
Babatunde Dunmoye

Android Mobile Application Development for an
Online Bookstore with PayPal Integration

Helsinki Metropolia University of Applied Sciences

Bachelor of Engineering

Information Technology

Thesis

30.04.2015

Abstract

Author(s)
Title

Number of Pages
Date

Babatunde Dunmoye
Android Mobile Application Development for an Online
Bookstore with PayPal Integration
43 pages
30 April 2015

Degree Bachelor of Engineering

Degree Programme Information Technology

Specialisation option Software Engineering

Instructor Olli Hämäläinen, Senior Lecturer

Due to the increasing saturation of the mobile technology, fuelled by its inherent properties
such as flexibility, ease of use, and ubiquity, mobile e-commerce has gained significant
business reputation promising great productivity, high profitability and an immense level of
security.

The goal of this project was to design and develop an Android online bookstore. Focusing
on business-to-consumer markets, the customers of a book sales’ company could pur-
chase books conveniently and pay via the integrated PayPal service using a mobile phone.
The application allows a user to register an account, login, search for particular books of
interest, sort books in ascending or descending order of price and purchase book(s) in the
cart with a PayPal account.

The goal of the project was achieved by observing software development procedures and
principles for software designs and implementation. In achieving the goal of this project,
three major parts were designed and implemented. Firstly, the design of the UI (User Inter-
face) was implemented by following the Android design guidelines for Android devices.
Secondly, a MySQL database that connects and communicates with the web server
through the Internet was designed to store the book data. Thirdly, the design of the An-
droid phone local SQLite database was realised. This allows users to use the application
offline.

The result of the project was a complete Android mobile application that is targeted at de-
livering a solution for online shopping with the PayPal integration. The project eliminates
the need to drive to a retail store outlet, find and pay for a parking place. In addition, con-
siderable time is saved as consumers do not need to walk throughout the store in search
for an item to buy.

Keywords Android mobile application, online bookstore, PayPal integration

Contents

Abbreviations and Terms 1

1. Introduction 2

2. Project Description 3

3. Android Phone Application Platform 4

3.1. Android Development Framework 4

3.2. Android Software Stack 5

3.3. Android Phone Application Architecture 6

3.4. Android Phone Application Development 7

4. Requirement Analysis 9

4.1. Functional Requirements 9

4.1.1. Input Requirements 9

4.1.2. Operation Requirements 10

4.1.3. Output Requirements 10

4.2. Non-Functional Requirements 10

4.2.1. Software Requirements 11

4.2.2. External Interface or Hardware Requirements 11

4.2.3. Secondary Requirements 12

4.3. Algorithm Flow Chart 12

4.4. Use Cases 14

5. The Online Bookstore Graphical Design 21

5.1. Design View of Start-up Window 23

5.2. Application Control Buttons 23

6. Implementation of the Online Bookstore 29

6.1. User Registration 29

6.2. User Login 30

6.3. Parsing HTTP Response to JSON Object 31

7. Database Design 33

8. PayPal Integration 38

8.1. PayPal Sandbox Overview 38

8.2. Accessing The PayPal Sandbox 38

8.3. Adding Funding Sources 39

9. Submitting the Application to the Android Market Place 41

10. Conclusion 43

References

1

Abbreviations and Terms

ADT Android Development Tools

API Application Programming Interface

AVD Android Virtual Device

CPU Central Processing Unit

DVM Dalvik Virtual Machine

EDGE Enhanced Data Rates for Global Evolution

EV-DO Evolution Data Optimized

GPS Global Positioning System

GUI Graphical User Interface

HTTP Hypertext Transfer Protocol

HSPA High Speed Packet Access

IDE Integrated Development Environment

JSON JavaScript Object Notation

LIBC Standard C Library

OpenGL ES Open Graphics Library for Embedded System

OS Operating System

PHP Hypertext Preprocessor

SSL Secure Sockets Layer

SDK Software Development Kit

SMS Short Message Service

TCP/IP Transmission Control Protocol/Internet Protocol

UI User Interface

XML Extensible Mark-up Language

2

1 Introduction

In recent times, the advancement in the wireless technology and the growth in market

potentials have led to an increase in the number of mobile device users. The emer-

gence of this technology has given rise to rapid development of mobile e-commerce

technologies. This brings on-the-go Internet access to the general online market world

without geographical and time constraints.

This project aims to demonstrate how to design and develop an Android online

bookstore application that connects and communicates with a MySQL database server

through the Internet using Hypertext Preprocessor (PHP) and Java Script Object Nota-

tion (JSON) format. The data are primarily stored on the server but are also loaded and

stored on the mobile phone’s SQLite database in the event of lack of Internet access.

To make online shopping more interactive and user-friendly, the application allows us-

ers to register an account, login, search for particular books of interest, sort books in

ascending or descending order of price and buy books in the cart with a PayPal ac-

count. Purchased books are delivered to the user’s delivery address via a postal agen-

cy.

Furthermore, to create a smooth and great user experience, the application does not

only check if the user already exists but can add new information for a new user or up-

date new sales on the MySQL database. The application protects the user’s password

with an SHA256 encryption. This project also provides a way to recommend the appli-

cation to friends via Short Message Service (SMS) or email.

3

2 Project Description

In this project, the design and development of an Android application for an online

bookstore with the integration of a PayPal payment option was carried out. The appli-

cation provides a smooth shopping experience for users, while offering an interactive

way of paying for products in the shopping cart.

With this application, registered users with an account can login, search for books and

promotion sales, search for books in descending or ascending order of price, view de-

scriptions of books and buy books with PayPal. Unregistered users can also have ac-

cess to the store, search for books and promotion but cannot buy books unless they

register.

The application communicates with a MySQL server through PHP/JSON. From the

MySQL server, the application loads 10 rows of information about the books at a given

time. With a further scroll on the application touch screen, another 10 rows of infor-

mation are yet loaded. This continues until the end of the query is reached. The PHP

scripts do the connection of the Android device to the MySQL server.

