
Bachelor’s thesis

Information Technology

2018

Mark Vasiv

FUNCTIONAL REACTIVE
PROGRAMMING FOR IOS
– with Objective-C and ReactiveCocoa

BACHELOR’S THESIS | ABSTRACT

TURKU UNIVERSITY OF APPLIED SCIENCES

Information Technology

2018 | 134

Mark Vasiv

FUNCTIONAL REACTIVE PROGRAMMING FOR
IOS
- with Objective-C and ReactiveCocoa

The logic of most mobile applications is based on events coming from either user interface or network.
Object-Oriented Programming (OOP), which is used in most of the client-side applications, is not
designed to build software based on events. The existing related mechanisms in most of Object Oriented
(OO) languages include the use of delegate methods, callbacks, and other language-specific techniques.
These techniques abstractly serve the same functionality but use completely different syntax. This thesis
focuses on iOS application development using Objective-C language, which has the above mentioned
limitations concerning event-based programming. Firstly, the thesis introduces the language as well as
iOS SDK basics and common patterns, highlighting core features and problems. Secondly, it provides a
possible solution for the discussed issues – the use of the Functional Reactive Programming (FRP)
paradigm. To achieve the FRP paradigm while developing iOS applications, the thesis suggests using
ReactiveCocoa framework. The framework is a good compromise between abstract declarative
programming style and relatively good performance level. The thesis also includes a fully-functional
messenger User Interface (UI) component. The component is firstly built with the help of OOP and then
refactored to expose FRP paradigm. The development process is documented and discussed with
attention to every aspect of the process including design and actual programming.

KEYWORDS:

programming, iOS, Objective-C, ReactiveCocoa, FRP

CONTENTS

LIST OF ABBREVIATIONS (OR) SYMBOLS 6

1 INTRODUCTION 7

2 NATIVE IOS APP DEVELOPMENT 9
2.1 Software development kit 9

2.2 Objective-C 10

2.2.1 Class definition 10
2.2.2 Method declaration 11

2.2.3 Messages 12

2.2.4 Inheritance 12
2.2.5 Protocols 13

2.2.6 Categories 14
2.2.7 Properties 15
2.2.8 Primitive types 17

2.2.9 Memory management and ARC 17
2.2.10 Runtime 18

2.3 Standard frameworks and tools 24

2.3.1 Foundation 24
2.3.2 UIKit 25
2.3.3 Concurrency and libdispatch 27

2.4 Common patterns 29

2.4.1 Key-value observing/coding 29
2.4.2 IBOutlets and IBActions 32
2.4.3 NSNotification 33

2.4.4 Delegation 34
2.4.5 Blocks 35
2.4.6 MVC 36

2.5 Common problems 37

2.5.1 MVC vs MVVM 37
2.5.2 Event-based patterns 39

3 FUNCTIONAL REACTIVE PROGRAMMING 40

3.1 Functional programming 40

3.2 Reactive programming 40
3.3 Composition of paradigms 41

3.4 Support in iOS 41

3.5 ReactiveCocoa 41
3.5.1 Basic classes 42

3.5.2 Basic operators 43

3.6 Syntactical difference between ReactiveCocoa and iOS SDK 46

4 MESSENGER DESIGN 48
4.1 Contacts list 48

4.2 Chats list 49

4.3 Chat view 51
4.3.1 List of messages 51

4.3.2 Footer 53
4.3.3 Navigation bar actions 54

4.4 Shared media 56

4.5 Model 56

5 NATIVE APP WITH MVC 58
5.1 Managers 58

5.1.1 Contact manager 59
5.1.2 Chat manager 60

5.1.3 File manager 64
5.1.4 Database manager 66

5.2 Controllers 66
5.2.1 Chat list controller 66

5.2.2 Chat controller 72

5.3 Native app problems 88

6 REFACTORING WITH MVVM AND REACTIVECOCA 90
6.1 Managers 90

6.1.1 Contact manager 90

6.1.2 Chat manager 91

6.1.3 File manager 93
6.2 Views and view models 93

6.2.1 Chats list 93

6.2.2 Chat controller 104

7 POSSIBLE PROBLEMS WITH REACTIVECOCOA 120
7.1 Performance of object creations 120

7.1.1 RACSignal 121

7.1.2 RACObserve 121
7.1.3 RAC 122

7.1.4 RACCommand 122

7.2 Speed of events propagation 122
7.2.1 KVO and RACObserve 123

7.2.2 RACSignal 123

7.2.3 NSNotification and RACSignal wrapper 123
7.3 Implications 124

8 CONCLUSION 125

REFERENCES 126

LIST OF ABBREVIATIONS (OR) SYMBOLS

Abbreviation Explanation of abbreviation (Source)

API Application Programming Interface

ARC Automatic Reference Counting

FIFO First-In, First-Out

FP Functional Programming

FRP Functional Reactive Programming

GCD Grand Central Dispatch

GUI Graphical User Interface

IB Interface Builder

IDE Integrated Development Environment

KVC Key-Value-Coding

KVO Key-Value-Observing

MVC Model View Controller

MVVM Model View ViewModel

OOP Object Oriented Programming

SDK Software Development Kit

XML Extensible Markup Language

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Mark Vasiv

7

1 INTRODUCTION

Functional Reactive Programming (FRP) is a declarative paradigm of programming,
which already has shown its benefits in many programming fields [1]. The paradigm is
built on data streams that are common to any reactive application. The term reactive
here means that the application interferes with many external inputs. That is the case
with any mobile app because mobile apps heavily work with user interactions and
usually require network handling. Despite that FRP can be seen as a suitable choice for
mobile programming, most of the client side software is still written with the use of
imperative programming due to historical reasons.

Imperative and declarative programming fundamentally differ by approach that is used
when designing software. The declarative programming is based on the idea that the
program is written by telling the computer what to do instead of how to accomplish
the result. The latter approach is used in imperative programming. The declarative
programming abstracts away many small non-crucial details from the programmer,
making it easy to focus on more complex tasks.

This thesis focuses on iOS application development using Objective-C language. The
chosen language and the Software Development Kit (SDK) are object-oriented and
imperative. To take advantage of FRP, the thesis presents the RectiveCocoa
framework. The ReactiveCocoa provides needed data stream interfaces as well as
additions to the SDK making it easier for developers to integrate the framework into
the app. Overall, the solution has a fine balance between abstraction level and
performance, which is described later in more detail in the thesis.

As an illustration of both paradigms, the thesis presents a messenger iOS app. It is
firstly developed using pure iOS SDK and Objective-C and then refactored to use
ReactiveCocoa framework. The documentation of the development process covers
design process, programming techniques and patterns that are commonly used when
developing iOS applications. It also highlights differences between OOP and FRP
principles, as well as, provides results of ReactiveCocoa performance measurements.
The structure of the thesis is as follows: Chapter 2 presents technology used to build
iOS applications as well as basics of the Objective-C language and the iOS SDK. It also
discusses the weaknesses of the language and the SDK. The source for this technology
overview is based on official Apple documentation, public source files and articles of
experts in the iOS programming field. Chapter 3 introduces FRP principles in a more
detail and the ReactiveCocoa framework. The ReactiveCocoa overview includes a
description of basic data types and operators commonly used. Chapter 4 is dedicated
to the design process of the discussed messenger app. It presents UI layout, as well as,
basic constrains for future model design. Chapter 5 describes in full detail the
development process of the app using Objective-C and MVC. Chapter 6 continues the
description of the development process and is dedicated to the refactoring of the app
to expose the FRP paradigm and MVVM pattern using the ReactiveCocoa framework.

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Mark Vasiv

8

Chapter 7 outlines possible problems associated with the use of the ReactiveCocoa.
More attention is paid to the potential performance issues. Finally, chapter 8 discusses
the possible future use of the app in addition to outlining most essential conclusion
that could be made from the thesis.

