript 

environment based on Google Inc.’s runtime and is used for event-driven 

applications. Node also comes with NPM (Node Package Manager), its 

own package manager and repository for third-party dependencies and 

modules. (Teixeira 2012.) 

The shop does not really use Node for its back end code or custom 

programming logic (since that is done using Laravel and PHP, as opposed 

to Node and JavaScript), but for its package manager, NPM. Since the 

shop requires access to a wide array of various modules and tools, NPM is 

used to provide that possibility through its many packages. For instance, 

Gulp and Bower (descriptions further below) both rely on Node. 

2.3.3 Gulp 

Gulp is a streaming build system. It is built with Node and can automate 

and organize various development tasks quickly. (Maynard 2015.)  

Gulp is used to keep track of, as well as compile and minify the shop’s 

many JavaScript, CSS and SASS assets, both vendor/third-party and 

custom, into just a few, concentrated files. The Laravel framework also 

provides its own API, Elixir, for defining basic Gulp tasks (Otwell 2016e). 

2.3.4 Bower 

While Composer handles the back end assets of the shop, the various 

front end assets, libraries and plugins are mainly managed by Bower. 

Bower is a package manager optimized for the front end that manages 

components that contain HTML, CSS, JavaScript, fonts and images. 

Bower requires Node, NPM and Git (described further below). (Bower 

2016.) 
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3 STRUCTURE, THEMING AND TEMPLATING 

3.1 Hierarchial structure 

Being a Laravel application for the most part, the shop follows the same 

directory and information flow structure as provided by Laravel. Below is 

an in-depth description of said structure and customizations for the shop. 

 

FIGURE 2. The root directory 

Figure 2 shows the application’s root directory structure (as provided by 

Laravel 5.1): 

 app: Contains the core code (Otwell 2016a). Most of the custom 

directories and back end code for the shop is found inside this 
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directory and its subdirectories. In-depth description of the 

subdirectories and their structure can be found further below. 

 bootstrap: A few files that boostrap and configure autoloading 

(Otwell 2016a). 

 config: Contains the configuration files for the application (Otwell 

2016a). This directory contains a lot of changeable custom settings 

for the shop, such as product display settings, file paths, order 

settings etc, for quick and easy configuration by the developer. 

 database: Contains database migration and seeds (Otwell 2016a). 

Not used by the shop, since all database transactions and other 

tasks are handled through the separate eCommerce API. 

 node_modules: Contains the various Node modules and assets for 

the shop. 

 public: Contains the front controller and various assets, such as 

fonts, images, JavaScript files and stylesheets (Otwell 2016a). The 

compiled and minified SASS (CSS) and JavaScript, both vendor 

and custom, that are presented to the front end and seen by the 

browser are found inside this directory and its subdirectories. In-

depth description of the subdirectories and structure can be found 

further below. 

 resources: Contains the view / Blade template files, as well as the 

raw assets (SASS and JavaScript) and language files (Otwell 

2016a). The resources directory also contains all theme specific 

files for the shop. This includes the theme’s own SASS files, 

AngularJS controllers, Angular services and other JavaScript files. 

The themes and their structure are described more thoroughly in 

their own chapter. 

 storage: Contains various caches, logs and compiled Blade 

templates (Otwell 2016a). 

  tests: Contains automated tests (Otwell 2016a). 

  vendor: Contains the Composer dependencies (Otwell 2016a). 
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FIGURE 3. The app directory 

Figure 3 shows the app directory, which holds most of the custom back 

end logic and contains the following subdirectories (only the first sublevel 

listed). The directories marked with an asterisk (*) in the detailed 

description below were not added by default (by Laravel): 

 Console: Contains the Artisan commands (Otwell 2016a).  

 Events: Contains event classes. Events can be used to tell the 

application that some action has occurred (Otwell 2016a). For 

instance, the shopping cart fires an CartWasUpdated event to notify 

the rest of the shop that there has been some sort of change to it 

that should be taken into account. 

 Exceptions: Contains the exception handlers (Otwell 2016a). 

 Handlers *: Contains the custom event handlers for the shop, such 

as the SetCartUpdatedCookie handler, which is called when the 

CartWasUpdated event is fired. 

 Http:  The controllers, the middleware and the requests (Otwell 

2016a). The Models are also stored under this directory 

(Http/Models). 

 Jobs: Queable jobs for the application (Otwell 2016a). 