Since the Internet plays a very vital role in this application, this application is made in a

way to load all data from the external server (MySQL) into the device’s native database

(SQLite) whenever there is a connection to the Internet. This improves users’ experi-

ence because, when there is no Internet connection users can rely on the already

loaded data.

The administrator can add new information to the MySQL database. For example, new

users and new sales can be added. The application also checks if the user already

exists to avoid duplicate users.

4

3 Android Phone Application Platform

The important features about the use of Android as a development environment are

centred around the Application Programming Interface (API) it provides. Android is an

application-neutral platform, which provides the opportunity to create applications that

have access to the device hardware through series of APIs libraries. The following are

common Android features:

Ø Free development, distribution and licensing

Ø Wi-Fi hardware access

Ø API libraries for implementing accelerometers, compass, camera, Bluetooth and

location-based services like GPS (Global Positioning System).

Ø Framework for localization

Ø Support for 2D and 3D graphics using OpenGL ES 2.0 (Open Graphics Library

for Embedded System)

Ø SQLite Database for storage and retrieval

Ø Media API that supports playing and recording audio and video format

Ø Open-source HTML5 (HyperText Markup Language) Webkit-based browser

Ø Shared data possibility through content providers, intents and notifications

Ø Support for background services for processes and applications

Ø Provision for application components’ reuse and the replacement of generic ap-

plications.

Ø Memory and process management. [1,6.]

3.1 Android Development Framework

Each Android application is written in the Java Programming language and run on a

separate instance of a virtual machine called Dalvik Virtual Machine (DVM) contrary to

the Java Virtual Machine (JVM). The Android runtime is responsible for the memory

and process management, which kills the process when the need arises to release

memory to the Android runtime. The Android runtime and the Dalvik Virtual Machine sit

on a Linux Kernel that interacts with the low-level hardware. A set of APIs is then nec-

essary to expose the underlying hardware features and services. [1,12.]

5

3.2 Android Software Stack

Android applications run on top of a Linux Kernel and a collection of C/C++ libraries

that provide applications with hardware functions of the device: hardware drivers,

memory management and power management. The Linux Kernel is also responsible

for process management, which starts a separate process for each application and

multiple threads can execute the application in the same process. Figure 1 below

shows the Android Software Stack.

Figure 1. Android Software Stack. Reprinted from Android Architecture (2012) [3]

On top of the Linux Kernel are the native libraries that handle graphics, media, SQLite

database, OpenGL, network, Secure Sockets Layer (SSL) & Webkit, Standard C Li-

brary (LIBC) and surface management. The Android run time, which houses the core

Android libraries and the Dalvik Virtual Machine also sit on the Linux Kernel. The An-

droid run time powers the applications. The core libraries provide most of the classes

and functionality in core Java libraries as well as the Android generic libraries. Dalvik is

optimized for mobile devices and makes it possible for Android applications to run on a

separate instance or process effectively. It relies on the Kernel for allocating Central

6

Processing Unit (CPU) execution time for processes and their threads through schedul-

ing. [2,1.]

On top of the Native libraries and Android runtime is the Android Application Frame-

work. It provides the classes and Android APIs for creating Android applications. The

APIs include, for example, Graphical User Interface (GUI), telephony, resource man-

ager, locations, content provider, window manager and views. The Application Frame-

work also gives a generic abstraction for the hardware access and functionalities.

On top of the Android framework is the Application Layer. All applications such as

home, contact, settings, games, maps, browsers are built on this layer.

3.3 Android Phone Application Architecture

The Android application architecture is designed to promote reusability of components.

Components are the architectural cornerstones or building blocks of an Android

application securely managed by the Android runtime. Each of these components

establishes an entry point through which the Android runtime can enter into Android

applications since there is no other entry point like main() function as found in other

development platforms.

Each component is a unique entity that does not only define the overall behavior,

reponsibilities and lifecycles of a particular Android application, but also shares data

and interacts with other components through intents, notifications and content resolver.

The following are the four Android application components: activity, service, content

provider and broadcast receiver.

An activity is a component that represents a single screen, which the user interacts

with in a given time. It presents to the user the UI components like buttons, texts, im-

ages and navigations that are shown on an active screen [2,3].

When a long-running operation or a remote process is triggered, a service is the com-

ponent that enables this application to run in the background without direct user inter-

action. To implement a service, the application must be a subclass of service class

from the Android core library [4].

7

The content provider is used to share data within or between applications. Android ap-

plications get access to the native Android SQLite database through the content pro-

vider [2,5].

A broadcast receiver is a component that listens and responds to broadcast an-

nouncements from intents sent from the system or other applications. The broadcast

receiver, by means of filters, detects the targeted Incoming intents [2,5].

3.4 Android Phone Application Development

The Android application development practice is focused on optimum user experience.

The Android SDK (Software Development Kit) provides a set of tools and APIs libraries

to write robust and sophisticated mobile applications. The Android application devel-

opment steps revolve around four development phases as shown in figure 2 below.

Figure 2. Development process for Android application. Reprinted from Android Open Source

Project (2014) [4]

The development phases are as follows:

1. The Development Environment Setup Phase:

8

In this stage the free-to-download Android SDK is downloaded, installed and set up for

development. The Android Virtual Devices (AVDs) on which an application can be in-

stalled for testing are also created.

In addition, the Eclipse IDE (Integrated Development Environment) and Eclipse ADT

plug-in for Android development are also installed as they offer significant advantages.

2. Project Setup and Development Phase: This stage is where the setup and the actual

development of Android Project are done. The Android Project folder contains all the

source code, Android manifest and resource files for the application.

3. Building, Debugging and Testing: During this stage the application can be built into a

debuggable Android package(s) that can be installed and run on an actual Android

device or the emulator. The application is then debugged using the Android Debug

Monitor and logging tools (logcat) provided by the Android SDK.

Next, the application is tested using various Android SDK testing tools and instrument

framework.

4. Publishing: During this stage, the application is prepared for release by configuring,

building and testing it in the release mode. Thereafter, the application is published, sold

and distributed to users.