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Mark Vasiv

9

2 NATIVE IOS APP DEVELOPMENT

A native app is an app written specifically for the platform in which it is intended to
use. Such an app can be developed only with the use of tools and technology
integrated into the platform. Because of this, it can interact with and take advantage
of all operating system and hardware features, which are publicly available in the
Software Development Kit. The main benefits of native applications are their high
performance and platform-friendly user experience. Obviously, target-specific
application development is expensive as soon as most of the projects still need to
support several platforms. Usually, this results in the need for more developers with a
specific knowledge required to develop an app for a particular platform. Therefore, the
cost of development correlates with the quantity of supported platforms.
In contrast, hybrid app development is targeted to support multiple platforms with a
single codebase. This approach can drastically increase the speed and decrease the
cost of development; however, the performance of hybrid apps is much lower than the
performance of native apps. There are multiple frameworks and technologies which
allow creating hybrid apps, each with its own benefits and drawbacks. This latter
approach may be suitable for rapid prototyping or creation of apps with a relatively
small functionality. Controversially, often for the development of commercial
products, the native app development is used. As Mark Zuckerberg stated at
TechCrunch Dusrupt conference, "The biggest mistake we made as a company was
betting too much on HTML5 instead of native... We burnt two years." [1]
Native app development for iOS – the mobile application platform introduced by Apple
Inc. in 2007 – is only possible with the help of software provided by Apple. The
operating system was introduced with a demonstration of first iPhone, however, back
then iOS was a closed system without public SDK, and there were no 3rd party
applications. As was promised by Steve Jobs in the message posted on apple.com [2],
the situation changed in 2008 with the release of iOS SDK and publishing of official
documentation, enabling developers to create and distribute their application to the
App Store.

2.1 Software development kit

As stated in the Xcode release notes [3], tools used to develop iOS apps include Xcode
Integrated Development Environment (IDE), Xcode developer instruments, and iOS
Software Development Kit (SDK). iOS SDK updates several times a year with each of
major iOS releases, however, its core usually remains unchanged.
Xcode includes text editor, Interface Builder (IB) and Xcode developer tools, which are
command line utilities used by Xcode to compile source code to the executable binary
and extend some debugging functionality provided by Xcode. The compiler of choice is
Clang.

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Mark Vasiv

10

Initially, Objective-C was the primary language of the platform - the successor of the C
language that extends its abilities with the object-oriented paradigm. However,
recently the Swift language was introduced [4] as a possible replacement of the old
and verbose Objective-C. Assuming the fact that Objective-C is a child of C language,
the use of C is also possible. Moreover, most of the low-level Application Programming
Interfaces (APIs) actually have a C style. With a recent update, the usage of Swift is
highly encouraged; however, the thesis only deals with Objective-C language because
its syntax is easier to understand and the language itself does not limit actions
regarding the selected topic. The use of Objective-C also ensures a good illustration of
difference between imperative and declarative programming, because Objective-C is
an object-oriented language and Swift is a multi-paradigm language. Moreover, the
use of Objective-C adds some benifits from the practical point of view – still many iOS
apps are written using Objective-C and are not migrating to the Swift because of the
migration cost and immaturity of the Swift.

iOS SDK contains standard frameworks that enable developers to use system APIs and
structures defined by Apple, from database management to user interface drawing
and touch recognition. Along with the frameworks, the SDK contains the iPhone
Simulator, a program used to simulate the look and feel of the iPhone on the
developer's desktop. iPhone Simulator is not an emulator and runs code generated for
an x86 target rather than ARM which is used in real devices. Because of that, the
testing of production apps and perfomance measurements should always be carried
out using real mobile devices.

2.2 Objective-C

Objective-C is an object-oriented language. It supports inheritance, polymorphism,
data encapsulation and introduces some unique patterns of code structuring. These
patterns, as well as some syntax examples and peculiarities of the language
implementation, are described in this chapter.

2.2.1 Class definition

According to the Objective-C documentation [5], a class definition in Objective-C is split
into two separate chunks of code - interface, and implementation. Interface holds a
declaration of all public methods and invariants that the class undertakes to support.
Code snippet 1 contains an example of an interface of a class called Person, which
holds two invariants - firstName and lastName, and supports a method that gets a full
name.

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Mark Vasiv

11

Code snippet 1. Interface of a Person class.

@interface Person : NSObject {
 NSString *firstName;
 NSString *lastName;
}
- (NSString *)getFullName;
@end

Here @interface is a keyword that indicates the start of an interface declaration and
@end is a keyword that indicates the end of a declaration block. NSString is a standard
class used for storing textual strings.
The second part of a class definition in Objective-C - implementation, holds
information about how actually methods work. An example of the same class
implementation is shown in Code snippet 2.

Code snippet 2. Implementation of a Person class.

@implementation Person
- (NSString *)getFullName {
 return [firstName stringByAppendingString:lastName];
}
@end

Here @implementation indicates the start of the implementation block, and @end
again shows the end of a block. The class contains only one method that is needed to
be implemented - getFullName.

2.2.2 Method declaration

Methods in Objective-C can be of instance and class types. Instance method belongs to
an instance of a class and is declared with `-` sign in the beginning. Each instance
method in Objective-C takes a pointer implicitly to a data holding an object, for which
the method was called. In the methods body, this pointer can be referenced by the use
of reserved key self. The pointer to an instance of a base class is accessible through
keyword super. Class methods belong to a class itself and are declared with `+` sign in
the beginning. They do not reference any instance object, instead keyword self is used
to access a class (classes are also objects in Objective-C). An example of different
method declarations and their description is shown in Code snippet 3.

Code snippet 3. An example of different methods’ declarations.

+ (Class)class;
// сlass method that returns value of Class type
- (id)init;
// instance method that returns value of id type
- (void)addObject:(id)anObject;
// instance method which takes id parameter and returns value of id type
+ (NSString *)stringWithCString:(const char *)aCString
 usingEncoding:(NSStringEncoding)encoding;
// сlass method which takes (const char*) (NSStringEncoding) arguments and returns
// value of NSString type

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Mark Vasiv

12

2.2.3 Messages

The syntax of method invocation in Objective-C is shown in Code snippet 4. Here
receiver is the object which will execute the method, and methodOne is a method to
be invoked.

Code snippet 4. An example of message send.

[receiver methodOne];

If the method takes any argumets, these are declared just after the method name and
each argument is written after the colon. An example of such methods is shown in
Code snippet 5.

Code snippet 5. An example of methods with parameters.

[receiver methodWithParameter:1];
[receiver methodWithFirstArgument:10 andSecondArgument:20];

If method returns any object, it is possible to use nested syntax, so that the return
value of the first invocation is used as receiver for the next method. This syntax can be
seen from Code snippet 6.

Code snippet 6. An example of nested syntax

[label setText:[person getFullName]];

Nested construct shown in Code snippet 5 can be rewritten using two separate lines of
code, which will better explain the order of execution that is taking place when such
syntax is used. Cosider Code snippet 7, where such equivalent is shown.

Code snippet 7. Decomposition of nested syntax.

NSString *fullName = [person getFullName];
[label setText:fullName];
	

In fact, a more accurate name for the method’s invocation in Objective-C is message
sending. In the previous example shown in Code snippet 7, setText: is called a method
selector and setText:fullName is the actual message. Such terminology is explained by
the peculiarities of the runtime library. The library itself and messaging will be
explained in a more detail in Chapter 2.2.10 Runtime.

2.2.4 Inheritance

The parent of most of the classes in Objective-C is NSObject. NSObject implements
some basic behaviors that are needed for the correct program's execution. The
interface of NSObject declares the isa invariant and some basic methods for

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Mark Vasiv

13

performing selectors, finding parent class, and related to memory management. These
methods are needed in any Objective-C class, so the NSObject is used as a root for the
most class hierarchies. Inheritance is declared in the class interface using the syntax
shown in Code snippet 8. 	

Code snippet 8. Inheritance syntax.

@interface MyClass : NSObject
@end

Objective-C does not support multi-inheritance, which means that classes can not have
multiple parents. However, very similar functionality can be achieved by the use of
protocols.