 Listeners: Contains the handler classes for the events (Otwell 

2016a). Not currently in use for any custom code. The custom event 

handlers are found inside the Handlers directory instead. 
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 Modules *: Contains the custom back end modules (services and 

facades). Described more thoroughly in their own chapter. 

 Policies: Not used. 

 Providers: Contains the back end service providers (Otwell 2016a). 

The custom service providers for the shop are always part of a 

module and are found under Modules instead, i.e. the shop does 

not use this directory for its custom providers 

 Transformers *: Contains the “transformer” classes for the shop. 

Described more thoroughly in their own chapter. 

3.2 Themes 

The shop’s themes are designed to be easily switched, extended and 

modified by a software developer. The themes for the shop consist mainly 

of views in the form of Blade templates, styles CSS (vendor) and SASS 

(custom styles) and JavaScript (mainly AngularJS for the custom code). 

3.2.1 Blade templates 

Blade templates have their own syntax for control structures (conditionals, 

loops and such), extending layouts, displaying data etc (although use of 

regular PHP code inside the template file is also supported). Blade also 

supports template inheritance and sections, meaning that it is possible to 

have a “main” layout file that contains and includes “sections” and/or sub-

views in other files. (Otwell 2016b.) 

Blade templates use the @-sign for various control structures and 

template features, for instance: 

 @if and @else for conditional statements 

 @extends to extend another template file 

 @section to define a section 

 @yield to display the contents of a given section 

 @include to include a sub-view 
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The templates use curly braces for displaying data, such as PHP variables 

and results from functions, for instance: 

 {{ $my_variable }} to echo the contents of a variable 

 {{ date(‘Y’) }} to echo the result of PHP’s date() function 

Since many JavaScript frameworks also utilize the curly braces, Blade can 

be instructed to ignore a statement with curly braces by adding an @-

symbol before the braces. (Otwell 2016b.) 

Seen below is an actual example of how the shop utilizes the Blade 

templating engine with some takes from the source code of the shop’s 

default template (notice that the figures only contain the rows necessary to 

illustrate an understandable example. This is done for clarity, since the full 

files contain tens or even hundreds of rows of code depending on the file. 

Parts where rows are missing are indicated with “…”). 

The main template/layout file (defalt.blade.php) shown in Figure 4 uses the 

@yield directive (line 67) to display the contents of the product page 

(Figure 5). The product page (product.blade.php) uses the @extends 

directive (line 1) to extend the main layout (default.blade.php) and 

@section to define the “content” and “title” sections (lines 6 and 10) of the 

main layout. It also uses the @if and @else conditionals (lines 2 and 4) to 

check that the product data exists and to print data from the product array 

using the curly braces syntax (e.g. line 23): 
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FIGURE 4. The main template file 

 



13 

FIGURE 5. The product page 

3.2.2 File and directory hiearachy 

The files specific to the selected theme are found under 

resources/views/themes/<theme name> (where <theme name> is 

replaced with the actual name of the theme). This is shown in Figure 6. 
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FIGURE 6. The theme specific directory 

The views in this directory are divided into the following 

subdirectories/categories: 

 emails 

 layouts 

 pages 

 partials 

 modules 

The emails directory contains the HTML emails for the theme, such as the 

order confirmation and password reset emails. 

The layouts directory contains the main template file, default.blade.php, 

and holds the default layout for the whole site. The pages, partials and 

front end modules are all included/called inside this file. 

The pages directory contains specific page layouts, such as the layout for 

the product presentation page (product.blade.php) or the checkout page 

(checkout/checkout1.blade.php). Most pages are loaded as a section or 

part of the main template file, but they can also be stand alone pages (if 

the rest of the main theme is not needed for that particular page/view). The 

pages are named using lowercase and underscores, e.g. 

product.blade.php for the product information page. 
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The partials directory contains minor content blocks and/or sub-views such 

as a menu or sidebar. For instance, partials/TopNav/TopNav.blade.php 

contains the top menu for the shop and can be hooked into the layout 

using Blade’s @include directive. Notice that the partial also has its own 

directory, since there might be different variations of it used in different 

places. Partials that require an extensive amount of JavaScript logic, AJAX 

and own styling are referred to as “modules”, rather than “partials” and are 

not found inside the partials directory, as they have their own directory and 

logic. The partial files and directories are named using the Pascal case 

capitilzation style, e.g. TopNav, MyPartial, etc. 

