

Joel Helenius

Improving the quality of manual verification pro-
cedures

Metropolia University of Applied Sciences

Bachelor of Engineering

Information and Communications Technologies

Thesis

8 May 2018

 Abstract

Author
Title

Number of Pages
Date

Joel Helenius
Improving the quality of manual verification procedures

37 pages + 1 appendices
8 May 2018

Degree Bachelor of Engineering

Degree Programme Information and Communications Technologies

Professional Major Health Technology

Instructors

Sakari Lukkarinen, Senior Lecturer, Metropolia
Tulasi Punaganti, Verification Lead

This thesis was done for a company that designs and produces patient monitoring devices.
These devices are classified as medical devices, meaning that their design, implementation
and documentation are bound by ISO standards and FDA regulations that demand for high
quality and preciseness. For this thesis, the focus was on the documentation of instructed
manual testing, manual verification procedures.

The purpose of this thesis was to come up with recommendable improvements for manual
verification procedures that will reduce the amount of wasteful corrective actions stemming
from erroneous documentation or execution of verification. The improvements that were ar-
rived at include ways to make the procedures themselves more robust, but the more impact-
ful recommendations concern practices that originally generated bad documentation.

A large portion of the work towards giving improvement recommendations was first getting
accustomed with the various details related to software development and testing, require-
ments engineering and standards compliance. Once a reasonable amount of background
knowledge was accumulated, a method for investigating the current process of verification
procedure creation was developed and carried out. The most suitable way of gathering in-
formation was found to be the in-depth interviewing of professionals. The interview questions
were based on the preliminary understanding of verification engineering gained from rele-
vant literature and work experience as a manual tester.

The improvements proposed in this thesis were formed with a long-lasting impact in mind,
with an acknowledgement of lean practices; the idea of getting effective results using few
resources. While their implementation might show an increase of effort during the early
phases of the workflow, the whole life cycle of verification procedures is estimated to be a
lighter burden with an added increase in quality.

Keywords Requirements engineering, verification, quality management,
software testing, standards compliance

Contents

List of Abbreviations

1 Introduction 1

2 Requirements engineering 2

2.1 Presentation of requirements 2

2.2 Requirements engineering terminology 3

2.3 Things to consider when defining requirements 4

3 Software development activities 6

3.1 Software development methods 6

3.2 Software testing fundamentals & terminology 9

3.3 Software testing methodology 14

3.4 Documentation and compliance 19

4 Analysis methodology 21

4.1 Problem statement 21

4.2 Investigation 22

5 Results and analysis 24

5.1 Verification procedure creation process 24

5.2 Verification & procedure creation problem areas 27

5.3 Improvement recommendations 30

6 Conclusion 34

References 36

Appendices

Appendix 1. Interview frame

List of Abbreviations

VVT Verification, validation and testing.

UUT Unit under test.

FDA Food & Drug Administration.

HSI Human-system interface.

CASRE Computer-Aided Systems Reliability Estimation

CPU Central processing unit.

API Application programming interface.

SE Software engineering.

GHTF Global Harmonization Task Force.

ISO The International Organization for Standardization.

1

1 Introduction

Originally, the manufacturing industry was mainly focused on the design, development,

production and maintenance of singular products, despite their complexity. Presently, by

contrast, the scope of the manufacturing industry has grown to include services and so-

lutions as well as products, that comprise of a variety of components, technologies, peo-

ple and machines. These complex entities can be called engineered systems. Addition-

ally, the time allotted to the introduction of new products and services into the market is

decreasing steadily. For these reasons, the quality of processes and methods used in

the manufacturing industry needs to be high. [1, p. 4.]

The development of a product can be hindered whenever a phase in it is working poorly.

An often-disregarded phase in product development is the verification, validation and

testing (VVT) of a system. This phase, a systems engineering tool, is used to ensure that

the product or service in question is delivered with as few errors as possible, is functional

and meets or exceeds the user’s demands. The poor execution of the VVT process often

results in increases in time and costs committed to the development of the product or

service by over 20 percent. Any extra work stemming from this, however, must be carried

out since faults found in the product by the end user likely harm the reputation of the

system or even the reputation of the system’s developer. [1, p- 4.5.]

This bachelor’s thesis is done for a company that produces patient monitoring solutions

for hospital use. The task is to come up with improvement ideas and solutions to prob-

lems that are currently hindering the verification process. A patient monitor is a complex

medical device that requires extensive measures for quality assurance. The features are

constantly tested during development, after which they are verified and validated as an

indication of adherence to design and quality specifications. The manufacturer needs to

provide comprehensive documentation regarding testing procedures and test results.

Since there are hundreds of features and thousands of requirements that need to be

tested, the documentation burden is substantial in such a degree that having multiple

authors that all adhere to same documentation guidelines is inevitable. To properly as-

sess and improve these guidelines, the author needs to be well-versed in both VVT and

company practices. The author is a manual verification intern in the company with hun-

dreds of hours of experience in system and software verification of one of the company’s

newest product lines in patient monitoring solutions. The improvement proposals shall

2

be given with this experience in mind, in addition to acquainting oneself with VVT,

ISO/IEC/IEEE standards, requirements engineering and various other relevant topics

through professional literature.

2 Requirements engineering

2.1 Presentation of requirements

In spoken language, the term ‘requirement’ can be defined as a desire someone has. In

the case of systems development, a requirement is an attribute of the system being built,

regardless of whether the attribute has been implemented or not. Requirements can also

be negative in the sense that they can be restrictions to the system’s operation. [2, p.

45.]

In the ISO/IEC/IEEE 24765:2017 standard, a requirement is defined as:

1. statement that translates or expresses a need and its associated constraints
and conditions; 2. condition or capability that must be met or possessed by a sys-
tem, system component, product, or service to satisfy an agreement, standard,
specification, or other formally imposed documents; 3. provision that contains cri-
teria to be fulfilled; 4. a condition or capability that must be present in a product,
service, or result to satisfy a contract or other formally imposed specification.

Requirements need to be represented in a specific way. Firstly, they must be easily un-

derstood, written in simple sentences without using professional jargon or abbreviations.

Secondly, they must be unambiguous, not open for interpretation. They also need to be

based on objective facts. [2. p. 46.]

In a sense, misinterpretations or errors in requirements could be all but avoided by writing

them using formal logic and mathematics, but they need to be interpretable by all parties,

engineers and non-engineers alike. Therefore, writing requirements is done using natural

language. Since writing is an artform and not science, it needs to be regulated by guide-

lines and policies in technical settings. There is no way to ensure the quality of require-

ments, but it is a skill that can be learned by individuals just like any other. [2, p. 137.]

3

The basis of good requirement writing skills is grammatical proficiency. Spelling, punc-

tuation and the general command of the used language are essential to any writing ac-

tivity. In addition, the writing of requirements must adhere to the basic tenets of technical

writing. The language needs to be clear and precise, objective, and without the use of

figures of speech that could give rise to ambiguity. Finally, requirements must be written

in a uniform style, following a standardized format. The formats may change, however,

depending on the kind of requirements that are being written. For example, user require-

ments and system requirements are written differently to accommodate the purpose or

intended audience of each requirement type. Some agile development methods use a

format called user stories to write requirements. They are short descriptions of a system’s

functions, generally in the following format: “As a <type of user>, I want to <objective>

for <reason>.” These kinds of requirements are purposefully easy for the stakeholder in

to specify and, in turn, for the developer to identify the source. [2, p. 139-140.]

2.2 Requirements engineering terminology

Requirements can be divided into groups in many ways. One such division relates to the

perspective of the requirement. A user requirement, defined from the perspective of the

user of the system, construes a functionality or restriction expected from the system for

its users. These requirements come from the stakeholders and are usually represented

using unrestricted natural language, communicating a specific problem that needs to be

addressed. A system requirement, on the other hand, is defined from the perspective of

the system itself and, while ultimately stemming from user requirements, are defined

independently to present engineers with desired solutions to be implemented into the

system. [2, p. 57-58.]

Another division relates to the way a requirement guides the construction of the system.

A functional requirement describes a functionality or feature of the system, and so is an

active, concrete component in the design of the system. These requirements should be

as open as possible regarding how they will be implemented, or which technologies are

to be used. For example, a functional requirement might state: “The car shall have

brakes.” The collection of functional requirements need to be coherent and complete.