9

4 Requirement Analysis

In software engineering, application developers need to clearly understand the prob-

lems to be solved. It is therefore important for a developer to properly model the sce-

narios that can influence the solution to the problem by collecting relevant information.

This process is called requirement analysis. The requirement analysis provides the

opportunity for a developer to get a better understanding of the problem in question.

For effective design and development of this project, the following requirements must

be met. They can be divided into functional requirements and non-functional require-

ments.

4.1 Functional Requirements

This section describes different requirements that are accomplished by the Online

Bookstore system.

In order to achieve the desired goal of this project, the functional requirements must be

met. The following are the three major actions performed by the Online Bookstore sys-

tem.

4.1.1 Input Requirements

Input requirements are the requirements a user must fulfil before gaining access to use

the Online Bookstore system. A registered user can use the application by providing

the correct sign-in credentials. After being authorized, the user should be able to

browse through the collection of books, view description of interesting books, select

desired book(s) into the shopping cart, update the carts and finally purchase the

book(s) using PayPal.

By making use of the Skip button to avoid signing in, a non-registered user can also

utilize the application but with limited application functions. For example, a non-

registered user may not be able to purchase an item.

10

4.1.2 Operational Requirements

The operations that the Online Bookstore system performs are registering users into

the system and encrypting users password with SHA256, checking the availability of an

Internet connection and downloading data from the server to the device’s own native

database (Android SQLite database) in JSON format and displaying the content of the

SQLite database to the user via the UI.

4.1.3 Output Requirements

Output requirements ensure that the application is able to call the PayPal API server to

complete the final process of the purchase. A receiver of the funds (i.e. the merchant)

must have a PayPal account to receive the funds after the payment is complete. Figure

3 below shows how the receiver, the sender and PayPal interact with one another.

Figure 3. Relationship between a sender, receiver and the PayPal. Reprinted from PayPal

(2014) [5]

The user is required to log into the PayPal account to approve the payment. The device

sends a Pay request to PayPal. PayPal then responds, giving a key to prove the user

authenticity. The user is then redirected to the PayPal website with the key for the final

payment of funds. After the purchase, PayPal alerts the user of the payment and ship-

ping information [5].

4.2 Non-Functional Requirements

Non-functional requirements are requirements that do not affect the proper running of

the Online Bookstore system. However, it is worthwhile to mention and consider these

requirements for the purpose of software quality and analysis.

11

4.2.1 Software Requirements

The Online Bookstore project, like other software engineering projects, needs well-

defined specifications that must meet the software environments needed to achieve the

desired goal of the project.

The software requirements considered in the development of this project are highlight-

ed below:

· The application runs on Android 2.3, Android 3.0, Android 4.0 or higher (Google

API level 20 – KitKat)

· Eclipse Juno Service Release 2 for Java EE Developers: Eclipse Juno Service

(Release 2 is the Integrated Development Environment used in developing this

project)

· Android Development Tool (ADT) is installed as a plugin from within the Eclipse

IDE to provide all the Android tools needed for the application development

· Classic API for PayPal and PayPal Sandbox Account from PayPal Android

SDK: It provides PayPal library for PayPal integration (for accepting credit card

and PayPal services in the application)

· Server: mysql.metropolia.fi via Transmission Control Protocol/Internet Protocol

(TCP/IP).

· Database Server type: MySQL.

· Protocol version: 10

· Server version: 5.0.95 – source distribution

· MySQL database server managed through PhpMyAdmin user interface.

· phpMyAdmin version: 4.1.8

4.2.2 External Interface or Hardware Requirements

In the development of this application, certain hardware requirements and specifica-

tions were considered in order for the application to be functional and result-oriented.

This application is developed for Android-based phones and tablets and hence runs on

an Android OS platform. With the help of the Android application framework and APIs,

this application can utilize the device hardware features such as camera, sensor and

touchscreen capability. The following are the hardware specifications:

12

· The device must support for minimum network capability (EDGE - Enhanced

Data Rates for Global Evolution, HSPA – High Speed Packet Access, EV-DO –

Evolution Data Optimized, 802.11g and Wi-Fi)

· The device must have at least 128MB of memory available to the Linux Kernel

· The device must have at least 1GB of non-volatile storage for user data

· The download Manager capable of downloading individual files of at least 55MB

in size

· The device must implement at least a soft keyboard for user input

· The device must have a touchscreen (capacitive or resistive touchscreen)

· Support for OpenGL ES 1.0

· The device must support dynamic orientation by application to either portrait or

landscape screen orientation

4.2.3 Secondary Requirements

Secondary requirements are future considerations that can be incorporated into the

application for further development:

· Ability to integrate history page in the application

· Ability to receive notifications through the Android Notification service when new

books are available on the server

· Ability for the user to suggest book(s) of interest

· Ability for the user to be able to read some portion of the book

· Ability for the user to comment on, recommend and rate an item. [8,24.]

4.3 Algorithm Flow Chart

A successful and dynamic application should have a flow of events that implements the

system behaviour [6,12]. The term algorithm describes a solution to a problem. Algo-

rithm is important in a problem-solving environment because it states the steps and

procedures leading to the solution. In other words, an algorithm provides step-by-step

procedures in solving a particular problem. [7,7.]

13

On the other hand, a flowchart is a diagram representing the flow of a process in a sys-

tem. It combines symbols and flow lines, to visually represent the operation of the algo-

rithm. The Algorithm Flowchart therefore is a figurative representation of the entire pro-

cess, describing a set of instructions executed step-by-step to solve a given problem.

[7,8.]

Figure 4. Normal Flow of Events in the Online Bookstore

The illustration in figure 4 above shows a complete process from start to finish, on how

a user engages in the electronic transaction through the online Bookstore shopping

system.

When the application is launched, the user has the option of either registering (for a

complete transaction) or skipping the registration process (for quick browsing of

book(s) without making a purchase). If the user choses to register, the system displays

a registration form to be completed by the user. After this registration process, the user

can log in with the login credentials in order to search for books, select desired book(s),

add book(s) to the cart and purchase book(s).