2.2.5 Protocols

A protocol is a mechanism for extending class functionality, by supporting extra
methods. In fact, a protocol is an anonymous interface that can be used by any class
whishing to support methods listed in this interface. This mechanism hides the actual
class of the object, exposing only protocol interface. If some class wants to utilize a
protocol, it should implement methods declared in the protocol. If a class does so, this
is called conforming to a protocol. The syntax of protocol declaration is shown in Сode
snippet 9. 	

Code snippet 9. Protocol declaration syntax.

@protocol ProtocolName
- (void)firstMethod;
- (void)secondMethod;
@end

If a class wants to indicate that it conforms to a protocol, it should state it in the
interface by placing name of the procotol after the class name. An xample of such
declaration is shown in Code snippet 10.

Code snippet 10. Protocol conformance syntax.

@interface MyClass <ProtocolName>
@end

Class MyClass used in the previous example should also implement methods
firstMethod and secondMethod normally in its implementation to successfully conform
to the protocol.

The benefits of protocols usage comes from the possibility to substitute a class name
in variable definition with an object conforming to a protocol. This enables us to use
protocols in multiple patterns, where the actual class name of the object is not known
or irrelevant. Even though in such situation the class of the object is not known, we still

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Mark Vasiv

14

know that it conforms to a protocol and provides a desired functionality. Consider the
example of such protocol usage in Code snippet 11.

Code snippet 11. An example of protocol usage.

@protocol PresenterProtocol
- (void)present;
@end
@interface ViewController : UIViewController
@property (strong, nonatomic) id<PresenterProtocol> presenter;
@end

@implementation ViewController
- (void)viewDidLoad {
 [super viewDidLoad];

 [self.presenter present];
}
@end

Here ViewContoller holds a reference to an object of type id, which represents any
type (void *), however, this object is indicated to conform to a protocol
PresenterProtocol. Therefore, it is safe to call method present declared in the protocol.
Presenter in fact, could be of any class, this information is irrelevant for the
ViewController as long as the object conforms to a protocol. This helps to uniform APIs
and reuse code.

2.2.6 Categories

Category is a structure, which is used to split a single class definition into multiple files.
Its goal is to ease the burden of maintaining large code bases by modularizing a class.
That prevents source code from becoming monolithic 10000+ line files that are
impossible to navigate, and makes it easy to assign specific, well-defined portions of a
class to individual developers. The syntax for declaring a category is shown in Code
snippet 12.

Code snippet 12. Category declaration syntax.

@interface MyClass (CategoryName)
- (void)additionalMethod;
@end

Here MyClass is the name of class that is being extended and CategoryName is the
name of the category. Parameter CategoryName is optional and can be omitted, this
results in a creation of so-called anonymous category or class extension. Class’
extenssions are often used in .m files to hide the internal part of class’ interface.
The syntax of implementation part of a category is a mixture of normal class
implementation and category declaration. Category implementation from previous
example can be seen in Code snippet 13.

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Mark Vasiv

15

Code snippet 13. Category implementation syntax.

@implementation MyClass (CategoryName)
- (void)additionalMethod {...}
@end

Any class can have as many categories as needed. However, it is important to
remember that if a category overrides a method declared in the class, during runtime
will be used the implementation declared in the category. If the class has multiple
categories that override the same method, runtime will use the implementation from
the latest imported category. That is not easily predictable behaviour, so overiding
methods inside of categories is usually avoided.

2.2.7 Properties

It is a common practice in object-oriented languages to use special methods – a setter
and a getter to access an invariant, where the first one sets the value of the invariant
and the latter returns the value of the invariant. That ensures data encapsulation by
hiding internal invariants. The properties were designed to lighten up the definition of
setters and getters by using short syntax, which is interpreted by the compiler to
automatically generate described above methods.

Properties are declared in the interface of a class by declaring the name, class, and
attributes, which will be covered shortly. The example of property declaration is shown
in Code snippet 14.

Code snippet 14. Property declaration syntax.

@property (strong, nonatomic) NSString *firstName;

This notation will tell the compiler to generate an invariant of type NSString with the
name _firstName. The compiler will also generate a getter and a setter for this
invariant with corresponding names and signatures. The methods generated for the
property in the previous example are shown in Code snippet 15. 	

Code snippet 15. Methods automatically generated for a property.

- (NSString *)firstName;
- (void)setFirstName:(NSString *)firstName;

The attributes to be specified when declaring properties determine the manner, in
which a getter and a setter are generated. These attributes can be divided into the
following groups:
- accessibility attributes (readonly / readwrite),
- ownership attributes (strong / copy / assign / weak),
- atomicity attributes (atomic / nonatomic).
Explicitly or implicitly the attributes of all types are used in each property.

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Mark Vasiv

16

Accessibility attributes

readwrite - indicates that the property is available for read and write, therefore a
setter and a getter are generated. This attribute is set by default to all properties.

readonly - indicates that the property is read-only, only a getter is generated.

Ownership attributes

strong - indicates that the generated setter will increase the reference count by one on
the assigned object and decrease the reference count by one on the object that
previously was referred by the property. This is the default value when using
Automatic Reference Counting (ARC). Memory management is described in more
detail in Chapter 2.2.9 Memory management and ARC.

copy - indicates that in the generated setter the value of a corresponding instance
variable will be assigned to the return value of copy message sent to the assigned
object. The use of this attribute is only possible if the class is not mutable and
conforms to protocol NSCopying, which guarantees that it can respond to the copy
message.

weak - ensures that the property only stores the address of the assigned object,
without any effect to the reference count. When the object is deleted from the
memory, the value of such property will become nil, which will prevent the app from
crashes if any message is further being sent to this property.

assign - the same as weak, however, the value of the property will not become nil
when the referenced object is released from the memory. This attribute is usually used
with non-ARC types or primitive data types.

Atomicity attributes

atomic - ensures that the getter and the setter for the property are generated in a
thread-safe way. If two threads simultaneously will call the setter and the getter
methods, one of them will be blocked until another one is executed. This is the default
value.

nonatomic - opposite to atomic, auto-generated getter and setter are not thread safe.
Due to the absence of additional thread-safe logic, the getter and the setter work
faster.

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Mark Vasiv

17

2.2.8 Primitive types

As soon as Objective-C is a superset over the C language, it supports all the raw types
from C. This includes int, double, float, etc. Even though all these types are supported,
it is discouraged to use them in favor of Objective-C types which are typedefs on these
C types. For example, NSInteger is an Objective-C raw type which is bridged to int
under the hood.

2.2.9 Memory management and ARC

As stated in the official Apple documentation [6], memory management is the process
of alllocating memory during program’s runtime. More generally speaking, in terms of
Objective-C it is a way of distributing ownership among multiple pieces of data. The
following chapter is mostly based on the related topic in the documentation.

Object creation

All the objects in Objective-C are created in the dynamic memory, therefore the
creation of the object consists of two steps - memory allocation and initialization of its
invariants. To allocate the memory for the object message alloc is sent, and message
init is used for object initialization. These two methods can be combined together by
using method new. Code snippet 16 is used to illustrate these methods.

Code snippet 16. An example of object creation.

MyClass *firstObject = [[MyClass alloc] init];
//Object is created and ready for use
MyClass *secondObject = [MyClass new];
//Object is created and ready for use

Lifetime of an object

Objective-C uses reference count paradigm to manage object creation and destroy.
Any object has an associated integer counter, which represents how many different
pointers reference it. Objects which reference the object are responsible for
incrementing and decrementing the counter. When the counter is decreased to the
value of 0, the object receives message dealloc, and runtime assumes that it is
released from the memory.

When class method alloc is sent, the object reference counter automatically
increments to the value of 1. Method retain increases this value by one, release
decreases the value by one. These methods are implemented by NSObject. The correct

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Mark Vasiv

18

work with reference counter ensures that the app does not have memory leaks and
overall behaves correctly. Usually, this work is done in getter and setter methods.
Code snippet 17 shows the example of working with reference counter. The method
shown in the snippet is the setter for the invariant of type NSString (which is an
object).

Code snippet 17. An example of working with reference counter.