Coherent in the sense that the set of requirements contain no contradictions among them

and complete in the sense that all stakeholders’ concerns are addressed. Ensuring that

both criteria are fulfilled is difficult, especially for complex systems. [2, p. 47.]

4

Non-functional requirements can be characterized as restrictions imposed on the system

under development, for example which programming language is to be used. Many sys-

tems are built based on a revision of non-functional requirements when a new, better

version of a system is constructed. In such a case, the core functionalities of the system

would stay the same but they would be more reliable or the user interface would be

changed. Generally, non-functional requirements impact the whole system, whereas

functional requirements are specific to singular functions or features. For example, a

non-functional requirement might state: “the car must be able to brake to a full stop in 5

seconds from a speed of 100 km/h” In this regard, non-functional requirements are in-

strumental in system architecture: they affect the implementation of functional require-

ments throughout the whole system. [2, p. 48-50.]

Non-functional requirements can be further split into three groups: product requirements,

organizational requirements and external requirements. Product requirements refer to

the product itself, such as its functionalities, reliability or usability. Organizational require-

ments characterize the strategies and processes of the organization regarding standards

and implementation requirements. External requirements come from factors outside the

system itself, such as compatibility with other systems, legal requirements and ethical

requirements. [2, p. 50.]

Some requirements, even some that are vital to the system’s proper functioning, are

implicit: not clearly defined requirements but still implemented into the system because

of their perceived necessity. These requirements are not requested by the client and are

not always documented. For this reason, sometimes it is important to express which

requirements are not wished to be implemented, so that time and resources are not used

to implement requirements that are not wanted by the client. An explicit requirement,

however, comes from the client and is documented. [2, p. 47-48.]

2.3 Things to consider when defining requirements

Especially in the case of the software industry, because the market pressure to launch a

product as soon as possible is significant, many products do not have all their require-

ments met at launch. Hence, it is important to prioritize requirements and see that the

most important ones are met first. This process demands the cooperation of all stake-

holders because, for example, the developers do not know which functionalities are the

5

most important to the client and the client doesn’t know which functionalities are the most

time consuming or difficult to implement. The prioritization process is also affected by

external factors: some features might become more important than others depending on

the situation. Agile development methods are particularly effective from this point of view.

[2, p. 125-127.]

Requirements can be prioritized using a prioritization technique, of which there are many.

Ranging from quite simple approaches, like the self-explanatory top-10 technique to

more methodical ways of prioritization, like the analytical hierarchy process, which re-

quires the usage of mathematical matrixes and normalization calculations, these tech-

niques have their weak and strong points. The simplest prioritization method that can

successfully perform the task should be selected to get the best cost-benefit ratio. [2, p.

129, 130, 133.]

Some requirements might emerge from unexpected sources. One such case comes from

the realm of software testing methodologies. When a software feature is complex

enough, a test input division method called equivalence class testing might be used.

Using this method requires certain assumptions to be made about the functioning of a

software feature. For example, if the same alarm is unexpectedly generated from two

different kinds of test inputs and it is not a bug, this behavior must be bound to a require-

ment. Understandably, this nuance might have not been obvious in an earlier phase of

development, i.e. when defining requirements. [3, p. 278-279.]

Understanding or defining a project’s scope is important before starting to define require-

ments. At times, the scope of a project is obvious, but it can be rather elusive, too. For

example, defining requirements for a self-contained system is most likely more straight-

forward than defining them for one that interfaces with other systems. In the latter case,

it is probably needed to work with people outside of your project since some of the func-

tionalities might overlap. There is a significant amount of unnecessary work to be avoided

by properly scoping the project. Occasionally, something called scope creep might hap-

pen. Scope creep means that the requirements of a system change significantly while in

the development phase, usually by expanding. This effect can be resisted by defining

requirements as they are needed, a method called “just-in-time production”. [4, p. 21-

22.]

6

3 Software development activities

3.1 Software development methods

Owing to the rapidly changing circumstances of the software market, software develop-

ment is especially susceptible to time constraint issues as well as the more inherent

problem of quality assurance. For these reasons, choosing the appropriate development

model is crucial. For a long time, software was developed using the waterfall model (fig-

ure 1), where the transition from one developmental phase to another is strictly sequen-

tial and one-directional, starting from the most abstract going towards the most concrete.

In the first phase, analysis, the functionalities of the system are defined through require-

ments engineering. This is done with earlier-mentioned basic tenets of requirements en-

gineering in mind, such as clear and simple language, to properly include stakeholders

in the specification of the system. Then, in the design phase, these requirement specifi-

cations are turned into software architecture, which determines the internal components

and system structure with enough detail to allow their implementation. This phase is no-

tably different from most other industries, since virtually all components are designed for

the product under development, further emphasizing the importance of developmental

efficiency. After this, the product is rather mechanically implemented and tested to en-

sure it reflects the design specifications. While this process might seem reasonable at

first glance, it poses debilitating problems for developing a complex system, such as a

patient monitoring device. For example, all requirements for the system must be agreed

upon at the start of the project, with limited knowledge. Errors made in this phase will

then trickle down to all following phases, only to be detected much later in the testing

phase. [2, p. 33-35, 37.]

Figure 1. The waterfall process model. [2, p. 33.]

Developing a system by using ready-made building blocks would be highly efficient but,

while there have been significant advancements in the field of component-based soft-

ware development, building a whole system out of recycled software components has

7

been deemed impractical for most projects. Also, while software development method-

ology or process improvements can be independently incorporated, the widespread us-

age of software components would impact the design phase and requirements, and it

would require a procurement infrastructure, standards and technologies such as Mi-

crosoft’s COM+. [5, p. 1-4.] This doesn’t mean software development doesn’t include the

usage of ready-made functionalities, only that software isn’t yet built solely based on

them [6, p. 14]. As software development has started to shift from craftmanship into

something more like a manufacturing process (figure 2), more and more software func-

tionalities have become reusable, while only the strategically sensitive components are

still custom-made [6, p. 13-14; 5, p. 2].

Figure 2. Many practices concerning software development have changed throughout the
years. [6, p. 14.]

To combat the rigidness of waterfall development, agile development methods offer

many improvements spanning multiple areas of software development. In 2001, a group

of software development experts got together and discussed ways to improve software

development to meet the demands of the modern era. They formed four dichotomies

with preferences to ideals that embody the characteristics of agile methods: [7, p. 15.]

Individuals and interactions over processes and tools. Working software over com-
prehensive documentation. Customer collaboration over contract negotiation. Re-
sponding to change over following a plan. [8.]

8

These dichotomies, while provocative, provide little information without some back-

ground knowledge. The first one, “individuals and interactions over processes and tools”,

has much to do with motivation, talent and, ultimately, performance [9, p. 92]. One might

think that high performance is achieved through rigorous application of efficient pro-

cesses, but it has been shown that limiting the autonomy and creativity of employees

has a negative impact on their performance through severely lowered motivation. Highly

efficient processes also limit the opportunity to experience meaningful failures, a prereq-

uisite to developing talent. The interaction of individuals involved in the project should

drive the design process as more knowledge is cumulated, as opposed to designing the

whole system before any implementation work. It is likely that individuals directly respon-

sible with the implementation of the system are better equipped to make valid design

decisions than any external party. People are also more motivated to work with decisions

made this way. [9, p. 94-95, 97-99.]

The second one, “working software over comprehensive documentation”, ties in with the

agile principle of continuous delivery of software. The logic behind iterative delivery of

software is that, the sooner the developers get feedback from the customer, the sooner

they can make a course correction. This is precisely why agile develop methods utilize

iterative development: continuous assessment of the system lowers risk. Regarding

working software, good design and technical excellence must be upheld throughout the

project to avoid something called technical debt, a tendency of problems to grow in their

cost to fix as time passes. A software fix, for example, must be ratified by fixing the

underlying cause, not by creating a workaround that allows for more software to be built

upon defective design. [9, p. 103, 109-110.]

The third dichotomy, “customer collaboration over contract negotiation”, concerns the

way multidisciplinary collaboration is handled. Rather than holding formal meetings in-

frequently, communication should be continuous and open. This way, the risk of misin-

terpretations, uninformed decision making and scheduling mistakes from both parties is

lowered significantly, increasing efficiency. Naturally, open communication must be up-

held internally as well. Regular reflection and appropriate adjustments are at the heart of

agile methods, both across business boundaries and within teams. [9, p. 112-113.]