14

4.4 Use Cases

A use case describes how a system behaves and responds to inputs by the primary

actors. The primary actors interact with the system in a bid to accomplish a desired

goal. The system, on the other hand, responds to the actors with the expected results.

Figure 5 describes the use case of the Online Bookstore system. The use case brings

together all possible scenarios under which a given system can act or behave. [10,1.]

Figure 5. Use Case Diagram for the Online Bookstore

In this project, the actors are the CLIENT, VISITOR, MERCHANT and the PAYPAL

service. The use cases are REGISTER, BROWSE HOME PAGE, UPDATE SHOP-

PING CART, LOGIN, PLACE ORDER, SHIP ORDER, MANAGE SHOPPING CART,

CREDIT MERCHANT ACCOUNT, MANAGE PRODUCT CATALOG, LOGOUT, ADD

ITEM TO CART, SEARCH ITEMS, and PERFORM ITEM SORTING.

The actors of the system are described below:

15

CLIENT: The client is a registered and authorised user also known as a customer. The

client is able to log in to the system to purchase items from the online store.

VISITOR: The visitor is unregistered or an anonymous user that is able to search for

and view items from the online store system. The visitor cannot log onto the system

and make a purchase unless he/she is registered.

MERCHANT: The merchant represents a person selling the product through the online

system, populates the product catalog and updates any information related to the

products in the system. Also, the merchant ships orders to the client.

PAYPAL: The PayPal is responsible for validating a client’s credit card information,

debits the client’s account and credits the merchant’s account during transaction.

16

Furthermore, the use cases of the system are described in detail below:

REGISTER: A new user that wants to purchase a book must register into the database

prior to a transaction. The application displays the registration form to the user. Table 1

shows the use case describing this activity.

Table 1. Use case description for REGISTER

Use case REGISTER

Description The application displays the registration form to the

user for the user to register

Pre-condition Unregistered user

Standard flow 1. The user clicks the REGISTER button from the

home page

2. The application’s registration page is displayed

3. The user fills in the form with appropriate infor-

mation

4. The user clicks the REGISTER button

5. The system checks if all the required fields are

entered and if the user’s name does not exist already

to avoid duplications.

7. If true, the system saves the new user’s record in

the Users table on the database.

Post condition The user should be able to log in

The user should be able to log in if the system has successfully registered the user

credentials into the database.

17

LOGIN: A registered user that wants to buy book(s) needs to LOGIN before any trans-

action can take place. Table 2 below illustrates the activity of the use case.

Table 2. Use case description for LOGIN

Use case LOGIN

Description A registered user signs in to allow access to the application

Pre-condition The sign-in credentials provided during registration should be

valid and the user must exist.

Standard flow 1. The user clicks the LOGIN button on the homepage of the

application.

2. The system displays the login page

3. The user enters username and password.

4. The user clicks the LOGIN button

5. The system authenticates the user’s record against the User
Table in the database

Alternate flow 1. The user clicks the LOGIN button on the home page.

2. The system displays the LOGIN page

3. The user enters user name and password.

4. The user clicks the LOGIN button.

Post condition 1. If the user is an authorised user, the system displays the

products page containing the list of books.

2. If user is not an authorised user, the system displays an error

message, informing the user of ‘incorrect password of user

name’

The login credentials of the user are encrypted with SHA256 random generator encod-

ing.

SEARCH ITEMS: The SEARCH ITEMS use case extends BROWSE HOME PAGE and

allows the user to search the Product and Promotions pages for a particular item,

browse through items and perform sorting of the items. The user can find an item

quickly by the name or title of the book using the search button on these pages. The

skip button on the application makes it possible for an unregistered user to search

through the collection of books. In this way, the skip button makes the application

available to all users but offers limited access to the Online Bookstore system re-

18

sources. For example, an unregistered user cannot buy books from the store if the skip

button is used.

PERFORM ITEM SORTING: The PERFORM ITEM SORTING use case extends the

BROWSE HOME PAGE use case. In addition to searching books by name or title, a

user can also search items by sorting. The sorting can be in various orders that in-

clude: ascending or descending order of price, category, and title.

ADD ITEM TO CART: The ADD ITEM TO CART use case extends MANAGE SHOP-

PING CART and provides the user with the opportunity to place an order. The user

must be registered and successfully logged in before adding items to Cart. Table 3

below illustrates the activity of the ADD ITEM TO CART use case.

Table 3. Use case description for ADD ITEM TO CART

Use case ADD ITEM TO CART

Description The user places selected item(s) into the CART and confirms

order

Pre-condition The user has signed in

Standard flow 1. The user searches by TITLE, NAME or CATEGORY

2. The system displays the search results on the Products page.

3. The user selects book(s) and clicks the BUY button.

4. The system adds the book(s) to the CART page for an order

Post condition The user is able to view the CART for review

The user has the opportunity to review or edit the contents of the CART before placing

an order. The user must have signed in with the correct username and password be-

fore making a purchase.

19

PLACE ORDER: The PLACE ORDER use case describes how the client completes a

purchase by checking out from the shopping cart. It provides the user with the oppor-

tunity to make a payment for an order. Thus, a user must be registered before making

a payment using the PayPal paying system. Table 4 below illustrates the activity of the

PLACE ORDER use case.

Table 4. Use case description for PLACE ORDER

Use case PLACE ORDER

Description The user can buy the books in the CART using PayPal

Pre-condition 1. The user has registered, signed in, and has at least one item in

the CART.

Standard flow 1. The user clicks the CART button.

2. The system displays the list of books in the CART.

3. The user checks the list for accuracy. Then, the user clicks the

PAY WITH PAYPAL button

4. The system displays the PayPal login window.

5. The user enters the PayPal email address and password and

clicks the LOGIN button

6. The system displays the PayPal REVIEW window containing

the shipping address and the balance.