- (void)setText:(NSString *)text {
 [text retain];
 //increment reference counter of the received object
 [_text release];
 //decrement reference counter of current invariant
 _text = text;
 //set the value of the invariant to a new pointer
}

Retain method here ensures that text variable will not be released immediately, and
release decrements reference counter of the invariant to release it from memory.

Retain cycle

Retain cycle is a condition when two objects keep a reference to each other and are
retained. It creates a retain cycle since both objects try to retain each other, making it
impossible to release any of them. After releasing one of the objects its retain count
will not be zero as it is being retained by another object and vice versa. This causes
memory management issue. To resolve a retain cycle, one of the retained objects
should use a weak pointer to another, this way the release of these objects will be
possible.

Automatic reference counting

Starting from Xcode 4.2 Apple LLVM compiler comes with a mechanism of Automatic
Reference Counting (ARC). As described in the LLVM documentation [7], It is not a
garbage collection mechanism, controversially ARC works in the build time during code
analysis. During compilation, ARC analyzes the code and automatically places retain
and release calls where is needed. This simplifies the memory management process,
reducing it to the correct use of property attributes. It does not provide a cycle
collector, therefore lifetime of the objects must be explicitly managed by the
programmer, breaking cycles manually or with weak or unsafe references. 	

2.2.10 Runtime

Objective-C was conceived as an add-in to the C language, adding to it the support of
the object-oriented paradigm. In fact, Objective-C has a fairly small set of keywords

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Mark Vasiv

19

and control structures over ordinary C. As stated in the documentation guide [8], the
main power of the language is the runtime library, which provides a set of functions
that extends it, realizing its dynamic capabilities and running OOP. The runtime library
is open-source and can be found on Apple’s open source website [9].

The functions and structures of the runtime library are defined in several header files:
objc.h, runtime.h, and message.h. Firstly, let us look at the file objc.h and determine
what the object is in terms of the runtime. Relevant header part is shown in the Code
snippet 18.

Code snippet 18. Object representation in objc.h.

/// An opaque type that represents an Objective-C class.
typedef struct objc_class *Class;

/// Represents an instance of a class.
struct objc_object {
 Class isa OBJC_ISA_AVAILABILITY;
};

The object in the process of the program is represented by an ordinary C-structure.
Each Objective-C object has a reference to its class - isa pointer. In turn, the class also
represents a similar structure. Relevant header part is shown in Code snippet 19.

Code snippet 19. Class representation in objc.h.

struct objc_class {
 Class isa OBJC_ISA_AVAILABILITY;
};

A class in Objective-C is an object and it also has an isa-pointer to the "class of a class",
the so-called metaclass in terms of Objective-C. Similarly, C-structures are defined for
other entities of the language. Corresponding lines in the objc.h header are shown in
Code snippet 20.

Code snippet 20. Other C-structures from objc.h.

/// An opaque type that represents a method in a class definition.
typedef struct objc_method *Method;

/// An opaque type that represents an instance variable.
typedef struct objc_ivar *Ivar;

/// An opaque type that represents a category.
typedef struct objc_category *Category;

/// An opaque type that represents an Objective-C declared property.
typedef struct objc_property *objc_property_t;

/// An opaque type that represents a method selector.
typedef struct objc_selector *SEL;

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Mark Vasiv

20

In addition to defining the basic structures of the language, the library includes a set of
functions that work with these structures. They can be conditionally divided into
several groups:

- Manipulating classes
- Creating new classes
- Introspection
- Manipulating objects

Messaging

As described in the documentation [8], messages in Objective-C are not bound to
methods’ implementation until runtime. The compiler converts a message expression
into a call on a messaging function objc_msgSend. This function takes the receiver and
the name of the method mentioned in the message (the method selector) as its two
principal parameters. If method takes any arguments, these are also passed to the
objc_msgSend. The prototype of the function is defined in Code snippet 21.

Code snippet 21. Prototype of objc_msgSend.

id objc_msgSend (id self, SEL _cmd, id arg1, ...);

The call to objc_msgSend initiates the process of finding the implementation of the
method corresponding to the selector passed to the function. The implementation of
the method is searched in the so-called class dispatching table. The possible simplified
implementation of the objc_msgSend is shown in Code snippet 22.

Code snippet 22. Theoretical implementation of objc_msgSend.

id objc_msgSend (id self, SEL _cmd, id arg1) {
 IMP methodFunction = [[self class] methodForSelector:_cmd];
 return methodFunction(self, _cmd, arg1);
}

Since a process of finding a method in the dispatch table can be quite long, each class
has an associated methods cache. After the first call to any method, the result of the
search for its implementation is cached. This is schematically shown in Figure 1.

Figure 1. Methods’ cache illustration.

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Mark Vasiv

21

If the implementation of the method is not found in the class itself, the search
continues up the inheritance hierarchy - in the superclasses of that class. This process
is illustrated in Figure 2.

Figure 2. Querying classes’ hierarchy for method’s implementation.

If the result is not found when searching the hierarchy, the dynamic search mechanism
is used - one of the following methods is called: resolveInstanceMethod or
resolveClassMethod. That enables a class to dynamically add a method
implementation during runtime. To do that, the class should implement one of these
methods, in which add a method using runtime library and return YES, indicating that
runtime should restart the message send. An example of this is shown in Code snippet
23.

Code snippet 23. An example of dynamic method addition.

+ (BOOL)resolveInstanceMethod:(SEL)aSelector {
 if (aSelector == @selector(myDynamicMethod)) {
 class_addMethod(self, aSelector, (IMP)myDynamicIMP, "v@:");
 return YES;
 }

 return [super resolveInstanceMethod:aSelector];
}

If runtime can not find a method implementation using described methods, it switches
to its last resort – message forwarding. This enables the receiver to forward method
execution to a different object.

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Mark Vasiv

22

The runtime sends the object a forwardInvocation: message with an NSInvocation
object, which encapsulates the original message and the arguments that were passed
with it. If the class wants to redirect the message, it should implement
a forwardInvocation: method. An example of this redefinition is shown in Code snippet
24.

Code snippet 24. An example of forwarding an invocation.

- (void)forwardInvocation:(NSInvocation *)anInvocation {
 if ([someOtherObject respondsToSelector:[anInvocation selector]]) {
 [anInvocation invokeWithTarget:someOtherObject];
 } else {
 [super forwardInvocation:anInvocation];
 }
}

Method swizzling

As explained by Mattt Thompson in his article ”Method Swizzling” [10], method
swizzling is the process of changing the implementation of an existing selector during a
runtime. It is especially useful with the classes, which implementation is hidden during
compile time. This technique uses the peculiarities of the runtime described in the
previous chapter. Consider Code snippet 25 which holds a NSMutableArray category
and adds a logging functionality when the object is added to the array.

Code snippet 25. An example of method swizzling.

@implementation NSMutableArray (Logging)
+ (void)load {
 Class class = [self class];

 SEL originalSelector = @selector(addObject:);
 SEL swizzledSelector = @selector(custom_addObject:);

 Method originalMethod = class_getInstanceMethod(class, originalSelector);
 Method swizzledMethod = class_getInstanceMethod(class, swizzledSelector);

 class_addMethod(class, originalSelector,
 method_getImplementation(swizzledMethod),
 method_getTypeEncoding(swizzledMethod));

 class_replaceMethod(class, swizzledSelector,
 method_getImplementation(originalMethod),
 method_getTypeEncoding(originalMethod));
}

- (void)custom_addObject:(id)object {
 [self custom_addObject:object];
 NSLog(@"Add object: %@", object);
}
@end

First of all, we need to add our custom method to a class, this is done using
class_addMethod function, and then we can replace methods in the dispatch table
using class_replaceMethod. Another approach of doing that is by using function

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Mark Vasiv

23

method_exchangeImplementations. Lastly, we need to implement our swizzled
method custom_addObject. We need to call custom_addObject in its body, so that the
original method is invoked. It can be slightly confusing, however, such method
invocation would call original addObject: method as soon as we already changed their
implementations. It is important to notice that the swizzling method affects global
class’ state and, therefore, we need to minimize the possibility of race conditions.
Doing swizzling in the load method guarantees that it would be done just after the
class initialization (just before it was used for the first time).