Finally, “responding to change over following a plan” corresponds to the way how uncer-

tain or volatile environments are managed. A core agile principle, reacting to change by

9

intimately involving it in the development process and not seeing it as an external obsta-

cle, is beneficial when developing a complex system, where unanticipated events are

commonplace. This attitude differs greatly from the waterfall method, where it is believed

that enough competent analysis can produce an infallible design that delivers an accu-

rate product. Realistically, a product evolves during the project as the stakeholders and

the development team become more aware of what they need. From this perspective,

one can appreciate how important transparency in the process is, since any hindrances

in the flow of information affects the effectiveness of designing the product. [9, p. 114,

21-22.]

3.2 Software testing fundamentals & terminology

In the case of medical devices, ensuring that the product functions properly is critically

important. When software is present, this responsibility ultimately falls to the verification

and validation teams. It is a time-consuming and difficult process that requires a consid-

erable amount of planning to be effective and efficient. The list of things to consider is

expansive: requirements, design specifications, trace links, risk management and test

procedures to name a few. Possibly the single most important part of software test plan-

ning is defining the expected result. What constitutes acceptable behavior for the soft-

ware should be thoroughly thought out and set in documentation, not assessed by the

tester on the spot. [3, p. 254-255.]

Software testing can be defined as:

An activity in which a system, subsystem, or individual unit of software is executed
under specified conditions. The expected results are anticipated from require-
ments or designs. The actual results are observed and recorded. An assessment
is made as to whether the actual results are acceptably equivalent to the antici-
pated results. [3, p. 256.]

Specified conditions mean the steps the tester needs to take so that a specific feature or

requirement is tested in isolation. Expected results mean the specific behavior of the

software, known by the author and documented in requirements or design specifications.

Actual results mean the observed behavior of the software or device, recorded in a for-

mat that requires little or no interpretation to assess whether they adhere to the expected

results. The assessment means the decision to either pass or fail the test, ideally being

as uncomplicated as possible. [3, p. 256-257.]

10

Testing software as opposed to hardware has some peculiarities. Whereas mechanical

components are subjected to repetitive stress-testing, the point in software testing is to

navigate through every possible variation in operation, challenging the software in vari-

ety, not in repetition. This means that, in addition to covering normal usage of the soft-

ware in tests, unanticipated inputs designed specifically to attempt to break the software

are included in proper testing of the software. Of course, stress-testing sometimes does

also have its place in software testing. [3, p. 257-258.]

In the context of software testing, the terms verification and validation have two distinct

definitions. Software verification is done while still in the development phase, and relates

to the correctness of the software, i.e. whether the product has been built according to

specifications. Software validation is done when the product is finished, to demonstrate

that it performs in accordance to the user’s needs. [10.] A pair of sentences can fre-

quently be heard repeated to explain the differences between verification versus valida-

tion: “did we build the product right?” for verification and “did we build the right product?”

for validation.

When a test result is concluded, its reasoning must be evident to a third-party reviewer.

Just like in the scientific method, a tester needs to document their methods, expected

results and actual results in a way that enables someone else to come to the same con-

clusion. This is usually done by writing step-by-step test protocols that explicitly instruct

the tester to perform certain actions, simultaneously acting as objective evidence if they

have been properly written. The FDA has defined requirements for objective evidence,

they are as follows:

• The data can be evaluated by independent observers to reach the same con-
clusions

• The data is documented in a manner that allows recreation of the data or
events described

• The documented evidence provides sufficient data to prove what happened

• The documentation was completed concurrently with the tasks

• The documentation is directly traceable to a person

• The data and documentation have been maintained in a way that provides
traceable evidence of changes to it

• The data and documentation is maintained in a way that protects them from
changes done to them [11.]

11

In addition to requirements concerning objective evidence, the FDA expects general

good documentation practices to be followed. Also, all documents and records need to

have a clear audit trail, they need to be complete, dated, signed and reviewed and they

must be maintained in approved document management systems. [11.]

Also relevant to test result conclusion is the term test oracle:

A test oracle is a mechanism for determining whether a system has passed or
failed a test. It is used by comparing the output(s) of the system for a given test
case input to the out puts expected by the oracle. Test oracles are always separate
from the system under test. [1, p. 296.]

To thoroughly inspect a software product, it is usually tested from three distinct stand-

points. Firstly, sub-programs are tested to ensure they perform their intended tasks in-

dependently without errors. This is called unit testing. Secondly, the various interfaces

concerning the software are tested to ensure that data communication within the soft-

ware and with other software functions properly. This is called integration testing. Finally,

the whole system is tested to evaluate the entire software product’s performance. This

is called system testing. [3, p. 260.] To further ease the understanding of these concepts,

consider a testing scenario for an automobile. Testing the material strength of a brake

disc would be analogous to unit testing. Testing the braking force of the disc brake when

attached to a tire in a controlled environment could be considered integration testing.

Going for a test drive in the complete automobile would test the whole system.

Unit testing and integration testing can be seen as something called white box testing.

White box testing requires intimate knowledge of the implementation of the software and

is done by testing singular methods or objects within the code using automated testing

software. Black box testing, which includes system testing, is done without intimate

knowledge of the implementation of the software simply by creating test cases based on

the requirements or design specifications imposed on the software. Gray box testing is

a combination of these two, where the software is tested against specifications or re-

quirements but with knowledge of the implementation, for example when a test case is

designed to consider problems that could have only been made known to the tester by

examining the code. [3, p. 277-278; 12.]

Software testing should be done in a way that all possible variations of operation are

examined. In the case of unit testing, this is usually done by using software that gives a

percentage value of how much of the software has been exercised. An important thing

12

to note is the difference between the terms exercise and test. A unit testing software can

exercise 100 percent of the code with a pass-rate of 100 percent but that only means

that all the functions, methods or objects in the code have functioned using some values.

The only measurable attribute gotten from this kind of test is path coverage, which tells

us that the test’s coverage across functions but the quality of tests remains unknown.

Path coverage, however, has greater value than branch or statement coverage, since

the different branches and statements will be exercised multiple times for each path. Still,

the issue of testing is not an arithmetical, but a logical one. Turning a light bulb on and

off demonstrates its operation in principle, but turning it on and off for thousands of times

and for extended periods of time might better indicate the quality of the light bulb. [3, p.

263-264.]

Integration testing is even less of a straightforward matter. The interfaces of a software

product can be highly complex and numerous. While integration testing is usually quite

unique for each system, some general rules concerning priorities can be made. For ex-

ample, safety critical functions of interfaces should be considered a priority. Also, inte-

gration testing is prone to be done partly in the hardware realm, sometimes even with

analog signals, further complicating testing. For medical devices, a typical integration

test is associated with medical device communications protocols, which require se-

quencing of messages in rapid succession. This is usually achieved by using a test com-

puter between two processors to intercept transmissions. The computer can then test

the validity of the transmission or inject errors into it, testing error-recovery. [3, p. 268-

270.]

System testing fundamentally deviates from unit testing and integration testing, in that

system testing is done not against design specifications, but against system require-

ments. System testing should address functional aspects related to intended uses, such

as performance issues, security, compatibility and documentation accuracy. One might

say system verification resembles software validation, but there is still a vital distinction:

system verification is done in the development phase to verify the proper implementation

of requirements and includes anticipated test results, whereas validation is done to

demonstrate that the finished product satisfies the intended user’s needs. [3, p. 272-

274.]

Apart from a few exceptions, some commonalities are shared by all software testing

methods. Namely, their execution is generally developed from three standpoints: test

13

designs, test cases and test procedures. While test procedures are the product of this

activity, the creation of test designs and test cases make the whole process run more

smoothly. Test designs are written using simple natural language so that the reviewers

and eventual test procedure author can properly understand the logic behind the test. A

test design should provide sufficient information to accommodate the creation of properly

insulated test cases: the requirements that will be tested, initial conditions or state of the

software, a short description of the context of the test, rationale for the test, inputs and

expected results and instructions on how to provide objective evidence. Simply put, a

test case is a collection of test inputs and their expected results (table 1). A respectable

amount of information can be gained from a single test case table and creating it forces

the test designer to consider the test cases more carefully. [3, p. 290-292.]