7. The user clicks the PAY button if everything goes fine and

clicks the CANCEL button if not

Post condition 1. The user views or updates the shopping cart

2. The user views the shipping cost and taxes

3. The user views the sum total

4. The user makes payment with the PayPal account.

As seen in Table 4 above, the PayPal service provides a method of payment, which

makes it easier to accept credit cards online and hence, provides an effective way for a

user to have a smooth checkout experience. Before the payment is accepted, a user

must have a PayPal account with login credentials. After PayPal accepts the payment,

the system confirms the payment and provides the client with order status. This means

that there must be at least one item in the cart before placing an order.

SHIP ORDER: The SHIP ORDER use case describes how the merchant supplies the

products ordered to the client. The products are shipped only if the payment has been

20

accepted and the merchant account has been credited. The products are shipped to

the client’s shipping address.

BROWSE HOME PAGE: The BROWSE HOME PAGE use case allows both the visitor

and the client to view a list of products on the product page, which is stored in a rela-

tional database. Before this can be performed, a database populated with a list of

products must exist. User first requests a list of products in the database, then the web

server connects to the database and displays all available products on the product

page.

UPDATE SHOPPING CART: The UPDATE SHOPPING CART use case allows the

client to update the shopping cart. The client has a user account and must have logged

into the system. The client can remove item(s), add item(s) or empty the cart.

MANAGE SHOPPING CART: The shopping cart is implemented on the application.

This use case describes the activities the client can perform on the shopping cart.

These include browsing the product page, viewing the cart, adding to or removing

items from the cart and editing the quantities of items in the cart.

CREDIT MERCHANT ACCOUNT: The CREDIT MERCHANT ACCOUNT use case is

utilised by the actor PAYPAL in order to credit the merchant account when a client has

successfully placed an order. The PayPal service validates the client’s credit card in-

formation before crediting the merchant account. The system displays the transaction

details.

MANAGE PRODUCT CATALOG: The MANAGE PRODUCT CATALOG use case al-

lows the merchant to manage the products page. The merchant can add to, remove or

update product prices in the catalog. The merchant can also manage the inventory and

sales.

LOGOUT: The LOGOUT use case requires that a client has been log into the system.

The client is able to click logout after a successful transaction or at any point of the

process to interrupt the system. The system displays a prompt to confirm if a user in-

tends to log out. If the client selects logout, the system returns the client to the login

page and ends the session. Otherwise, the client continues from the last page before

clicking logout.

21

5 The Online Bookstore Graphical Design

A Graphical User Interface (GUI) is a user-friendly interface, which allows a user to use

icons or other visual elements to interact with the application. In this section, the differ-

ent GUI elements and their implementations are analysed in detail.

5.1 Design View of Start-up Window

In this application, the first activity that launches is the start-up window that presents

the Sign-in, Register and Skip buttons logically on the GUI. The start window is shown

in figure 6 below. The layout of this View is created with the activity_login.xml file from

the layout folder of the Android application project.

Figure 6. Start-up Window

The layout is a Relative Layout that consists of three buttons (Sign in, Register and

Skip), one TextView (contains the “Hello username” text) and an ImageView (contains

the online store logo). The button Views are from the Form Widgets folder and the Im-

22

age and Media folder provides the View that holds the logo. All the three buttons have

“clickable” attributes set to true to make the buttons provide an action when clicked.

The registration form layout is displayed with the help of the dialog_register.xml file.

This form contains all required information that should be filled in by the user. The user

should fill in the form appropriately and submit by clicking on the Register button. Figu-

re 7 below shows the registration page of the application.

Figure 7. Registration Page

The registration page contains eight TextViews and a register button. The Email field

has ”textEmailAddress” Input Type that validates the user input whether it follows the

correct email format. Also, the password field has a ”textPassword” Input Type with

Visibility attribute set to ”true”. This makes the input from the user unreadable.

23

5.2 Application Control Buttons

The four control buttons are: Product tab, Promo tab, SendTo tab and Cart tab. These

buttons are important in this application because they provide the medium for the user

to interact with the application. The following describe these control buttons in details:

1. Products tab: This tab is connected to the Product ListView, which displays the list of

items on the GUI. This Product ListView is populated by items from the Products table

on the database. If the Products tab is clicked, the application checks if there is an In-

ternet connection. If this is true, data from the Products table that are not in the Promo-

tion field (WHERE pPromotion=false) are parsed from MySQL database. Figure 8 illus-

trates the products list page when the Products tab is pressed. Each row parsed from

the Products Table creates a new row on the mobile phone sqlite local database. On

the other hand, if there is no Internet connection, the items information is parsed from

the sqlite database instead. A PHP script form the server is used to access the Prod-

ucts table on the database.

Figure 8. Products list page

Ten rows containing products data are parsed at a time. When the end of the list is

encountered, a new request is made through the Hypertext Transfer Protocol (HTTP)

24

to the database. This process is repeated when the user scrolls down for more lists

until all the rows from the database are successfully parsed to the mobile phone.

2. Promo tab: This tab is connected to the Promo ListView, which displays the list of

Promo items on the GUI. The Promo ListView is populated by products from the Prod-

ucts table into the database as shown in figure 9 below.

Figure 9. Promo list page

If the Promo tab is clicked, the application will check if there is an Internet connection. If

this is true, only data from the Products Table (WHERE pPromotion=true) are parsed

from MySQL database to the phone. This data creates a new row on the mobile phone

sqlite local database.

25

3. SendTo tab: This tab allows user to share this application with friends simply via an

email address or by mobile phone number. When the SendTo tab is pressed, the appli-

cation displays a page with a Text Area View for the user to enter a valid email address

or valid mobile phone number as shown in figure 10 below.

Figure 10. SendTo page

When the send button is pressed, the web link to the application on the Android Play

Store is sent to the email address or the mobile phone number provided.

4. Cart tab: The cart tab allows the user to view for item(s) in the cart. The PayPal but-

ton for the payment is only available when a registered user is logged in as shown in

figure 11.

Figure 11. Cart page for registered user

26

With the cart page, a user can view the summary of the cart contents, the quantity of

item(s) and the sum total of item(s).

On the other hand, if the user decides to use the Skip button to view items in the store,

the cart page displays the content of the cart with the Register button and the login

button but not the PayPal button as shown in figure 12.