The modules directory contains the directories and sub-views specific to 

the modules. Like the partials, modules can also be included just about 

anywhere using the @include directive, but usually require more extensive 

logic than a simple partial. Modules are described more thoroughly in their 

own chapter. The module files and directories are named using the Pascal 

case capitalization style, e.g. QuickCart, MyModule, etc. 

The SASS and JavaScript files for the theme are under the 

resources/themes/<theme name>/assets where they go into their 

respective js and sass subdirectories. The key styles for the theme are 

found inside the sass directory’s theme.scss and variables.scss files.  

The theme.scss file contains the base styles and look for the theme and 

variables.scss contains some basic SASS variable values for the theme, 

such as the theme’s base colors. The variable file is also a good place to 

put any possible overrides of the Boostrap SASS variables. To avoid 

clogging up the main stylesheet for the theme, the sass directory is also 

further divided into its own subdirectories specific to modules, pages and 

paritials, for when there is an extensive amount of custom styles required 

for anything that fits under the description of those entities. 

Like the sass directory, the js directory also contains its own module 

subdirectory for module specific scripts (AngularJS files). Furthermore, the 

js directory also holds the theme’s angular-default.js file, where the 



16 

AngularJS app used across the whole site as well as which AngularJS 

third-party modules (not to be confused with the shop’s own modules) to 

load are defined. The directory also contains a helpers.js file for some 

generic JavaScript helper functions. 

3.2.3 Theme switching and compilation 

The theme for the shop can be easily switched by changing theme settings 

(name and path of the theme) under config/theme.php. and in the 

gulpfile.js file. The theme path can be fetched from the config or through 

the globally shared $theme_path variable whenever a view is loaded 

inside a Laravel controller or template. This makes it easy for the shop to 

always knows in which theme’s directory to look. Figure 7 shows a view 

being loaded in the PagesController controller 

(app/Http/Controllers/PagesController.php) on line 43. Figure 8 shows the 

TopNav partial (Blade sub-view) loaded in the main template file 

(default.blade.php) using the @include directive on line 45. 

FIGURE 7. Loading a view 

FIGURE 8. Loading a partial 
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FIGURE 9. The public directory 

The gulpfile (gulpfile.js) is the settings file for Gulp and Laravel Elixir. It 

keeps track of all the “non-Blade-template” assets (i.e. SASS, CSS, 

JavaScript, fonts, etc), or rather their input and output locations and 

names, as well as the name of the theme itself (a variable in the file that 

needs to be changed when the theme changes). When Gulp is run (from 

the command line), it compiles and minifies all JavaScript and SASS + 

CSS assets into the following public files (as seen in Figure 9): 

 public/js/vendor.js: vendor/third-party scripts 

 public/js/custom.js: deveoper’s own custom scripts 

 public/css/vendor.css: vendor/third-party styles 

 public/build/css/app-<unique suffix>.css: developer’s own custom 

styles 

The <unique suffix> part of the filename is automatically replaced with 

a unique hash for so called “cache-busting”, i.e.  to force the web 

browser to load a fresh file instead of a possible cached one (Otwell 

2016e). The right asset can then be automatically loaded inside the 
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template using Laravel’s global elixir function (Otwell 2016e). Figure 10 

shows the assets being loaded in the default.blade.php view of the 

shop’s theme. The stylesheets (vendor.css and app-<unique 

suffix>.css) and scripts (vendor.js and custom.js) are being loaded 

inside the <head> element. Note that Laravel’s elixir helper function is 

being used to load the right asset for app.css. 

FIGURE 10. Loading the assets 
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4 APPLICATION WORKFLOW AND FUNCTIONALITY 

4.1 MVC 

Laravel is a Model-View-Controller (MVC) architecture framework 

(Principe & Yoon 2015). Being a Laravel application at its core, the shop 

relies on MVC for its information workflow. 