Table 1. An example of a test case table. [3, p. 292.]

Test procedures combine the test design and test cases into step-by-step instructions

that ensure the proper setup, sequence of test inputs, observed results and objective

evidence are observed in all test cases. Consequently, there are many critical benefits

to using test procedures. First and foremost, when a software defect is found this way, it

can be easily recreated by following the same procedural steps again. In contrast, while

unscripted testing methods may occasionally be more efficient at finding defects, recre-

ating the conditions where the defect appears might be practically impossible. Secondly,

highly detailed test procedures are less demanding on the individual tester’s skill or

knowledge level, allowing less experienced testers to be effective at testing. This is es-

pecially important in highly voluminous testing programs, where extra testers might be

14

added on short notice. Also, a high level of detail leads to high-resolution testing, which

is likely to uncover defects that are not necessarily even related to the actual require-

ments being tested. The downside to this level of detail is that the procedures are costly

to create and maintain, and they are susceptible to errors in general. A typical test pro-

cedure consists of tester actions, tester observations and assessment of results. Tester

actions are short and simple instructions for the tester, such as “Click the OK button.”

Tester observations are intermediate confirmations that the test is proceeding as de-

signed, verifying that nothing unexpected happens in the transitional steps leading to the

requirement-verifying observations. In the assessment of results, the tester will deter-

mine whether the test has passed. This can be represented by a simple “Pass” or “Fail”

checkbox. [3, p. 292-294.]

3.3 Software testing methodology

Often, software functions perform complicated tasks, or tasks that are not predefined.

Some software functions have such a large amount of possible inputs that covering all

of them in a test case is not feasible. To illustrate this, consider that there are about 3.026

x 10^15 possible combinations for an 8-character password, which is more than the num-

ber of stars in our galaxy. For these situations, where testing all possible values is im-

practical, choosing the right subset of values is critical. This can be done by dividing test

inputs into groupings that would most likely produce the same test result. This method is

called equivalence class testing. For example, positive real numbers and negative real

numbers could be considered two equivalence classes, since they most likely produce

the same test results among themselves. Having just two classes is not going to cover

all possible test inputs and only looks at the problem from one point of view. The equiv-

alence class dividing process itself will lead to the tester to consider probable weak-

nesses of the system, in addition to cutting down the amount of redundant testing of

similar inputs. [3, p. 276-277.]

Closely related to equivalence testing, boundary value testing is done at the boundaries

of equivalence classes and has been shown to be an effective method to finding software

errors. To identify boundaries, knowledge of the implementation of the software is re-

quired. Computers use bits to store, process and transmit information and while the value

255 might seem unremarkable to some people, it is the highest possible value that can

be shown in 8 bits and can be considered a boundary value as such. In addition to cases

15

like these, more obvious boundary values can be identified. If acceptable inputs for a

software function are integers ranging from 1 to 10, these can also be considered bound-

ary values. Generally speaking, boundary values should be tested around the bounda-

ries, so if 10 is a boundary value, the values 9, 10 and 11 should be tested. While these

two examples hardly illustrate the realm of possibilities to boundary testing, one might

already appreciate the efficiency of combining equivalence class testing and boundary

testing to create test cases that reliably catch software errors while keeping the amount

of testing to a minimum. [3, p. 279-281.]

For systems that have input and output devices, testing the human-system interface is

in order. Both the ergonomics and proper functioning of the interface are important: an

interface that enables easy operation and interpretation of the system’s conditions will

decrease the probability of erroneous use. The system must not accept invalid inputs

and it must give comprehensible outputs to the user. To achieve this, the input tolerance

of the system is tested. Invalid user inputs should be handled in a way that blocks them

from affecting the system and helps the user to correct or remove their erroneous input.

First, the system is tested using proper user commands to ensure it meets its specifica-

tions in normal circumstances. Then, the system’s response to different types of im-

proper user commands is tested. These include using the wrong data type or size, vio-

lating input restrictions, skipping mandatory fields, inundating the system with unreason-

ably long inputs and activating input switches out of sequence. The detection of errone-

ous user inputs can be done either in real time, or upon committing a value to a field or

to an entire form. HSI (human-system interface) outputs are similarly tested by first op-

erating under normal circumstances to verify the system’s adherence to specifications,

after which they are tested with the same kind of improper user inputs as defined previ-

ously. [1, p. 373, 375-377.]

Sometimes, doing software testing through automation has a lot of benefits. It’s faster,

more reliable and uses less resources. Some tests, like stress, timing or response time

testing are not even possible to execute manually. Of course, automated testing is not

without downsides. In addition to normal testing activities, the tests need to be developed

similarly to any other software, thus being susceptible to quality issues. One test method

that is particularly suited for automated testing is the injection of large quantities of ran-

dom test inputs. This type of test gauges the stability and reliability of the system with a

large range of unexpected test inputs while requiring a minimal investment of time and

16

effort. Yet due to the unplanned nature of automated random testing, a reliable test ora-

cle cannot be used so only the most obvious faults in the system might present them-

selves to the tester. Typically, automated random testing will expose accumulative soft-

ware faults such as memory leaks. Automated random testing can be combined with

another testing method such as equivalence class partitioning to make it more efficient.

[3, p. 302-303; 1, p. 378, 380.]

Testing a system at lower load levels only technically demonstrates that the system

meets its specifications, since it might have significant faults at full load. The system’s

behavior at high loads must be specified and reflect those specifications. For example,

the level of CPU load for performing a specific task could be defined in the performance

requirements. Typically, performance testing metrics include task response times, how

many external systems the system can handle, how many resources the system utilizes

and system reliability. [1, p. 382-384.]

Some errors and faults are inevitable in the intended environment of a system. External

conditions such as human error or network connection errors and even some internal

conditions such as software errors are bound to be a factor in the field use of the system.

Consequently, a system must be capable of continuing or resuming operation without

loss of data in the event of such an error. Testing this behavior is called recovery testing

and is usually done by injecting a fault into the system. Hardware-wise, this can be done

by shorting connections or using a software that simulates any such behavior. Strictly

software-wise, faults can be injected by techniques called software mutation, where the

actual code is altered in ways that cause abnormal behavior. Less subtle ways can also

be employed, such as flooding the memory or other resources, aborting applications or

disconnecting cables. Regardless of which method is used, resulting behavior is ob-

served and compared to recovery specifications. [1, p. 385-386.]

Whereas performance testing is done to determine the limits of the system’s perfor-

mance in normal conditions, stress testing is done to determine the limits of conditions

where the system can still operate normally. These conditions include environmental

factors such as ambient temperature, mechanical stress and electromagnetic radiation

or overpowering the system’s resources. Stress testing is done to determine the system’s

robustness and elasticity. Robustness means the capability withstand stress and

changes in conditions, elasticity means the capability to return to nominal performance

after the extra stress is removed. Typical tests include maximum data transfer rates,

17

maximum channel and data bus usage and maximum resource usage. As always, all

these behaviors must be documented in requirements or specifications and they must

be met by the system. [1, p. 386-387.]

An unscripted method, exploratory testing is done by simultaneously designing and ex-

ecuting test cases based on educated guesses, in real time, while learning about the

system. Consequently, this method enables the tester to concentrate on possible defec-

tive behavior as it appears without time-consuming formal preparation, but the method

is highly dependent on the individual tester’s skill and knowledge level: expected behav-

ior must be known to spot abnormal behavior. It is exactly this prerequisite of knowledge

that differentiates exploratory testing from ad hoc testing. While often an effective method

to find defects, exploratory testing is not without flaws. It tends to be unstructured and

badly documented, giving rise to difficulties recreating defective behavior when it is

found, since it might be the product of a highly specific sequence of test inputs. Explor-

atory testing, then, is best used to compliment other, more formal types of testing meth-

ods. [1, p. 445-446.]

When modifications to a system are done, new faults can be unknowingly introduced into

the system even when the changes were made to fix another fault. Of course, the af-

fected areas then need to be retested. This practice is called regression testing. In the

development and maintenance of complex systems regression testing accounts for a

large portion of all testing efforts so there is considerable emphasis on efficiency. This

efficiency can be attained by partly reusing test suites from previous versions. To do this,

the test engineer must analyze exactly which parts of the system have been modified

and how, and what kind of impact do these changes have to the system. Then, a regres-

sion test strategy that contains the scope, coverage, success criteria and testing se-

quence of the regression test is devised. Finally, the test case suite can be updated to

include relevant test cases, after which the tests are performed, analyzed and reported.