Figure 12. Cart page for unregistered user

As shown in figure 12 above, the Register button, when pressed, will take an unregis-

tered user to the application’s registration page while the login button takes a regis-

tered user to the login page for signing in. When the user makes a long-press on any

item in the Products, Promo or the Cart page, a popup window is displayed for adding

items to the cart or removing items from the cart as shown in figure 13 below.

27

When an item is long-pressed on the cart page, a new window is popped up. The mi-

nus sign icon on this window is used to reduce the number of items or to remove items

from the cart. The buy button on the window confirms the action.

Figure 13. Adding or removing items to Cart

On the contrary, the plus sign is used to add more items to the cart. The same process

is implemented for adding item(s) to the cart from the Products and Promo pages.

In addition, if a user clicks on any of the item in the Products, Promo or Cart page, a

new activity, which displays a full description of the item will be launched as shown in

figure 14 below.

Figure 14. Page with item description

Figure 14 does not only show the description of the item clicked but also the price,

name and author of the book.

28

On the other hand, if a registered user logs in with the username and password, the

user cannot only view all the items in the store but can also buy the items using the

PayPal button. The page with the PayPal button is shown in figure 15 below.

Figure 15. Cart page with PayPal Button

The PayPal button for payment of selected item(s) is available only on the cart page.

This button, when clicked, will display the PayPal authentication page where the user is

prompted to log in to the PayPal account for payment. The PayPal authentication page

is shown in figure 16 below.

Figure 16 PayPal authentication page

The user must be registered and must have been successfully logged in before using

the PayPal button. As shown in figure 16, the page displays the sum total of the items

in the cart. The user can either logs in to the PayPal account with an email address and

password or a phone number and password. The user can also choose to cancel the

transaction and return to the cart.

29

6 Implementation of the Online Bookstore

In this section, all the steps taken to implement the business logic of the Online

Bookstore System is explained.

6.1 User Registration

When the user presses the registration button in order to register, a dialogue form that

allows the user to send the required information to the MySQL server pops up. The first

event that happens during the registration process is that the required fields are

checked if empty or if the user already exists.

The first line of the code shows how the email field is checked if empty and if it already

exists on the server. The same goes for all the fields of the registration form. Other

fields are username, password, address, city, country and phone number. The user

data is now ready to be transferred and added to the Users table on the database

server. When the Register button is pressed, the application will establish an Internet

connection with the server before parsing the data to the server and will store this in-

formation in the database if user does not already exist. This application utilizes a high

level of security by protecting user’s password with an SHA256 encryption. The user’s

password is therefore not exposed on the server when added to the Users table.

On the contrary, if the user has already registered, the GUI pops up a window that noti-

fies the user. Items from the Products table can be displayed without first signing in by

clicking on the skip button. The skip button will skip the registration page completely.

This option is important as it allows user to search through the store for item(s) without

ordering.

30

6.2 User Login

A registered user is able to log in with the username and password provided during the

registration process. If the user presses the Sign-in button, a dialogue form pops up

that allows the user to enter the username and password. The form accepts the

username and password of the user when the Login button is clicked. The Login win-

dow is showed in figure 17 below.

Figure 17 Login Window

The application does not interact with the server directly but uses a PHP code remotely

to authenticate user’s credentials with the user data already stored on the Users table.

The PHP code interacts with the database in order to implement the validation. The

script returns ‘1’ if the username and password entered by the user from the mobile

phone are the same as the one in the Users table in the database.

On the other hand, if the user enters an incorrect password or username, the PHP

script returns ‘0’ and the GUI displays, “ sorry!! Incorrect password or username ” as a

toast to the user. The user is then offered another chance to re-enter the password and

the username.

31

6.3 Parsing HTTP response to JSON Object

Since the application needs to access a RESTful API over HTTP protocol to interact

with a remote server, it is therefore important to discuss how the application sends and

retrieves data over the network from the server.

Android provides the Apache HTTP components library which includes methods for

creating connections to remote host APIs. The API acts as an interface between the

application and the server as shown in figure 18 below.

Figure 18. Android devices connecting to database

With Android support for the Apache HTTP library, it is easy to perform GET, POST,

PUT and DELETE requests via the RESTful APIs. When the HTTP requests are made

through the API, the responses are returned in a structured document format, JSON

string.

32

The raw JSON response from the remote server cannot be read directly by users as it

contains only strings of key-value pair characters. Hence, there is a need for the JSON

strings to be converted to human-readable text that is understood by the application.

The JSON string must therefore be parsed to the JSON object that the application un-

derstands. Fortunately, the Android SDK includes the org.json parser classes for effi-

cient parsing of JSON formatted strings.

33

7 Database Design

The design of the database of this project is of profound importance as it is the funda-

mental building block to understanding the operation of the project. It presents, in an

organised manner, the collection of data used in this project. The project utilises two

sets of database, namely the internal database (SQLite) that is generic to the Android

device and the external MySQL database located at mysql.metropolia.fi. The adminis-

tering of the MySQL database is achieved with the phpMyAdmin program that is in-

stalled at https://users.metropolia.fi/phpMyAdmin.

The entire project database revolves around three major tables: the users table, the

sales table and the products table. These tables in the database are managed through

the PHP script. The database schema is shown in figure 19 below.

Figure 19 Database schema

The Users table contains the user’s information and the login details such as:

username, password, address, email and phone number. The Products table stores the

product name (pName), title (pTitle), price (pPrice), description (pDescription), category

(pCategory), icon (pIcon), date (pDate), products that are on discount prices (pPromo-

tion) and discount price (pDiscount). Lastly, the Sales table contains the username,

sales quantity (sQty), sales date (sDate) and sale total price (sTotalPrice).

34

In this project, a new database called babatud was created on the MySQL server

(mysql.metropolia.fi). The products, sales and users tables were created on the baba-
tud database and populated with the SQL scripts. Every transaction made using the

online bookstore system is stored in these database tables including the users login

credentials and information, product and sales details. The following describes their

creation:

The Products table is created in the database by an SQL script. This code creates a

table with 10 fields in the table. With the database table in place, an SQL script is used

to populate data into the table as shown in figure 20 below.