The MVC approach basically means separating the application 

components into different areas of logic, i.e. “views”, “controllers” and 

“models”, thereby allowing for easier maintenance and expansion. In a 

traditional description of MVC (Figure 11), the controller handles the 

business logic and input and updates the model when necessary, the 

model oversees the data and relays information about its changes to the 

controller and/or view, and the view handles the presentation of said data 

to the user (Principe & Yoon 2015). 
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FIGURE 11. Typical MVC workflow 

The shop’s back end differs from the traditional example, in how it does 

not really use models that much. Nor does it directly update the state of 

the views (the modules that use AngularJS in the front end actually bind 

some data directly to a model). The MVC structure of the shop as a whole 

is better described by Figure 12 where the Model would be replaced by the 

eCommerce suite’s API from where the shop retrieves its data (described 

in more detail in its own subchapter). 
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FIGURE 12. A typical collaboration of the MVC components (jmkim dot 

com, licensed under CC BY-SA 4.0) 

4.2 Routing and responses 

The application’s HTTP routes, optional parameters, middleware and 

mappings are defined in the app/Http/routes.php (Otwell 2016d). Most of 

the shop’s routes are mapped directly to some controller action. An 

example of HTPP GET routes with parameters mapped to controller 

methods can be seen in Figure 13 on the following page.  

After the routing, the controllers inside the app/Http/Controllers’ directory 

load some type of suitable response for the selected route. This could be, 

for instance, a Blade view as seen in Figure 14 on line 63, where the 

getPageById method in the PagesController controller 

(app/Http/Controllers/PagesController.php) returns a Blade view as the 

response content using Laravel’s view helper method. It could also be a 

JSON response for AJAX calls made from an AngularJS controller after 

handling possible pre-requisites (such as retrieving, storing or parsing data 

required by the view in question). Figure 15 shows the addToCart method 

in the CartsController controller (app/Http/Controllers/CartsController.php) 
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returning a JSON reponse on line 48. This request could, for instance, 

originate from the addToCart function in the CategoryProductsController 

AngularJS controller 

(assets/js/modules/controllers/CategoryProductsController.js in the 

theme’s directory under resources). This can be seen in Figure 16, where 

an HTTP POST request to the back end takes place. 

Some pre-requisites, such as checks for authenticated users are handled 

by middleware assigned directly through certain routes in the routes file 

(Figure 17). 

FIGURE 13. HTTP GET routes mapped to controller methods 

FIGURE 14. Returning a view in the PagesController class 
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FIGURE 15. Returning a JSON response in the CartsController class 

FIGURE 16. POST request in AngularJS controller 
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FIGURE 17. Auth middleware assigned to route group 

4.3 Modules 

The modules are the core of the shop’s custom functionality and features 

and a vital part of the applications information workflow. The term 

“modules” is in this context used as an umbrella term for all of the shop’s 

custom service providers, facades as well as sub-views, which require an 

extensive amount of their “own” logic in the form of AngularJS controllers, 

services/factories and/or backend processing. The modules can be loosely 

divided into: 

 service modules: A custom class along with a service provider and 

possibly a facade. 

 template modules: Blade sub-views that require their own set of 

back end or front end logic in the form of Laravel or AngularJS 

controllers and services. 
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The template modules always rely on some back end controller or service 

module (otherwise, they would be referred to as “partials” instead). The 

service modules can be used by back end controllers or in a Blade 

template file through direct service injection. 

4.3.1 Service modules 

The service modules are custom services found under app/Http/Modules 

inside their own subdirectories and consist of a Laravel service provider, a 

custom class for the functionality (bound to the Laravel service container 

via the provider) and more often than not, a facade for convenient access. 

Service providers extend Laravel’s abstract 

Illuminate\Support\ServiceProvider class and are used for registering 

bindings into Laravel’s service container, i.e. allowing, for instace, a 

custom class to be available for use throughout the application without 

manual instantiation (Otwell 2016f). A Laravel facade extends the 

Illumnate\Support\Facades\Facade class and serves as a “static proxy” to 

the classes in the service container, allowing access to objects from the 

container (Otwell 2016c). The service provider can be registered in 

config/app.php (Otwell 2016f). 

4.3.2 Template modules 

The template modules consist of one or more Blade views. For instance, 

the FeaturedCategories module is meant for displaying a specific set of 

“featured” categories on various pages or in various parts of a template, so 

it stands to reason that it may have several different views or variants 

depending on where it needs to be displayed. As opposed to the partials, 

the modules usually also have some logic in the form of an AngularJS 

controller, directive, service, factory or other code. If backend logic is 

needed, the modules can also have their own Laravel controllers and 

services. The Blade views and the front end assets (JavaScript, SASS) 

are located under resources/views/themes/<theme name>/assets (Figure 

18) and divided as follows: 
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FIGURE 18. The theme’s assets directory 

 js/modules/controllers/<module name>Controller.js: AngularJS 

controller named after the module using it, e.g. 