There are multiple different kinds of regression testing strategies. Most of the strategies

result in testing only a part of the system using some kind of election logic (figure 3),

running the risk of leaving a potentially impacted area of the software untested for

changes. Conversely, using the prioritizing and rotating regression testing method, a dif-

ferent part of the test suite is always executed each time a modification is made to the

system, until the whole test suite is fully executed. In this method, the subsets of test

cases are prioritized by their tendency to detect faults, for example. [1, p. 447-450.]

18

Figure 3. Most regression testing methods omit parts of the system from the test coverage. [1,
p. 451.]

After the normal defect testing phase has been completed, the reliability of the system is

verified. Reliability testing is different from other types of testing in that it should be based

on a statistically significant sample size and it produces, in addition to less-defective

software, a reliability estimate that is based on a mathematical model. The test data is

also created somewhat differently. Whereas normally, the system is tested with maxi-

mum coverage, reliability testing requires the creation of a typical user input profile. This

profile contains both normal or expected user inputs as well as reasonable abnormal

inputs, which is reflected in the test data. After a statistically significant number of defects

have been found, an appropriate statistical model is chosen to calculate the probability

of future defects. Hardware faults are often due to components wearing out and they can

be replaced when nearing their estimated end of life before they fail. Software faults

cannot be anticipated with similar certainty. It is known, however, that any given system’s

reliability tends to grow over time. Also, whereas hardware faults are usually fixed by

changing a component, software faults are often fixed by changing the system itself, i.e.

changing its code. New revisions of a software system are prone to introducing new

software faults to the system (figure 4). The system’s reliability index can be calculated

19

with the Computer-Aided Systems Reliability Estimation (CASRE) tool. It is a freely avail-

able tool developed by the Jet Propulsion Laboratories in the United States. [1, p. 402-

403, 405, 410.]

Figure 4. Failure rate of a system through multiple revisions. [1, p. 410.]

3.4 Documentation and compliance

For this thesis, the software in question is that of a medical device. As such, it is expected

to endure extra scrutiny concerning standards compliance. The safety of a medical de-

vice must be demonstrated with acceptable confidence. The responsibility of the device’s

safety is shared between all stakeholders and must be accounted for throughout the

device’s life span. [13, p. 3.]

Since the safety of a medical device cannot be considered in absolute terms, it is done

through risk management. Risk is comprised of the hazard (i.e. potential for danger), the

probability of occurrence of the hazard and the severity of the hazard. Assessing risk

begins with identifying hazards, which are then evaluated, estimating the risk of each

20

hazard. This estimation can be based on computation and evidence but in practice, for

medical devices, it is usually based on the experience of health care professionals in

addition to safety design engineering. Right now, classifications of medical devices differ

between the United States, Canada and the European Union, but the Global Harmoni-

zation Task Force (GHTF) is seeking to unify the classifications. Attributes that affect the

classification of a medical device include matter such as the invasiveness of the device

or affected body system. The more potential for a hazard, the stricter the regulations for

that device become. [13, p. 3-4.]

The safety of a medical device must also be ensured through its performance and effec-

tiveness. A device that does not produce the intended medical effect is not clinically

effective and, hence, not safe to use. Performance-wise, a medical device whose oper-

ation is unnecessarily difficult is also not safe to use, even it technically could perform its

intended function. Therefore, the performance of a medical device goes hand in hand

with its safety. [13. p. 4.]

Standards are a practical way of enforcing medical device regulations. They are docu-

mented agreements that contain specifications or criteria that, when observed, instruct

the proper manufacturing of a product to fit its purpose. Standards contain specifications

ranging from device dimensions, calibration procedures and design characteristics to

measurement accuracy, energy output limits and quality management systems. While

most standards combine different kinds of specification types and are specific in nature,

some standards, such as the ISO 9000 and ISO 14000 series, are generic standards

that can be applied to any organization. Medical devices of different manufacturers do

not have interchangeable parts, which is one of the problems that the GHTF seeks to

rectify through standardization. The ISO (The International Organization for Standardi-

zation) standard specific to medical device quality assurance is the ISO13485:2016. [13,

p. 18; 14.]

Some regulations necessitate the generation of documentation and records for all activ-

ities related to products. The product-related activities of the modern world can be quite

complex and therefore produce a lot of documentation, which needs to be managed. A

company’s records can be in both paper and electronic form, further complicating docu-

mentation management. In fact, inadequate documentation is common basis for getting

a warning letter from the FDA. [15, p. 32, 47.]

21

Documents are managed with a document management system, with functionalities

such as routing, version control, archiving, electronic signatures and searching. Docu-

ment routing means the flow of documents between persons for review or approval. Gen-

erally done electronically, document routing can also be automated to achieve a high

level of efficiency. In many instances, companies decide to subscribe to a software as a

service -type of document management system, outsourcing it. This poses extra tasks

to ensure compliance and security. Since documentation must be signed, electronic doc-

umentation calls for electronic signatures. In practice, most companies employ a hybrid

of paper and electronic document managing system: the documents are generated elec-

tronically, but then printed and signed. [15, p. 50-53.]

4 Analysis methodology

4.1 Problem statement

Since the task is to give out improvement recommendations, it comes naturally that the

current process must be thoroughly inspected. In order to get sensible data, an investi-

gative method must be first developed. Most of the problem areas are found directly in

one particular document related to verification activities. This document is the test pro-

cedure formulated from system requirements, which tests the functionalities of the whole

system. The system in question is a multiparameter patient monitoring device, which

houses measurements ranging from hemodynamic monitoring to neurophysiological sta-

tus. Creating a system-wide test procedure covering all the functionalities and their ac-

companying calculations, alarms, user interface functions and settings is a complex and

arduous task, so the entire chain of actions must be reviewed.

Rather than only looking at finished test procedures, much effort will go to going through

documentation and interviewing relevant persons for information related to the verifica-

tion test procedure creation process. This way, sufficient knowledge about the process

will be acquired and, ideally, it will become possible to improve the practices that pro-

duces defective test procedures instead of fixing isolated incidents. Interviews are likely

to be a key source of information, because they can expose the discrepancy between

planned and actual practices. In a complex process with time constraints, some steps

are probably going to be misunderstood or somewhat ignored. So far, three potential

causes for mistakes in the system verification procedure can be identified: systematic

22

defects born from a bad process, systematically bad implementation of an otherwise

viable process, and individual mistakes stemming from lapses in knowledge.

Systematic defects from a bad process would be the most desirable scenario in terms of

effectiveness of a correction. Fixes made here would have a lasting, widespread effect

since the fix would be systematic as well. Also, the problem would likely be fairly easy

identify and isolate. However, defects in the process itself are unlikely this far into the

development cycle and would be laborious to fix. Systematically bad implementation of

a process refers to an advanced stage of disregard towards good practices. This would

be the worst-case scenario since it would require extensive changes that would be diffi-

cult to both identify and manage. Errors arising from minor problems in work instructions

communication are the most likely candidate for implementable improvements. These

changes would be light-weight, quick fixes that wouldn’t affect the procedures’ creation

process that is already in place.

Along with documentation such as work instructions, another important point about the

verification procedures is how they’re handled in the requirements management tool.

Requirements, trace links, design specifications, test procedures and test results must

be documented in a way that satisfies the FDA’s regulations [11]. This creates the need

for the procedure creation process discussed earlier. The progress and results of the

process will be concretely visible in the requirements management tool.

4.2 Investigation

A logical starting point to understand the current process is to identify all of the steps

involved in it. Each step is complex on its own and is usually accompanied by transition-

ary tasks such as version control, document approval and planning activities. Any con-

fusion about the tasks will create inconsistent results. While the software and documen-

tation will be technically compliant, inconsistencies might lower the confidence a client

has in the product.

Owing to the type of information this analysis will produce, methods fit for qualitative

research shall be used. One such method is in-depth interviewing. It is a research tech-

nique where intensive interviews with individuals are conducted to explore their

knowledge on a specific topic [16, p. 3]. The process of finding suitable interviewees is

23

central to the outcome of the analysis: they need to be knowledgeable, and since the

topic is highly specialized, their specific knowledge base must fit the purpose of this task.