Figure 20. Sample data from the Products Table

The data in this table represent a book unique number(pid), the name of the book

(pName), it price (pPrice), description of the book (pDescription), book category (pCat-

egory), the book image or icon (pIcon), date published (pDate), promotion flag (pPro-

motion) and discount on price if any (pDiscount).

35

The Sales table is created in the database with an SQL script. The table contains six

fields. The Sales table with sample data is shown in figure 21 below.

Figure 21. Sales Table

The fields of the Sales table are: sid, which represents the sales unique number; pid,

which represents the products unique number; username field which contains the

username of the user; sQty field which represents quantity of sales; sDate, which rep-

resents the sale date and sTotalPrice, which describes the sale total price.

The Users table contains user information. The user data like username, password,

email address, name of city, country and phone number are stored securely in the Us-

ers table as shown in figure 22 below.

Figure 22. Users Table

The Users table has eight fields: The uid field represents the user’s unique number.

The pid field represents the products unique number. The username field contains the

username of the user. The sQty field represents quantity of sales. The sDate field rep-

resents the sale date while the sTotalPrice field describes the sale total price. [2, 589.]

The online bookstore system stores the user’s password in this table. The password is

encrypted using the SHA256 random code generator algorithm.

36

The MySQL database design needs to include more tables like Cart Table (that con-

tains items in the cart), Promotions Table (a separate table from the Products Table

that contains the promotion items) and Delivery Table (that keeps the status of shipped

items and date of delivery). In the future, these option could be considered in order to

improve the database.

However, the transaction details can be viewed from the merchant’s PayPal test ac-

count and the PayPal test account of the user. Figure 23 shows the user payment con-

firmation page generated by the user PayPal test account.

Figure 23. User payment confirmation page

The payment confirmation page sent to the user email contains the name of the user

(customer), payment details, merchant email address, amount paid for the item(s),

transaction date and status of the transaction.

37

Similarly, the merchant can also view transaction details from the PayPal test account.

Figure 24 below shows the merchant transaction page.

Figure 24. Merchant transaction page

This page confirms to the merchant that a user (customer) has made a payment for

item(s). It also provides other information such as: user verification status, payment

details, shipping address, date of transaction and name of the user.

38

8 PayPal Integration

In this project, PayPal is used as a method of payment, which makes it easier to accept

credit cards online. PayPal payments provide an effective way for merchants to offer a

smooth checkout experience to customers using mobile devices, such as Android de-

vices. The PayPal features are used in a sandbox for the sake of testing this project.

This means that PayPal Sandbox is rather fictitious compared to the live PayPal web-

site. The Sandbox test accounts transactions are linked to www.sandbox.paypal.com

while the live PayPal transactions are linked to the common www.paypal.com.

8.1 PayPal Sandbox Overview

The PayPal Sandbox is a self-contained environment, which allows developers to test

and experiment with PayPal features and APIs. The PayPal Sandbox is similar to the

live PayPal website. It mirrors the features of the PayPal live servers and so, helps

developers to work within a development enclosure for testing and integration purposes

before migrating to the live PayPal website. Since applications using PayPal features

must work according to set guidelines and standards, PayPal Sandbox offers a testing

platform to ensure the applications work within the set contract. While the Sandbox

PayPal does not reflect all the live PayPal features (for example: fraud alert, account

statements generation and credit card verification), the sandbox has support for a full

PayPal live environment. This means that testing a PayPal features in the Sandbox

environment will bring the same results as in the live PayPal servers. [9,9.]

8.2 Accessing the PayPal Sandbox

PayPal Sandbox is accessed by first creating a test account at

https://www.developer.paypal.com. The Sandbox creates non-real bank accounts and

credit card numbers, and simulates credit card number verification. Fraud detection is

not enabled for the Sandbox PayPal. After signing up, the developer can sign in using

the sign-in credentials provided at signing up. The developer then needs to set up two

separate test accounts: The PayPal Personal test account and the PayPal Business

test account.

· PayPal Personal Account: The user of this account can represent a buyer, a

sender or a customer. When a transaction is instantiated on a Sandbox test ac-

39

counts, it will create a sham transaction that acts similar to a transaction in the

live PayPal. This account sends the transaction funds to the merchant. Multiple

PayPal personal accounts can be created if the application uses multiple users.

· PayPal Business Account: The user of this account can represent a seller, a re-

ceiver, a merchant or an API Caller. With the PayPal business account, user

does not only provide goods and services to the buyer, but can also receive the

transaction funds and represents the merchant in the Sandbox transactions.

[11]

When a test account is created, the following fictitious information will be auto generat-

ed:

· The mailing address

· Bank account and credit card number

· Email address and password (real email address and password should never

be used)

· Security question and answer. [9,17.]

8.3 Adding Funding Sources

To test how a transaction behaves, there must be a source of funds added to the buyer

PayPal test account. The other account is a business account representing the devel-

oper as a merchant. This section describes how to add funding to the test account by

either adding a bank account or by adding a credit card or both. It is important to note

that no money or funds are actually transferred to the Sandbox PayPal accounts from

these funding sources; therefore, to protect confidentiality, real credit card numbers or

bank accounts should not be registered on the test accounts.

The bank account is a source of funds for the buyer test account, which allows the

transaction between that test account and the business (merchant) account. When a

bank account is added to a test account, the PayPal Sandbox will automatically gener-

ate a fictitious bank name, bank account number and sort code numbers.

Furthermore, adding a credit card is another source of funding for the buyer’s PayPal

account, and thus can be used to test transactions between a buyer’s test account and

40

other test accounts. Of course, test credit card numbers cannot be used to make pay-

ments for real-world transactions. [9,28.]

41

9 Submitting the Application to the Android Market Place

An Android application can be submitted to the Android Market for distribution after

being developed and tested both in the emulator and on a real Android device. Publish-

ing an Android application on the Android Market requires that the developer register

an account at www.market.android.com/publish/. There is a one-time registration fee

attached to the registration. Developers must adhere strictly to the Android Market

Content Policy for Developers during registration.