FeaturedCategoriesController.js for the FeaturedCategories 

module. Besides the controller, the files may also contain 

AngularJS directives. 

 js/modules/service/<module name>Factory.js or 

js/modules/service/<module name>Service.js: AngularJS service or 

factory named after the module using it, e.g. 

AlertMessagesFactory.js for the AlertMessages module. 

 sass/modules/<module name>.scss: SASS stylesheet specific to 

the module, e.g. FeaturedCategories.scss 

 modules/<module name>: This directory contains the Blade views 

for the module. Can contain multiple files, usually the default file is 
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named after the module, e.g. 

modules/QuickCart/QuickCart.blade.php for the QuickCart module’s 

default view. 

Should the module require its own back end Laravel controller for 

something like an AngularJS AJAX requests, it would be in 

app/Http/Controllers/Modules/<module name>/<module 

name>Controller.php. Some modules also have their own service module 

in app/Modules. 

4.3.3 Information workflow and examples 

This chapter contains examples of typically structured modules that are 

currently present and functional in the shop, as well their workflow 

explained through figures. 

The FullSearch module, is a typical example of a template module. 

Consisting of a Blade view (Figure 19), an AngularJS controller (Figure 

20), and its own SASS stylesheet (Figure 21), most of the template 

modules are built following this pattern. Notice the Blade view in Figure 19 

defining the AngularJS controller for the module through the ng-controller 

attribute on line 2. Also, notice some of the brackets being prefixed with 

the @-sign, in order to be parsed by AngularJS rather than Blade. This 

module is designed to make AJAX calls from its AngularJS controller to 

perform simultaneous “live” searches for products, categories and pages 

related to a search query. Figure 22 shows the AngularJS controller 

watching for changes to the search query (line 43) and querying the back 

end for results through an XMLHttpRequest. The module does not have its 

own back end controller, but queries a more generic controller (not limited 

to any specific module), SearchController (app/Http/SearchController.php) 

for results (Figure 22). Figure 23 shows the module being loaded in a view 

using the @include directive on line 10. 
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FIGURE 19. The FullSearch module’s Blade view 
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FIGURE 20. The FullSearch module’s AngularJS controller 
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FIGURE 21. The FullSearch module’s SASS stylesheet 
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FIGURE 22. Fraction of the SearchController class 
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FIGURE 23. Loading the FullSeach module 

Another module worth mentioning is the ContactForms module, for 

generating and processing various contact forms. This module qualifies as 

both a template module and a service module, since it requires both in 

order to function. The module does not have an AngularJS controller, 

since no AJAX or other interactivity that would require the use of 

JavaScript is currently present, but rather fetches the data it needs directly 

from the ContactForms service (Figure 24) injected into the module’s view 

(Figure 25). The injection of the ContactForms service 

(app/modules/ContactForms/ContactForms.php) into the ContactForms 

view (modules/ContactForms/ContactForms.blade.php inside the theme’s 

directory) through the @inject directive can be seen in Figure 25 on line 6. 



33 

FIGURE 24. Fraction of the ContactForms service 
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FIGURE 25. The ContactForms module’s view 

The ContactForms service also needs a service provider and a facade in 

order to be registered by the application. Figure 26 below shows the 

service provider of the ContactForms module registering the 

ContactForms class into Laravel’s service container. The facade can be 

seen in Figure 27. 
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FIGURE 26. The service provider 

 

FIGURE 27. The facade 

Since the back end logic for processing the forms needs to be very 

specific in order to fit the module, it also features its own, dedicated back 

end controller for processing the POST data from the forms. Figure 28 

shows a fraction of the ContactForms module’s controller 

(app/Http/Modules/ContactForms/ContactFormsController.php). Notice the 

controller calling the ContactForm service’s get method through the facade 

(line 34) mentioned earlier. 
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FIGURE 28. Fraction of the ContactForms module’s controller 

Yet another module that differs from the ones mentioned above is the 

Eshop module. This service module fetches any needed data from the 

eCommerce platform’s API, e.g. products, categories, pages etc. This is 

an example of a module that is not directly related to or used by any of the 

template modules. It is, however, crucial to several back end controllers 

and services. For instance, the SearchController mentioned earlier utilizes 
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the Eshop module (through the Eshop module’s facade) to fetch data from 

the API. The logic of this module is described more thoroughly later on in 

the text. 