Associated objects

Categories in Objective-C can extend class functionality by adding extra methods,
however, they are incapable of adding extra invariants, which can be quite useful
sometimes. As described by Colin Wheeler in his article ”Understanding the Objective-
C runtime” [11], it is possible to achieve such behaviour with the use of the runtime
library. Consider that we want to add a new property to a standard class UITableView -
a reference to the placeholder that will be displayed when the table is empty. The
possible implementation of that with the help of runtime is shown in Code snippet 26.

Code snippet 26. An example of associated objects use.

@implementation UITableView (Placeholder)
- (void)setPlaceholderView:(UIView *)placeholderView {
 objc_setAssociatedObject(self, @selector(placeholderView), placeholderView,
 OBJC_ASSOCIATION_RETAIN_NONATOMIC);
}

- (UIView *)placeholderView {
 return objc_getAssociatedObject(self, @selector(placeholderView));
}
@end

Here we use objc_setAssociatedObject and objc_getAssociatedObject functions to
respectively set and get the needed object. We pass @selector(placeholderView) as a
key to these functions. The key basically is a const char * value (array of chars in C
language) and can be whatever we want, however, it should uniquely identify the
associated object, therefore the use of selector in this case is quite handy.

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Mark Vasiv

24

2.3 Standard frameworks and tools

According to Apple documentation, iOS technologies can be represented as layers.
Lower layers represent fudamental services and technologies, and higher layers are
absract constructs built on these services. This allows developers to implement many
complex tasks on the high abstraction level, reducing the amount of work that they
would do if they worked on the lower level. However, some low level APIs are also
available for the developers, which is especially useful for specific tasks when working
with graphics, network and other complex areas. Technology layers are shematically
shown in Figure 3.

Figure 3. Layers of iOS technologies.

Most of system interfaces are delivered in the form of frameworks – packages
containing dynamic shared library and associated resources. The complete list of
supported frameworks is long and we are not going to cover all of them. Instead, we
are going to focus on two most commonly used frameworks – Foundation framework
and UIKit framework. The former provides Objective-C classes for basic data
management, and the latter provides key infrastructure for implementing Graphical
User Interface (GUI).

2.3.1 Foundation

The Foundation framework defines a base layer of Objective-C classes. That includes
the root object class, classes representing basic data types such as strings and byte
arrays, collection classes for storing other objects, classes representing system
information such as dates, and classes representing communication ports. Most of the
classes have intuitive API, and it would be pointless to describe how to add an object
to an array or how to create a substring from a string. Methods’ names in Objective-C
are long and rich, enabling the reader to understand the meaning of the method
without knowing it beforehand.

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Mark Vasiv

25

2.3.2 UIKit

The UIKit framework is the central UI framework in the iOS SDK. It provides the classes
needed for the user interface and UI related events handling. It encapsulates all the
objects required to support the UI of the app – windows, views, buttons, labels,
controllers, and much more. Abstractly all the classes can be divided into two
categories – views and controllers. Views provide the functionality of drawing and
handling user interaction. Controllers are used to manipulate views. Developing an app
usually requires subclassing of UIKit classes to override the standard behavior and
inject effects into the lifecycle of these objects. Some basic controllers and views are
used more frequently than others; they will be covered in this chapter.

UIViewController

As stated in the documentation [12], a view controller is responsible for managing a
set of views that build up the portion of the app’s UI. Usually, each view controller is
assigned an independent full-size screen of the app, for example, a login screen would
require a distinct view controller. A view controller has an associated view (stored in
the property view). This view serves as a container for any other UI components. A
view controller manages the position of views stored in its view, fills them with data,
and responds to user events coming from them. It also handles a data coming from
other objects, communicates with other view controllers and creates new ones if
needed. Subclassing UIViewController enables the programmer to receive view-related
system notifications. That is done through the overriding of standard
UIViewController's methods responsible for view’s lifecycle. For example, methods
viewWillAppear and viewWillDissappear. The full list of these methods and a related
diagram are shown in Figure 4.

Figure 4. View lifecycle.

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Mark Vasiv

26

This methods’ list is not exhaustive. UIViewController supports a significant amount of
different notification-like methods and multiple protocols. Listing all of these methods
would be pointless, however, the overall concept of its behavior and purpose should
now be apparent.

UINavigationController

As stated in the documentation [13], a navigation controller is used to set up a
navigation between view controllers in a hierarchical manner. To support this, the first
view controller in the app should be set up as the root view controller of the
navigation controller. Then navigation controller can be used to insert new controllers
by using method pushViewController:animated:. After the method invocation, pushed
view controller is added to the navigation stack and displayed with a preferred
animation. Hierarchy, in this case, means that the navigation inside a navigation
controller works like a stack – it is linear, it has root view controller, and it supports
addition of new view controllers as well as removal of the last view controller currently
in the stack. Navigation stack is accessible through the property viewControllers of a
navigation controller; it is an array of displayed controllers. Naturally, storing view
controllers inside an array leads to their retention in the memory, so even not
currently displayed controllers can still receive notifications, delegate methods
invocations and thus they continue to live and work.

Navigation controller also supports a navigation bar – a control displayed on top of the
view, storing the title of currently displayed view and buttons at left and right sides. All
the elements of navigation bar are customizable. Usually, the left button is reserved to
perform a back or cancel action – popping currently displayed view controller.
Apart from displaying view controllers with the help of a navigation controller, it is also
possible to use modal presentation. Instance method presentViewController:animated:
of UIViewController class is used to accomplish that. In case of modal presentation,
currently used navigation stack is not modified. This type of presentation is mainly
used to show small controllers like menus or to support particular kinds of animations.
In general, the choice regarding needed presentation type is based on the navigation
logic of the app, UI style, and content that each view controller stores.

UITableView

A table view in contrast to objects described before is not a controller but a view. As
described in the documentation [14], It is used to display content in a single column in
a form of rows. As soon as UITableView is a subclass of UIScrollView it automatically
provides scrolling behavior. A table view is usually meant to display lists of similar data
– for example, a list of contacts. Each data entry in the table view is a separate view
called a cell – a subclass of UITableViewCell class. UITableView has a powerful
performance optimization built-in – the mechanism of cells’ reuse. Each table view has

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Mark Vasiv

27

an associated pool of reusable cells. Before working with a table view, it is needed to
register cells’ subclasses or Interface Builder files to be associated with that table view
by the use of reuse identifiers. A reuse identifier is a string, which uniquely describes a
sub-pool of cells. Reuse identifiers are used to obtain cells from a table view’s pool.
The internal logic of a table view regulates how cells are rendered and when. Cells that
go off screen are removed from the table view and are added to the reusable pool.
When the user starts scrolling, and the new cell is needed, it is not being created from
scratch, and instead, table view obtains it from the reusable pool. The cell returned
from the pool is just an old cell that was previously used and went off screen. If all the
cells standing behind one reuse identifier are composed in the same way, the only job
to display a new cell is to fill it with data. A table view does not need to create view
objects, perform a complete layout of cell’s views, and calculate their sizes every time,
which makes the process much easier and quicker.

The API used to fill a table view is based on the delegate pattern. There are two major
protocols – UITableViewDataSource and UITableViewDelegate. The first one is used to
provide a table view with data, and the second one is used to customize the look of a
table view and to inject some custom behaviors based on events happening to a table
view.