Furthermore, the developer must sign up for a Google Checkout Merchant Account,

which provides payment services for online transactions and helps to protect develop-

ers from fraudulent sales, similar to PayPal. [1,48.]

Before publishing the application, the following points should be considered:

1. The AndroidManifest.xml File must be edited: This includes information about

the application such as: package name, version numbers, supported screen

size, SDK version, hardware configuration (like Touch screen, Hard keyboard,

Keyboard type, and Navigation) and permission for certain features (like ac-

cessing location, sending SMS and setting wallpapers). [1,49.]

2. Icons for the application: The application must have an icon that represents it

on the Android Market and on the user’s device. The icon should be at least

512 x 512 pixels and support multiple screen densities. [1,51.]

3. Turning off logging and debugging: The application’s debugging features must

be turned off before publishing. This is achieved by clicking the Application tab

in the Android Manifest Editor and setting Debugging attribute of the application

to false.

4. Application Versioning: It is a good practice to include a version name in the

application as this makes future updates easy and simple to track by users.

5. Shrinking, Optimizing and Obfuscating the Application: It is important to shrink

and optimize the application codes by reducing the size to optimize perfor-

mance. Obfuscating application codes is the term used to prevent application

codes uploaded to Android Market from reverse engineering. The ProGuard

tool developed by Google helps to shrink the size of the application’s package

file (.apk file). It also optimizes and obfuscates the application codes while Zi-

palign is the tool for optimizing the application’s memory usage. [1,52.]

42

6. Digitally signing the Application: Android application’s package file (.apk file)

must be digitally signed before uploading to the Android Market or other appli-

cation marketplaces. Using a digitally signed application identifies the developer

of the application as the original owner and author of the application. The digital

certificate includes, for example, the developer’s name, contact information and

date the application was signed. The Java Development Kit (JDK) contains the

tools for digitally signing an Android application. The tools are: Keytool for gen-

erating a private key and Jarsigner for signing the Android application package.

[1,53.]

7. Uploading Assets: When the application has been digitally signed, it is ready to

be uploaded to the Android Market. This is done by logging into the Android

Market at www.market.android.com/publish and clicking the Upload Application

button on the page that opens. This starts the process of uploading the applica-

tion’s package (.apk file) file, which includes the application’s code file (.dex

files), assets, resources and the manifest file. The upload will start immediately

when the upload button is clicked. [1,55.]

43

10 Conclusion

The project was carried out to develop an Android phone application for an online

bookstore system with PayPal Integration. The goal of the project was to create an

Android application that would allow users to register an account, login, search for par-

ticular books of interest, sort books in ascending or descending order of price and pur-

chase book(s) in the cart with a PayPal account.

The objectives of the project were achieved by observing software development proce-

dures and principles for software designs and implementation. In achieving the goal of

this project, three major parts were designed and implemented. Firstly, the design of

the UI is attractive, intuitive, responsive and with good user experience in mind. This

was achieved and implemented by following the Android design guidelines for Android

devices. Secondly, the design of the MySQL database was realized, and the contents

of the database can be easily accessed indirectly from a web server instead from the

Android device. This makes the database secure and easy to manage. Thirdly, the

design and the implementation of the Android phone local SQLite database was

achieved. This allows users to use the application offline.

Furthermore, all required functionalities were implemented accordingly and, hence, a

fully operative and functional Android phone application was developed. The applica-

tion is able to register an account for users, while protecting and encrypting a user’s

password. The users can log in conveniently with the username and password, search

for available books on the online bookstore, order books and make purchases using

the integrated PayPal services. In addition, users can log out from the online bookstore

and can even recommend the application to friends within the application.

In conclusion, it is important to know that this application could still be improved upon

by adding more interesting features. For example, a feature that makes the user to

save the purchase history could be added. In addition, the application could demon-

strate a feature that allows the user to not only rate books, but also recommend

book(s) of interest to friends.

References

1 Mewer R. Professional Android 2 Application Development. Indianapolis: Wiley Pub-
lishing, Inc.; 2010.

2 Göransson A. Efficient Android Threading. Gravenstein Highway North, Sebastopol,
CA: O’Reilly Media, Inc.; 2014.

3 Android-App. Android architecture–The Key Concepts of Android OS [serial online].
February 2012.
URL: http://www.android-app-market.com/android-architecture.html.
Accessed December 11, 2014.

4 Android Open Source Project. Application Fundamentals – App Components [online].
Google; May 2014.
URL: http://developer.android.com/guide/components/fundamentals.html.
Accessed December 11, 2014.

5 PayPal. Introducing Adaptive Payments [online]. PayPal Inc.; August 12, 2014.
URL: https://developer.paypal.com/webapps/developer/docs/classic/
adaptive-payments/integration-guide/APIntro.
Accessed December 12, 2014.

6 Gilmore J. Beginning PHP and MySQL from Novice to Professional 4th edition. New
York: Apress; 2008.

7 Lim J. Algorithms, Flowcharts, Data Types and Pseudo Code [online]. CA: scribed;
January 2011. URL: http://www.scribd.com/doc/46981114/Algorithms-Flowcharts-Data-
Types-and-Pseudo-Code. Accessed 13 November 2014.

8 Google. Android 2.3 Compatibility Definition [online]. Google Inc; 2010.
URL: http://static.googleusercontent.com/media/source.android.com/
en//compatibility/2.3/android-2.3-cdd.pdf
Accessed December 12, 2014.

9 PayPal. Sandbox User Guide. Luxembourg: PayPal Inc.; 2010.

10 Alistair C. Writing Effective Use Cases. USA: Pearson Education; 2011.

11 PayPal. Planning Your First Account [online]. PayPal Inc.; 1999 - 2014.
URL: https://developer.paypal.com/webapps/developer/docs/
classic/lifecycle/sb_planning-accounts.
Accessed March 3, 2015.