4.4 Retriving data 

4.4.1 Sources of data 

The shop needs to retrieve and manipulate a vast number of data 

regarding products, customers, orders and other things expected of the 

front office for an eCommerce platform. The shop is not directly connected 

to a relational database (i.e. does not directly execute SQL queries via its 

back end), but fetches and stores data by communicating with the 

eCommerce platform’s API (which, in turn, is connected to a relational 

database, although that’s beyond the scope of this report) using HTTP 

requests. Sessions and cookies are also used by the shop to help keep 

track of some of the changing data, such as the shopping cart and 

currently logged in customers, or simply to remember some choices made 

by a visitor. However, most of the dynamic data that the shop requires is 

constantly retrived and stored back and forth through the API mentioned 

above, even the authenticatable users and the actual contents of the 

shopping cart (the cookie merely acts as an identifier). 

4.4.2 Communicating with the API 

The shop transfers data to and from the eCommerce suite’s API (after this 

referred to simply as “the API”) via an HTTP request using the Eshop 

service module (under app/Modules/Eshop). This module makes use of 

the Guzzle client for its requests. Guzzle is a PHP HTTP client that 

provides a simple interface for asynchronous and synronous requests 

(Dowling 2016). It can be installed using Composer (Dowling 2016). The 

Guzzle client is injected through the module’s service provider 

(app/Modules/Eshop3/EshopServiceProvider.php), seen in Figure 29 

below. 
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The EshopAPI service (app/Modules/Eshop3/EshopAPI.php), seen in 

Figure 30, contains readily made methods for HTTP GET, POST, PUT and 

DELETE requests, which are used in a majority of the back end controllers 

throughout the application via the module’s facade. Figure 31 shows the 

ProductsController (app/Http/Controllers/ProductController.php) controller 

fetching API data by calling the service’s api_get method via the Eshop 

facade. The call to the service through the facade can be seen on line 37. 

 

FIGURE 29. The Eshop service provider 
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FIGURE 30. Fraction of the EshopAPI service 
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FIGURE 31. Controller method fetching API data though the Ehop facade 

4.4.3 Securing the communication 

To secure the communication between the shop and the API, the module 

uses Hash-based Message Authentication Code (HMAC) implemented 

through PHP’s hash_hmac function. 

As the articles “Create a HMAC-SHA authentication implementation for 

PHP” by P. Brown (2016) and “API Authentication: HMAC with 

Public/Private Hashes” by C. Cornutt (2016) explain, the idea behind 

HMAC is that both participants have access to a set of so-called public 

and private keys. The public key, which could be some sort of random 

character string, is used to identify the shop, while the private key is used 

when generating some sort of hash or Message Authentication Code 

(MAC). The shop and the API both know the values of the public and 

private keys. The shop then generates a hash where the private key is 

included. The hash is passed along as a header with the public key in 

every request to the API. The API, which recognizes the shop through the 

public key, then attempts to generate the same hash using the private key. 

If the hashes match when compared, the API knows that both must have 
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been using the same private key. The private key itself is never passed 

along, so it will not be compromised even if the generated hash is 

intercepted. The hash itself could be used though, unless it contains some 

sort of changing value. Figure 32 illustrates the process of a hash (MAC) 

being generated on both sides using the private key (K), and verified. In 

this example, the hash is generated from the message itself along with the 

private key (K), although the hash generated using the private key could 

as well be based on some other token as long as both the sender and the 

receiver know what the hashing process is based upon. 

 

FIGURE 32: Example of HMAC-based communication 

4.5 Transforming data 

4.5.1 The need for transformation 

Since the data from the API may contain various fields and data that the 

shop may or may not want to make directly available to the front end, the 

data needs to be manipulated or “transformed” by the back end before 

use. This is especially important in the case of AJAX requests, since the 

data that is returned is directly accessible through the browser (though it 

may or may not actually be clearly visible to the naked eye in the user 
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interface). In most cases, this simply means defining which properties of 

the object obtained from the API the array used for final output to the front 

end should contain. Some of the transformers also contain functionality 

beyond simple definitions, such as various calculations and permission 

checks. that the shop needs for a certain entity, be it by the back end or 

the front end. Many types of data, such as information regarding the 

shopping cart or product data is needed by several controllers in serveral 

different places of the shop. Thus, having a centralized way of 

transforming the data is vital for re-usability and for standardizing the 

output. This means not having to calculate and/or define the same things 

over and over again every time some type of data is fetched from the API. 