2.3.3 Concurrency and libdispatch

With the proliferation of multicore CPUs increases the need of making the app
concurrent, taking all advantages of modern processors. As explained in the
documentation [15], although iOS is capable of running multiple programs in parallel,
most of these programs run in the background mode, which eventually blocks their
execution from active system use. Only the app that is in the foreground and keeps
user's attention is allowed to fully load the hardware. Even though only the active app
is allowed to take most of the hardware resources, if it has a lot of work to do but
keeps only a fraction of the available cores occupied, these extra processing resources
are wasted. Each application in iOS is made up of one or more threads, each of which
represents a single path of execution through the application's code. Every application
starts with a single thread, which runs the application's main function. This thread is
called a main thread and it is only destroyed when the application is terminated.
Applications can spawn additional threads to balance work between CPU cores. When
an application spawns a new thread, that thread becomes an independent entity
inside of the application's process space. Each thread has its own execution stack and
is scheduled for runtime separately by the kernel. There are multiple APIs in iOS that
allow working with threads directly - for example, POSIX threads or NSThread,
however, these APIs are not frequently used in favor of more abstract APIs working
with thread pools. Threads are a low-level tool that must be managed manually. Given
that the optimal number of threads for an application can change dynamically based
on the current system load and the underlying hardware, implementing a correct
threading solution becomes extremely difficult. In addition, the synchronization

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Mark Vasiv

28

mechanisms typically used with threads add complexity and risk to software designs
making it more error-prone. The use of dispatch queues abstracts away the idea of
threads by letting the system to perform their creation and management and leaving
only the payload for the app developer.

Grand central dispatch

Grand Central Dispatch (GCD) is a part of the open source libdispatch library,
supporting thread pools or dispatch queues. A dispatch queue is an object-like
structure that manages the tasks that are submitted to it. All dispatch queues are first-
in, first-out (FIFO) data structures. Thus, the tasks added to a queue are always started
in the same order that they were added. There are two types of dispatch queues -
serial and concurrent. Serial queues execute one task at a time, delaying execution of
any further tasks until the previous is completed. The main queue which is created
during the app start is a serial queue. Concurrent queues execute multiple tasks
simultaneously, however tasks execution still begins according to FIFO order. There are
some predefined concurrent queues created by the system, which differ in the
execution priority.

The task is submitted to a queue using block objects, which define a self-contained
units of work. There are few possibilities to submit a block to a dispatch queue. All of
them are done by use of C functions from the dispatch family. There are two functions
that are often used - dispatch_async and dispatch_sync. When dispatch_async is called
it submits the block to a queue and immediately returns. Controversially dispatch_sync
waits for the dispatched block to be executed and returns only after that, this blocks
the caller thread until submitted block is executed. Code snippet 27 shows the syntax
of basic dispatch operations - creating a queue, obtaining a global queue and
dispatching a block to a queue.  

Code snippet 27. Syntax of basic operations on dispatch_queue objects.

dispatch_queue_t myQueue = dispatch_queue_create("com.example.MyQueue",
 DISPATCH_QUEUE_SERIAL);
//creates serial queue

dispatch_sync(myQueue, ^{
 //body of dispatched block
});
//dispatches a block synchronously to the created serial queue

dispatch_async(dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0), ^{
 //body of dispatched block
});
//obtains a default concurrent queue with priority default
//and then dispatches a block asynchronously to it

Grand central dispatch is a preferred API for multithreading in iOS since it maintains
the high performance, scalability and ease of use which is not possible with raw
threads. There many other possibilities for thread management that GCD offer,

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Mark Vasiv

29

however, they are not described here because they are not needed in the context of
the thesis.

2.4 Common patterns

iOS development has some unique mechanisms and techniques provided by the
system frameworks and Objective-C lanaguage. Some of them, especially related to
event handling, are going to be desribed in this chapter.

2.4.1 Key-value observing/coding

Key-value observing (KVO) and key-value coding (KVC) are highly bound together, that
is why we are going to cover them together.

Key-value coding

As stated in the documentation [16], key-value coding is a mechanism for accessing an
object’s properties indirectly, using strings to identify properties, rather than through
invocation of an accessor method or accessing them through instance variables.
There is an informal protocol, named NSKeyValueCoding, which should be
implemented for any class which wants to support KVC. NSObject class supports this
protocol, therefore all other classes which inherit from NSObject also conform to
NSKeyValueCoding.

The syntax for setting any invariant of an object using KVC mechanism is shown in
Code snippet 28. Here propertyName string is the name of the invariant that should be
changed and parameter value is the value that should be set to this invariant.

Code snippet 28. Syntax for setting a property with KVC.

[object setValue:value forKey:@"propertyName"];

There is also a way to set values for nested invariants. For example, an object of a class
Employee has a property of class Address named address, which in order has a
property of class NSString named postalCode. If it is needed to change a postalCode of
some particular Employee instance, the dot syntax in key path should be used. This
example is shown in Code snippet 29. Here dot syntax shows that we are accessing
property postalCode of the address property.

Code snippet 29. Dot syntax for setting nested properties with KVC.

[employee setValue:@"193080" forKeyPath:@"address.postalCode"];

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Mark Vasiv

30

KVC serves as a backbone for key-value observing.

Key-value observing

Documentation [17] states that key-value observing provides a mechanism that allows
objects to be notified of changes to specific properties of other objects. If to recall the
example from the previous sub-chapter, Employee object may need to be aware of
when certain aspects of Address instance change, such as the postalCode.
If these attributes are public properties of Address, the Employee could periodically
poll the Address to discover changes, but this is, of course, inefficient, and often
impractical. However, this is a perfect example of the KVO usage.

In order to observe such changes of an object, some requirements should be met:

1. The observed object, the Address, in this case, should be KVO compliant
2. The class that will be used to observe the property of another class should be

set as an observer.
3. A method named observeValueForKeyPath:ofObject:change:context: should be

implemented in the observing class.

All NSObject children are KVC and KVO compliant by default, so it can be assumed that
Address inherits from NSObject. To register for KVO notification, Employee object
should call method addObserver:forKeyPath:options:context:. This is illustrated in Code
snippet 30.

Code snippet 30. Registering for a KVO notification.

[self.address addObserver:self forKeyPath:@"postalCode" options:0 context:nil];

Here addObserver:forKeyPath:options:context is sent to the address object, indicating
that it should send notifications to self (which is the employee object) when postalCode
invariant changes. The options parameter, specified as a bitwise OR of option
constants, affects both the content of the change dictionary supplied in the
notification, and the manner in which notifications are generated, however, it is not
relevant for the example. The context pointer in the message contains arbitrary data
that will be passed back to the observer in the corresponding change notifications. In
this example it is safe to specify nil and rely entirely on the key path string to
determine the origin of a change notification, however, this approach may cause
problems for an object whose superclass is also observing the same key path.

After Employee object have sent message addObserver:forKeyPath:options:context: to
the address object, every time postalCode changes, Employee will receive
observeValueForKeyPath:ofObject:change:context: message with the information
about the change, therefore this method should be implemented. The method is
shown in Code snippet 31.

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Mark Vasiv

31

Code snippet 31. Receiving a KVO notifications.

-(void)observeValueForKeyPath:(NSString *)keyPath
 ofObject:(id)object
 change:(NSDictionary *)change
 context:(void *)context {
 if ([keyPath isEqualToString:@"postalCode"]) {
 //logic
 }
}

Here keyPath identifies which property have changed, object identifies the object on
which this change occurred, and the change is a dictionary that describes the changes
that have been made to the value of the property. Parameter context is the same
object which was sent as a context attribute when registering for observation.

Dictionary change contains multiple values, the supported keys for the dictionary and
corresponding values are as follows:

1. NSKeyValueChangeKindKey - An NSNumber object that contains a value
corresponding to one of the NSKeyValueChange enum values, indicating what
type of change has occurred.

2. NSKeyValueChangeNewKey - If the value of the kindKey entry is setting, and
new was specified when the observer was registered, the value of this key is
the new value for the attribute.

3. NSKeyValueChangeOldKey - If the value of the kindKey entry is setting, and old
was specified when the observer was registered, the value of this key is the
value before the attribute was changed.

4. NSKeyValueChangeIndexesKey - If the value of the kindKey entry is insertion,
removal, or replacement, the value of this key is an NSIndexSet object that
contains the indexes of the inserted, removed, or replaced objects.

5. NSKeyValueChangeNotificationIsPriorKey - If the prior option was specified
when the observer was registered, this notification is sent prior to a change.