The emerging themes in the first interview are tested with following interviews and the

most commonly mentioned issues are considered higher priority. [17, p. 17.]

An initial list of questions must be generated (appendix 1). This is done based on prelim-

inary information gained through professional literature on requirements engineering,

software development activities and documentation, work experience in software verifi-

cation and initial conversations with experts. The initial list of questions serves only as a

backbone to the interviews and most likely many of the truly useful topics will emerge

spontaneously. In fact, strictly following the questions that have been generated in ad-

vance might have a negative impact on successfully gathering useful data in this context.

Useful data in this case would be either contrasting or complementary views on the same

themes or issues, that were not necessarily anticipated. [17, p. 18-19.]

The data from the interviews will be gathered by recording the audio of each interview.

This way, minimal effort will be spent on taking notes, while maximal effect on information

retention will be gained [17, p. 18]. This is highly important, because the established way

of interviewing will not produce standard answers to standard questions, and the topic

includes a large amount of delicate information.

An in-depth interview has many advantages to other types of data collection methods for

this particular application. First and foremost, since it is an open method, the data gained

is not bound to the coverage of a list of questions as it would be when using a survey

[16, p. 3]. This way, the interview serves two purposes: it helps teach the interviewer the

general practice of verification procedure creation in addition to uncovering the more

specific grievances in its execution. Both are equally important, since the improper func-

tioning of a process can only be identified when the proper functioning of it is understood.

Secondly, this method is more comfortable and engaging to the interviewee [16, p.3],

further improving the likelihood of good information.

An in-depth interview does have some downsides. Typically, interviews are conducted

by outsiders so establishing rapport, a relaxing and encouraging atmosphere that in-

spires trust, is important to ensure the interviewees provide the interviewer with honest

and useful information [17, p. 19]. This is mitigated by the fact that, in this case, the

24

interviewer and interviewees are professionally acquainted, and the topics are imper-

sonal. The interviewees are likely to give a full account of events and information without

much probing. Another issue relates to the objectivity of the information given by the

interviewee and the neutrality of the interviewer. Since the interviewees are directly in-

volved in the process of creating the verification procedures, they can be biased. The

interviewer needs to be neutral during the interview itself by asking non-leading ques-

tions and during the analysis phase by not contaminating the data with personal opinion

or interpretation. Finally, owing to the small sample size and specific nature of this anal-

ysis, knowledge gained here is not likely to be generalizable. [16, p. 3-4; 17, p. 19-20.]

5 Results and analysis

5.1 Verification procedure creation process

Creating a verification procedure starts from understanding the user requirements. As

expected, most of the user requirements have been defined during an earlier project

since the system in question is a newer version an existing one. From the user require-

ments, a set of initial system requirements can then be defined mainly by lead system

designers. These requirements, similarly defined earlier, cover all of the user require-

ments but contain enough technical detail to aid in implementation work and, conse-

quently, the number of the system requirements is roughly ten times that of the user

requirements. After that, the system requirements are maintained by the teams reac-

tively: requirements that produce complications for development or testing activities are

fixed.

During a project, new features might be introduced mid-development. In these cases,

new requirements can be added in a modular fashion as needed. For example, if a user

requirement states that all physiological measurements must have an alarm, that re-

quirement is not likely to change when a new physiological measurement type is added,

but lower level requirements will have to define the behavior of the new alarm. Addition-

ally, test procedures must be updated to accommodate, and regression testing must be

executed when the new feature is implemented. While this particular case is not the most

common, it illustrates the cascading effect that any changes to the system has to verifi-

cation activities.

25

Special attention has been given to making system requirements clear and understand-

able. Quite recently, system requirements went through minor fixes and tweaks to make

them less ambiguous. Such work is valuable, since the quality of system requirements

is essential to all subsequent activities: the system verification procedure, software re-

quirements and design details are all dependent on system requirements.

The system verification procedure is produced to verify the functionalities defined in the

system requirements. Producing it is the collective effort of many teams, each specializ-

ing in the development and testing of a portion of the whole system’s functionalities. Each

team writes the portion of the system verification procedure that corresponds to their

specialization. The process starts with identifying requirements relevant to that team’s

responsibilities, grouping them into coherent segments and creating test cases, which

are then turned into test procedures. For example, all relevant alarms are tested in one

section while user interface functions are tested in another. This way, changes to the test

setup mid-testing is kept to a minimum, optimizing the use of time. The grouping is also

done by the testing method that is going to be used. Automated testing is the desired

method, since the execution and re-execution of a well-designed automated test con-

sumes virtually no resources. Manual testing is used when automated testing is not via-

ble, and in the rare cases that neither of these methods can be used, the code itself will

be inspected. Of these three, the most common is procedural manual testing, increasing

the importance of the quality of manual verification procedures.

A series of test cases becomes a test procedure when sequential instructions that guide

the tester into creating the desired testing conditions are added. For example, the spec-

ified conditions for testing a physiological alarm include using default settings for the

monitoring device, connecting specific instruments to it and producing the alarm using a

specific method. A high level of precision is needed to write a verification procedure that

reliably creates the specified conditions for test case after test case.

Most of the time, test procedures are created by recycling an old test procedure. This

saves a significant amount of time, and since the procedures do not generally undergo

large-scale changes between runs, recycling procedures is quite practical. In fact, creat-

ing test procedures from scratch each time is not realistic in this scale. There are some

generic tasks involving the recycling of test procedures, such as managing trace links

and identifier attributes in the requirement management software. Sometimes, additional

26

tasks such as merging multiple procedures or changing testing the testing method cause

more comprehensive changes to the recycled procedure.

The most significant recent change to test procedures is the way objective evidence is

gathered. Until recently, it was mostly the tester’s responsibility to find a way to document

the objective evidence of the software’s behavior. This way, the test procedure itself was

simpler to maintain, but test execution and documentation relied more on the individual

tester’s skill and knowledge. Now, objective evidence is recorded into the procedure

steps themselves with procedural steps that are designed to force the right information

to be documented. Also, because test coverage was increased, and one result step can

only be linked to one requirement, the number of individual test cases in the new type of

test procedures increased considerably. These two factors have increased the total

amount of steps in a test procedure by a large margin.

Whereas system requirements describe the functionalities of the system as a whole,

software requirements go deeper into the details of implementation. Multiple software

requirements may have a trace link to the same system requirement, because many

features can derive from the same system requirement, or the same functionality can be

found from multiple locations within the software. Software requirements are grouped

into logical compartments, and each team is appointed a few of these compartments.

A software verification procedure verifies software requirements. Unlike the system ver-

ification procedure, where the whole system is tested, a single software verification pro-

cedure tests one of the compartments mentioned earlier. However, a software verifica-

tion procedure is much more detailed and comprehensive than the system verification

procedure. One might say that the system verification procedure’s complications stem

from its sheer volume and variability of functionalities, while the software verification pro-

cedure’s complications come from the high level of precision and test coverage.

Design details, which are the most detailed specifications of the system, are not tested

using a test procedure. They contain information such as font sizes, text locations and

other user interface functions, which do not require a complicated test setup.

The quality for all procedures is ensured by dry running them. Dry running a test proce-

dure means executing the tests as one would during verification, without commitment to

the test results. This way, problems that would be found during official verification are

27

found earlier, when the process of fixing them is more light-weight. Changes to the test

procedure during official verification are made through a rigid chain of extra documenta-

tion and approvals to ensure practices that satisfy the FDA’s regulations, which takes

more time.

Figure 5. The verification procedure creation process.

5.2 Verification & procedure creation problem areas

During the third interview, recurring themes started to emerge, meaning that an appro-

priate sample size had been reached, so the total number of interviews was left at three.

Valuable information was gained about the status of manual verification procedure cre-

ation process, which surprisingly did have systematic problems. Starting from the easier

28

types of problems to fix, going towards problems that require more heavy-weight adjust-

ments, these problems will be explained with enough detail to serve as rationales for the

improvement recommendations discussed later.

The first problems concern the system requirements. They are not methodically checked

for issues, which leads to problems that reveal themselves later than would be optimal.