4.5.2 Transformers 

The data tranformers are classes located within the app/Transformers 

directory and they all extend from the same abstract Transformer parent 

class (app/Transformers/Transformer.php). The abstract transformer 

class, seen in Figure 33, contains readily made methods for transforming 

objects and arrays, either as single items or as a collection of items. Notice 

the abstract method, transform, defined on line 63. This method contains 

no logic of its own, but must be defined by all the other transformers that 

extend the Transformer class. It is also needed by the Transformer’s 

transformCollection and transformArrayCollection methods, since both 

utilize the transform method for transforming data. 

The child classes are only required to contain one single method, 

transform (as defined by an abstract method with the same name in the 

Transform parent class), which handles the transformation of a certain 

entity, e.g. customer, product or shopping cart. The transformers are 

usually injected into the back end controllers on a per-required basis 

through the controller’s constructor. Figure 34 illustrates the 

ProductTransformer transformer 

(app/Transformers/ProductTransformer.php) being injected into the 

ProductsController controller (app/Http/Controllers/ProductsController.php) 
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through the class constructor on line 18. Notice that the full namespace of 

the transformer is actually App\Transformers\ProductsTransformer as 

defined by the use keyword before the class on line 8. The transformer 

can then be used to transform a collection of data or a single object, both 

of which are illustrated by Figures 35 and 36. Figure 35 illustrates the 

CategoryProducts module-specific controller 

(app/Http/Controllers/Modules/CategoryProducts/CategoryProductsControl

ler.php) using the ProductTransformer transformer 

(app/Transformers/ProductTransformer.php) to transform a collection of 

products (objects) from the API (line 56) before returning it as a JSON 

response to the front end (line 57). Figure 36 illustrates the 

ProductsController controller (app/Http/Controllers/ProductsController.php) 

using the ProductTransformer transformer to transform a single product / 

object (line 41) before returning the reponse, i.e. loading the product 

information view and passing along the data (43). 
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FIGURE 33. The abstract Transformer class 
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FIGURE 34. Injecting the transformer through the constructor 

FIGURE 35. Transforming a collection of items 
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FIGURE 36. Transforming a single item  

4.5.3 Examples and variations 

The CustomerTransformer transformer 

(app/Transformers/CustomerTransformer.php) illustrated in Figure 37 is a 

simple example of a typical transformer class. This transformer only 

defines and type-casts various properties of a customer (object) obtained 

from the API and has no other methods beyond the obligatory transform 

method. Notice that the customer object may contain more properties than 

the ones that are returned by its transformer. 
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FIGURE 37. The CustomerTransformer transformer 

The CartTransformer transformer 

(app/Transformers/CartTransformer.php) illustrated in Figure 38 serves 

well as a more advanced example. This transformer contains multiple 

methods and has several tasks vital to the functionality of the shop beyond 

the scope of simply determining which object properties are needed. For 

instance, it calculates the total sum, weight and volume of the shopping 

cart and related products. Notice that it also relies on other transformers to 

work, such as the ProductTransformer transformer for transforming the 

products (line 69). 



48 

FIGURE 38. Fraction of the CartTransformer transformer 
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SUMMARY 

The project aimed at making an easily maintainable and expandable 

webshop as part of a larger eCommerce suite, using well-known MVC 

frameworks. The main challenges involved getting the different parts of the 

eCommerce suite working together and designing the overall structure and 

interaction between the webshop’s various frameworks, as well as the 

interaction between the back and the front ends. Furthermore, the 

hierarchial structure and information flow would require a well thought-out 

structure early on in order to be open for changes, customization and 

expansion later on. 

The current structure of the application allows both the themes and 

business logic to be customized in order to meet current and future needs 

presented by the customer/end-user. Themes and custom logic can be 

modified or switched completely. The shop can also be expanded with 

new features by adding various types of modules, should a need for 

completely new features arise. As future implementations and custom 

shop’s are made and published, the total number of readily-made features, 

modules and themes to select from is naturally expected to grow. In the 

long run, this could be expected to speed up development and publishing 

as developers will only need to make minor improvements and 

modifications to existing modules and themes, rather than needing to 

actually develop completely new functionality. 

At the time of writing, the shop is undergoing customer-specific 

customizations to its themes and modules in order to be deployed for the 

commissioning company’s end-users. The first site is expected to go 

online during spring 2016. 
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