Each object registered for notifications should also de-register when it no longer wants
to receive notifications. To do so, it should send a message
removeObserver:forKeyPath: to the object it was listening. Such call related to the
previous example is shown in Code snippet 32.

Code snippet 32. Removing a KVO observer.

[self.address removeObserver:self forKeyPath:@"postalCode"];

Implementation details

Automatic key-value observing is implemented using a technique called isa-swizzling or
class-swizzling, a feature possible because of objective-c runtime.
The isa pointer points to the object's class which maintains a dispatch table. This
dispatch table essentially contains pointers to the methods the class implements,

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Mark Vasiv

32

among other data. When an observer is registered for an attribute of an object the isa
pointer of the observed object is modified, pointing to an intermediate class rather
than at the true class. As a result, the value of the isa pointer does not necessarily
reflect the actual class of the instance.

2.4.2 IBOutlets and IBActions

As described in the Xcode help manual [18], Xcode has a tool for building user inteface
called Interface Builder (IB). The process of interface designing basically consists of
creating different view objects and controls using the builder. This structure then is
stored in the Extensible Format Language (XML) format. To connect view objects to the
code developer drags a desired control to the text editor. Such connection to a view
object is called IBOutlet. Figure 5 illustrates the process of creating an IBOutlet
connection.

Figure 5. Creating of IBOutlet.

It is also possible to generate a method, which will be fired when a certain control is
accessed by the user, for example, a button is being pressed. Such a connection is
called IBAction. Figure 5 shows how IBAction is set up.

Figure 6. Creating of IBAction.

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Mark Vasiv

33

During runtime the XML is parsed and all the view objects are created automatically by
the SDK. XML also stores the references to all IBOutlets and IBActions and fill them
when needed. A syntax for declaring IBOutlet and IBAction in code is shown in Code
snippet 33.

Code snippet 33. Syntax for IBOutlet and IBAction defenitions.

@property (strong, nonatomic) IBOutlet UITextField *usernameField;
- (IBAction)buttonPress:(id)sender;

2.4.3 NSNotification

As described in the documentation [19], NSNotification provides a mechanism for
sending events from one object to multiple. Notification encapsulates information
about the occured event. Objects that want to know about specific events should
register using NSNotificationCenter, which is resposible for handling this type of
events. When the event happens, a notification is posted to the notification center,
which immediately broadcasts the notification to all registered objects. The
mechanism abstractly is similar to the KVO, however, notifications are used for custom
events instead of value changes.

To register an object to receive a notification we need to invoke method
addObserver:selector:name:object: on the notification center, specifying the observer,
the selector, which the center should invoke on the observer, the name of the
notification it wants to receive, and from which object. If notification name is not
specified, the observer will receive all notifications from that object. If object is not
specified, the observer will receive notifications with name corresponsing to the
specified, regardless of the object associated with it. There is a default notification
center used for exhanging events within one process. It can be accessed using the class
method defaultCenter. To remove the observer from the notification center we need
to call method removeObserver: or removeObserver:name:object:.
To create a notification we need to call notificationWithName:object: or
notificationWithName:object:userInfo: methods. Then we can pass these notification
objects to the notification center using postNotification:. Consider example of
NSNotification usage in Code snippet 34.

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Mark Vasiv

34

Code snippet 34. An example of NSNotification posting and receiving.

//ViewController
static NSString *SignUpNotificationKey = @"UserSignedUp";
- (IBAction)signupButtonPress:(id)sender {
 BOOL success = [LoginManager signupWithUsername:self.usernameField.text
 andPassword:self.passwordField.text];

 NSNotification *notification = [NSNotification
 notificationWithName:SignUpNotificationKey
 object:nil
 userInfo:@{@"Success":@(success)}];

 [[NSNotificationCenter defaultCenter] postNotification:notification];
}

/Somewhere in a different class
- (void)registerForNotifications {
 [[NSNotificationCenter defaultCenter] addObserver:self
 selector:@selector(userSignedUp:)
 name:SignUpNotificationKey
 object:nil];
}

- (void)userSignedUp:(NSNotification *)notification {
 //Handle notification
}

Here we create and post a notification when the user presses signup button. We
encapsulate a boolean indicating a success of signup into the notification object. And
then we register for this notifications. From now, every time user presses the signup
button, the method userSignedUp: will be fired, containing the success of the signup
operation.

2.4.4 Delegation

As explained in the documentation [20], delegation is used when an object needs to
communicate with another object to send it some data or to query for some data. The
delegation pattern is implemented using protocols. In delegation an object outwardly
expresses certain behavior but in reality transfers the responsibility for
implementation of this behaviour to the linked object – its delegate. This helps to build
systems with clear reposibility scopes.

For example, let us take a look at view controller, which holds a table view and serves
as a delegate to this table view. The relevant code is shown in Code snippet 35.

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Mark Vasiv

35

Code snippet 35. An example of the delegate pattern.

- (void)viewDidLoad {
 [super viewDidLoad];
 self.tableView.delegate = self;
 self.tableView.dataSource = self;
}

-(NSInteger)tableView:(UITableView *)tableView
 numberOfRowsInSection:(NSInteger)section {
 return 10;
}

-(UITableViewCell *)tableView:(UITableView *)tableView
 cellForRowAtIndexPath:(NSIndexPath *)indexPath {
 UITableViewCell *cell = [tableView
 dequeueReusableCellWithIdentifier:@"cellId"];
 [self fillCellData:cell forIndexPath:indexPath];
 return cell;
}

- (void)tableView:(UITableView *)tableView
 didSelectRowAtIndexPath:(NSIndexPath *)indexPath {
 //Handle cell tap
}

First of all, we set self as a delegate and dataSource for the table view. If we take a look
at the UITableView interface we will see that both of those propoerties have id type
but conform to some protocols – UITableViewDataSource and UITableViewDelegate.
These properties are shown in Code snippet 36.

Code snippet 36. dataSource and delegate properties of UITableView.

@property (nonatomic, weak, nullable) id <UITableViewDataSource> dataSource;
@property (nonatomic, weak, nullable) id <UITableViewDelegate> delegate;

These protocols store methods used to control the behaviour of the table view. In the
view controller we implement all required methods of the UITableViewDataSource
protocol – tableView:numberOfRowsInSection: and tableView:cellForRowAtIndexPath:.
We also implement an optional method from the UITableViewDelegate to handle cell
taps. All these methods will be invoked by the table view when it needs to query some
data or to provide some data to its delegate.

2.4.5 Blocks

As described by Matt Gallagher in his article ”How blocks are implemented (and the
consequences)” [21], block is a self-contained, autonomous code fragment, existing
always into the scope of another programming structure, as for example the body of a
method. The code on the block can interact with the scope out of it, but what takes
place in the block is not visible to the scope out of it.

Blocks are objects, so they can be stored to data structures, as well as be returned
from methods, or assigned to variables. The syntax of declaring blocks as local

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Mark Vasiv

36

variables, properties and method argument differs, however, is recognizable and
similar. Let us have a look at how to declare a block as a local variable. That is shown in
Code snippet 37.

Code snippet 37. An example of block declaration as a local variable.

void (^simpleBlock)(void) = ^{
 NSLog(@"Block called!");
};

Here from left to right: void is a return type of the block, simpleBlock is the block name
and void is the type of input argumetns. ^{ } notation contains a body of the block,
which will be excuted when the block is called. The syntax of block calling is very
similar to a C function call. A call to a block described in the previous example is shown
in Code snippet 38.

Code snippet 38. Syntax of a block call.

simpleBlock();

An example of a block, which takes parameters and returns a value is shown in Code
snippet 34. This block takes two int arguments and returns their sum as an int.

Code snippet 39. An example of block declaration with input parameters.

int (^calculateSum)(int, int) = ^(int a, int b){
 return a + b;
};

2.4.6 MVC

As described in the documentation [22], the Model-View-Controller (MVC) design
pattern assigns objects in an application one of three roles: model, view, or controller.
The pattern defines not only the roles objects play in the application, but also the way
objects communicate with each other. Each of the three types of objects is separated
from the others by abstract boundaries and communicates with objects of the other
types across those boundaries. Schematically these objects and relations between
them are shown in Figure 7.