For example, when the system verification procedure is created, test coverage, the test

method and other types of filtering are done to ensure that the procedure covers all rel-

evant requirements but the system requirements themselves are not inspected for rele-

vance or quality. Practically all fixes to the system requirements are made reactively,

when a problem presents itself. This might be a strategy to save time because scanning

through the system requirements is a time-consuming activity, but since unexpected

events affect the up-to-dateness of system requirements, it is not a thoroughly calculated

risk. Also, problems with system requirements may multiply when going down the hier-

archy of requirements or going forward with the process of creating test procedures. The

earlier these problems are fixed, the less time they have to create a snowballing effect

on the workflow.

Some of the bigger problems revolve around dry runs. Their execution is a dilemma: on

the one hand, they take up a lot of time with no guarantee for the desired effect, but on

the other hand neglecting them is a risk that can lead to a defective test procedure being

used in official verification. The effects of not dry running a test procedure were recently

seen. Issues that would have taken minutes or hours to fix before official verification took

days in the worst cases. A big factor in this is the bottlenecking of some roles, such as

lead system designers. Every fix needs to be approved, and there is a limited amount of

people who are authorized to do so. One might think that it would be as simple as re-

moving these restrictions, but the compliance of documentation could be compromised.

A potential danger with dry runs is a lack of motivation for precision, which can translate

into a waste of time and resources. The quality of dry runs has been noticed to vary

between individuals.

Generally speaking, some decisions are made too late. Occasionally, for example, the

test method of a requirement or a group of requirements is changed after writing the test

procedure has already been started or even finished. This ties in with the issue of poor

information flow within the workplace. Regarding that, there seems to be three core prob-

lems: 1. the teams are autonomous units, so cooperation is not a built-in mechanism, 2.

29

guidance documents are not generated and distributed efficiently, and 3. some valuable

information is known only to individuals. Cross-team communication needs to be artifi-

cially maintained, which creates extra work. Work instructions are high-level legal bounds

that cannot be applied to the everyday activities of a verification engineer, so they need

to be translated into unofficial guidance documents. While this activity is essential to the

quality of verification activities, virtually no resources are allotted to it so it is hastily done

without much coordination.

The issue of guidance documents and valuable information being stuck on individuals is

part of a bigger problem which needs to be explored. Roughly speaking, the level of

expertise is kept at the bare minimum while workflow is controlled using rigid processes

and guidance documents, especially in the case of manual testers. While this is a stra-

tegically sound decision, it places a lot of pressure to the documents’ quality and cover-

age. For example, testers are also partly responsible for writing test procedures and are

reliant on the guidance documents to do it competently. However, writing test procedures

is essentially a creative process that involves unpredictable variables so comprehensive

guidance documentation is difficult to produce, especially when done with limited re-

sources. These effects together create a problem: individuals can unknowingly write de-

fective test procedures, which then places unreasonable pressures on corrective mech-

anisms such as dry runs and document reviews. Similarly, valuable information does not

get distributed efficiently because problems that could be resolved with increasing col-

lective expertise are instead handled by having the already-competent people perform

the difficult tasks. This can be considered an example of the Pareto Principle in action,

where 20 percent of workers produce 80 percent of the results [18]. As a naturally oc-

curring statistical phenomenon, it is difficult to offset but some measures can be taken to

mitigate its effects.

The system verification procedure suffers from the most issues. It is derived from system

requirements, which are not as detailed as software requirements, so creating test cases

can be more complex. Abstract requirements can also be tested in multiple ways, inher-

ently causing inconsistency. It is the longest procedure, so managing it is more difficult.

It has the most authors, further complicating the issue of consistency. It sometimes in-

cludes the same test cases as some software verification procedures, so choosing test

coverage requires more work. It is also written with less specific procedural steps, so

executing it can be more challenging. Many of the problems concerning the system ver-

ification procedure itself are inherent to it, but some of them can be attributed to general

30

bad practices. For example, inconsistent use of terms and differing test cases for the

same requirements stem from bad communication between authors.

5.3 Improvement recommendations

Some problems seem to have no practical solutions to them. Firstly, the system verifica-

tion procedure is written as a shared effort, piece by piece, by all of the teams. To ensure

a consistent style of writing for the whole procedure, either all of the authors should be

in absolute agreement on all aspects of procedure writing details or a dedicated taskforce

of few enough people should be employed to write the whole system verification proce-

dure. Both options are unrealistic, so the problem cannot be completely eliminated, only

mitigated. Secondly, most verification procedures are recycled from an old procedure. If

the old procedure’s quality is bad, the new procedure will also be of poor quality. This

problem cannot be solved in one fell swoop, rather the quality of the procedure will in-

crease between each iteration as it is recycled repeatedly. Finally, to properly estimate

the effects of the recently increased test coverage and amount of procedure steps on

the quality of the verification procedures, an unreasonable amount of work would have

to be done. A quality evaluation method would have to be developed and a statistically

significant sample of procedure steps from before and after the changes would have to

be inspected. These three issues will not be examined further in detail.

The first task for improving the quality of manual verification procedures is to determine

the earliest feasible point of entry to adjust the procedure creation process and make

one or more systematic corrections. These corrections will produce results by them-

selves in addition to making changes further into the process easier to implement. The

recommendations are numbered for further use.

1. This particular improvement recommendation can be applied to both system and soft-

ware requirements. When creating test cases for requirements, those requirements

should be inspected for quality and relevance. The advantages of this practice would be

the 100 percent inspection coverage of tested requirements, the early detection of errors

and time-efficiency of requirements maintenance. The disadvantage would be that the

absolute time used to create test cases would show an increase. However, this time

would be well-spent since fixing errors in later phases would be significantly slower and

31

the routine maintenance of requirements would increase the expertise of individuals per-

forming it.

2. The issue of dry runs must be resolved by accepting the dilemma explained earlier

and choosing the better of the two bad options. Coupled with effective requirements

maintenance, comprehensive dry run execution is a good way of minimizing the risk of

defective procedures being used in official verification. Dry running and fixing a proce-

dure is also an expertise-reinforcing activity that can be performed by less-experienced

members of the verification team owing to the lower risk. In addition to fixing mistakes in

the sequence of procedural steps, it should involve the assessment of test cases against

requirements, i.e. are the test cases properly testing the requirements linked to them. At

this point, the requirements themselves would have been assessed, so checking the test

cases is important because some of the requirements might have been modified. The

assessment of test cases would then have a three-fold effect: assuring the quality of the

test cases, controlling the side-effects of the requirements maintenance and educating

the tester performing test case assessment.

3. Improving information flow would solve many problems. Presently, members of each

role (test leads, system designers etc.) hold regular meetings to discuss and make deci-

sions on issues relevant to that role and are then trusted with forwarding that information,

but there is no mechanism to ensure this. These meetings should be more methodical:

topics should be better known beforehand so that attendees can prepare and making

informed decisions should be valued over making fast decisions. The deployment of

these decisions should be monitored, which can be done by conducting a follow-up dis-

cussion in the next meeting about items discussed in the preceding meeting. Especially

for test lead meetings, a recurring topic should be the unification of practices. For exam-

ple, test case creation should be based on an agreed format.

4. All useful information should be centralized in a single, accessible hub. Presently,

guidance documents are difficult to find without explicit knowledge of their location, of

which there are many, and they are not comprehensive. The self-education of workers

through collective documentation should be made as easy as possible, because that is

the way information is most efficiently distributed within the workplace. This practice

would also limit the effects of information loss deriving from changes in the employee

roster.

32

5. A common terminology across all teams would help reduce the inconsistency of veri-

fication procedures. For example, the term parameter is used to mean either a singular

measurement (ECG I) or a measurement type (multiple ECG channels are still consid-

ered one parameter). Establishing terminology should be a collective effort because it

would motivate all parties to conform, in addition to the more obvious benefit of higher

levels of knowledge being available in the process. For the same reasons, the generation

of guidance documents should include members from each team. Enough time should

be explicitly allotted to these activities.

With these improvements in place, procedure creation would be a more robust process.

System requirements would be maintained at an adequate frequency, improving the

quality of all requirements and procedures dependent on them. Verification procedures

would be written in a more uniform way, important information being more readily avail-

able to all participants. Test cases would be created more methodically, with a corrective

mechanism in place to catch errors. Testers would be less isolated from the process and

able to accumulate expertise more freely. Dry runs would be a more comprehensive

method in catching errors in test procedures. These changes have been designed with

a long-lasting impact in mind, so their deployment can initially be somewhat intrusive for

the process.

Of course, some improvements can be prioritized over others. This can be done by plac-

ing them in an impact analysis matrix (table 2). Note: required effort and impact are

ranked from 1 to 5. For required effort, a high number signifies a high effort but for impact

and cost-effectiveness, a small number is desirable.

33

Table 2. An impact analysis matrix of the improvement recommendations.

Looking at the table, the least complicated decision is regarding improvement number 5,

common terminology across teams. The cost-effectiveness is the best, tied with number

1 but without any strings attached. The difference in impact for numbers 1 and 2 comes

from two effects: if only number 2 is implemented, the weight of poorly maintained system

requirements is a factor, and if only number 1 is implemented, the effects of requirements

maintenance is not controlled and can introduce errors into the procedure. Note: these

figures are estimations, real effects can differ.

The effort required for number 3 is too high for the relatively low estimated impact. This

improvement recommendation should be considered the lowest priority. The impact from

number 4 is quite high, owing to the wide positive effect of improving information sharing.

However, the effort required for gathering large amounts of information into a single hub

is substantial. This improvement should be considered the fourth priority.

Improvement recommendation numbers 1, system requirements maintenance, and 2,

dry running and test case maintenance, have a large estimated positive effect for the

quality of verification procedures both for system requirements and software require-

ments. Human resources for their execution are also easy to allocate: requirements man-

agement (number 1) for product owners and system designers, test case management

(number 2) for testers. Test leads can perform either task, serving as a fill-in for the task

34

that turns out to demand more resources. For these reasons, they should be considered

first priority, but only if implemented in tandem.

Improvement number 4 would be a collective effort. For example, when using a tool, the

tester could check to see if the resource hub (a website such as Confluence) has a guide

for using that particular tool. The guide can then be assessed and corrected as needed

or written if it is missing altogether. This work should be treated like any other work within

a team and needs to be included in sprints. Similarly, improvement number 5 would be

treated as a shared task. Both tasks can be done by creating a document for each and

sharing the documents for each team.

All improvement recommendations should be put into effect as soon as they can be im-

plemented through official channels, such as the backlog. From the perspective of the

client of this thesis, this would mean the next project.

6 Conclusion

A patient monitoring device is a complex system whose quality assurance requires at-

tention throughout the lifecycle of the product. At the very least, the product should com-

ply with its requirements at launch, but the requirements and verification procedures also

need to be formulated and maintained in a way that enables the implementation of a

high-quality product. The process of formulating lower-level requirements and verifying

their implementation is the area that was examined for this thesis. The verification of

software is done either by freely testing it and creating documentation accordingly, or by

testing the software following instructions in a verification procedure and providing inputs

required in the procedure. The latter method is used more voluminously and was found

to be affected by quality issues.

While the verification procedures are where the issues manifest themselves, root causes

for them still had to be identified. Exploring the current process of creating verification

procedures and the theoretical background for related activities proved to be the correct

basis for any further work towards improvement recommendations. The improvement

recommendations were written after every conceivable activity related to verification pro-

cedure writing was examined and information regarding each activity was gathered.

35

Many of the problems in verification procedure quality are linked to risk and time man-

agement. While it would be technically preferable to polish the procedures to perfection

before executing them, it is nearly impossible to determine when the perfect condition of

the procedure can be declared with confidence. Another example of the Pareto Principle,

the amount of effort required to be put into an activity raises sharply after 80 percent of

the results have been achieved, which typically happens at 20 percent of effort [18]. This

can be seen when fixing a procedure: as the easiest-to-spot mistakes in the procedure

are corrected first, it becomes increasingly difficult to find problems that need fixing. From

this perspective, dry-running all procedures to some degree is preferable since a lot of

mistakes can be found and fixed with little effort, while highly concentrated efforts dedi-

cated to one singular procedure are inadvisable.

An inherent dilemma with improving any complex process is the issue of specialized

improvements versus systematic improvements. The immediate effects of precise im-

provements are often desirable, but one runs the risk of turning the process into a patch-

work of unforgiving procedural steps while people in the workforce have growing difficul-

ties understanding the big picture. By contrast, broad modifications to the process and

transferring responsibility to individuals will cause an initial dip in productiveness as

changes are implemented and people go through a learning phase, afterwards settling it

into a much more efficient process. The improvement recommendations given in this

thesis slightly lean towards the latter scenario.

Realistic and concrete improvement recommendations with accompanying analysis and

implementation guidelines were given in chapter 5.3, as was agreed. It is worth noting

that these recommendations are based on estimations that were devised by qualitative

means, rather than calculations. However, they are likely to contain valuable information

for further analysis or development done by experts.

36

References

1 Engel, Avner. 2010. Verification, Validation and Testing of Engineered Systems.
Wiley.

2 Fernandes, J.M. and Machado, R.J. 2016. Requirements in Engineering Projects.
Springer International Publishing Switzerland.

3 Vogel, D. 2010. Medical Device Software Verification, Validation and Compli-
ance. Artech House.

4 Koelsch, George. 2016. Requirements Writing for System Engineering. Apress,
Berkeley, CA.

5 Kung-Kiu, Lau. 2004. Component-Based Software Development: Case Studies.
World Scientific Publishing, Singapore.

6 Schmidt, Cristoph. 2016. Agile Software Development Teams. Springer Interna-
tional Publishing Switzerland.

7 McKenna, Dave. 2016. The Art of Scrum. Apress, USA.

8 Beck et al. 2001. Manifesto for Agile Software Development. Internet material.
<agilemanifesto.org>. Read on 29.1.2018.

9 Measey, Peter. 2015. Agile Foundations: Principles, practices and frameworks.
BCS Learning & Development limited.

10 General Principles of Software Validation; Final Guidance for Industry and FDA
Staff. 2002. <https://www.fda.gov/Medi-
calDevices/ucm085281.htm#_Toc517237938>. Read on 11.1.2018.

11 Dion, Denise. 2011. Understanding Objective Evidence: (What It Is and What It
Definitely Is Not). <http://www.eduquest.net/Advisories/EduQuest%20Advi-
sory_ObjectiveEvidence.pdf>. November 2011. Read on 16.1.2018.

12 Software Testing Techniques/Methods. 2012. Internet material.
<https://tfortesting.wordpress.com/2012/09/04/software-testing-techniquesmeth-
ods/>. Read on 9.1.2018.

13 Cheng, Michael. 2003. Medical Device Regulations: Global Overview and Guid-
ing Principles. World Health Organization.

14 ISO 13485:2016. Internet material. <https://www.iso.org/standard/59752.html>.
Read on 8.2.2018.

15 Gough, Janet & Nettleton, David. 2010. Managing the Documentation Maze: An-
swers to Questions You Didn’t Even Know to Ask. Hoboken John Wiley & Sons.

16 Boyce, Carolyn & Neale, Palena. 2006. Conducting in-depth interviews: A Guide
for Designing and Conducting In-Depth Interviews for Evaluation Input. Pathfinder
International, USA.

17 Seale et al. 2013. Qualitative Research Practice. SAGE Publications.

37

18 Understanding the Pareto Principle (The 80/20 Rule). Internet material.
<https://betterexplained.com/articles/understanding-the-pareto-principle-the-
8020-rule/>. Read on 8.3.2018.

Appendix 1

 1 (1)

Interview frame

How long have you been a <interviewee’s position>? How experienced are you in han-

dling verification procedures or requirements?

Theme 1: The test procedure creation process

Can you describe the procedure creation process in detail? Is it much different for SyVP
vs. SwVP?

Is the process always the same or are there some dependencies? Is there a phase where
there are more dependencies than elsewhere?

Is there any confusion about the test procedure creation process?

Is the process comprehensively documented or is it known only to individuals? Who are
involved in it?

Theme 2: Issues with the process

Would you say the process itself is poorly designed or are the issues minor/local?

Do some tools have a significant negative impact on the process?

Are there some unnecessarily time-consuming activities?

Are tasks delegated to the right people? Work instructions creation, for example.

Theme 3: Probing for improvement ideas

What do you think are most crucial areas that need fixes?

Do some standards or requirements feel outdated?

The procedure fixing process is quite heavy in official verification. Do you see any way it
could be made lighter or is the damage irreversible at that point?

Are agile practices implemented in a satisfactory manner? Are there some problems with
the development method itself?