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Mark Vasiv

37

Figure 7. MVC diagram.

Model objects encapsulate the data specific to the application and define the logic and
computation that manipulate and process that data. A model object can have to-one
and to-many relationships with other model objects.
A view object is an object in the application that users can see. A view object knows
how to draw itself and can respond to user actions. A major purpose of view objects is
to display data from the application’s model objects and to enable the editing of that
data.

A controller object acts as an intermediary between one or more of the application’s
view objects and one or more of its model objects. Controller objects are thus a
conduit through which view objects learn about changes in model objects and vice
versa. Controller objects can also perform setup and coordinating tasks for the
application and manage the life cycles of other objects. Conceptually, controller layer
serves as a ”brain” for the app connecting view and model layers.

2.5 Common problems

Objective-C and iOS SDK introduce two big arcitecture problems that can be already
seen without even building an app. First one is the overload of the controller instance
in the MVC pattern (so-called Massive View Controller problem). And second one is the
variety of event-based mechanisms with different syntax.

2.5.1 MVC vs MVVM

The strict use of the MVC pattern can lead to the overload of a controller instance. A
controller is responsible for multiple not related to each other functionalities, incuding
view creaction and handling, view animations, user actions handling and accessing
model for quering and saving the data. This clearly overloads a single instance. Even
though there are techniques in Objective-C to divide a class into multiple files, an
abstractly controller instance still remains overloaded with resposibilities. Another
approach that can be used to avoid this problem is to modify the MVC pattern. There

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Mark Vasiv

38

are many other architecture patterns that can be used when developing iOS apps,
however, we are not going to go through all of them. The pattern we are going to
focus on and oppose to the MVC is Model-View-ViewModel (MVVM).

That is due to the following reasons:

- MVVM is a slight modification of the MVC, which makes it easier to refactor
MVC app to use MVVM

- MVVM can expose benefits of the ReactiveCocoa bindings, which are going to
be described later

According to the msdn article [23], the MVVM pattern was developed by Microsoft
architects in 2005 to simplify event-driven programming of user interfaces. Abstractly
the pattern is similar to MVC because it separates model, view and
presenter/controller logic. However, there are some important changes that are
making this pattern a solution to the discussed controller overload. In the MVVM a
model is responsible for data handling, a view is responsible for drawing the interface
and performing animations, and a ViewModel serves as a representation of a view
from the model perspective. It queries a model for the data, processes it and provides
a view with a convenient interface for getting this data. The important aspect of the
pattern is that ViewModel is not aware of its view. All the entities and relations are
shown in Figure 8.

Figure 8. MVVM diagram.

The implementation of MVVM usually suggests that UView and UIViewController
instances represent a view entity. Then, a ViewModel is assigned to each of the views
– it can be a subclass of NSObject. All the logic related to data processing is then
moved from UIViewController instance to the ViewModel. That is illustrated in Figure
9.

Figure 9. MVVM in iOS.

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Mark Vasiv

39

2.5.2 Event-based patterns

Another arcitecture problem in Objective-C is the existence of multiple patterns for
serving events. These patterns include IBActions, delegates, callbacks, NSNotifications
and KVO. All of them abstractly serve the same functionality – firing events when some
data or user input changes. However, they have a very different syntax, which creates
a problem in the code readability and ease of use. Multiple similar and related events
are treated differently in a different parts of the program. iOS SDK does not have an
API to uniform these patterns. However, it is clearly possbile to create some layer of
abstraction over these patterns to unify them. To acomplish that we are going to use
some interfaces of the ReactiveCocoa framework that are going to be covered in the
next chapter.

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Mark Vasiv

40

3 FUNCTIONAL REACTIVE PROGRAMMING

Functional Reactive Programming (FRP) is a declarative programming paradigm that
abstracts away the idea of mutable value with the help of signals. Signals encapsulate
the semantics of a mutable value that changes over time. This compound data type
allows capturing the temporal aspect of mutability better. Signals can also be
transformed with the help of functional operators.

In contrast to a traditional imperative programming, the declarative style of FRP hides
many not-important details, allowing programmers to do more with less code. The
original formulation of FRP can be found in the paper by Paul Hudak and Connan Elliot
[24], where they built an FRP system using Haskell language. Later works by Hudak and
others at Yale [25] [26] [27] demonstrate the evolution of the concept, modifying some
of the original ideas aiming to resolve inefficiencies of classical FRP. One of the ideas
proposed in these works affects the behavior of signals. The signals are described as
discrete entities that only change on events. That transforms the paradigm to be
event-driven, which may seem a too restrictive approach. However, as it turns out
many potential applications of FRP are event-oriented. That includes UI interfaces as
well as mobile apps more general. FRP combines aspects of more specific functional
and reactive programming paradigms.

3.1 Functional programming

Functional Programming (FP) tries to minimize the amount of the state by the
immutability of objects and to avoid side effects. Each function is designed to be a
clean mathematical function – it does not change any external state. That means that
each execution of the function with the same input will produce the same output. It is
common with the OOP that methods modify the state of the object, and this
manipulation often cannot be predicted by the method’s user. The result of these two
global differences in the FP is the ability to write maintainable, clear, self-definitive and
safe code. However, it is a problematic way to program mobile applications since
mobile apps heavily work with the user interaction, which ultimately leads to needing
to maintain and mutate a state. That is why using clear functional programming in
most of the client apps is not possible. And that is why we need reactive programming.

3.2 Reactive programming

The main building block of reactive programming is a data stream, which represents a
value change over time. That stream is an asynchronous mechanism that is used for
event propagation. Whenever a value of the variable changes (event happens), that
value is being transmitted to another part of the program using operators specified by

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Mark Vasiv

41

the programmer. That means, for example, that the change of user interface can
automatically be propagated to the model, changing some of its properties.
The possibility to express the intention in a short and declarative way enables
developers to minimize the amount of mutable state. Objects can automatically
change bound objects, without the need to explicitly command them to do so in the
body of functions.

3.3 Composition of paradigms

A composition of functional and reactive paradigms let us use reactive data streams
with short functional operators, making it easy to modify them achieving the desired
data flow. As soon as the resulting paradigm is based on events, it is possible to
overcome the problem of multiple event-based patterns in Objective-C. Moreover,
reactive bindings let us automatically bind variables in ViewModel and view entities of
the MVVM pattern.

3.4 Support in iOS

FRP is an abstract concept that can be used as a paradigm for building any software,
however, the support in any specific language or platform differs. Unfortunately, iOS
SDK cannot provide tools for creating such software, and we apparently cannot modify
the SDK’s code. Therefore, the only possible way to imply the paradigm is to build a
new layer of abstraction over the SDK hiding its object-oriented nature. Multiple
frameworks are providing this functionality for many systems and languages – Rx
family, ReactNative, ReactiveCocoa. When we choose one, it is essential to understand
that the abstraction level and the overall app performance usually correlate: the more
abstract the code - the lower the performance. Hence we need to find an optimal
balance between these attributes. ReactiveCocoa framework integrates with the SDK
modifying some of its public interfaces and provides its own interfaces for building
reactive streams. Even though it extends standard classes, the framework does not
serve as the complete proxy between the app logic and the SDK. It is done with the
help of Objective-C dynamic nature – its ability to seemingly modify existent classes
without the need to access their source code. The whole language is powered by the
runtime library, so using it to add some functionality should not impact the
performance. Therefore, it can be considered as a good option for iOS development
using Objective-C.

3.5 ReactiveCocoa

As stated by Mattt Thompson [28], ReactiveCocoa is an open source library that brings
Functional Reactive Programming paradigm to Objective-C. It was created by Josh

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Mark Vasiv

42

Abernathy and Justin Spahr-Summers in the development of GitHub for Mac. The
framework was inspired by .Net Reactive Extensions library.

3.5.1 Basic classes

As explained in the ReactiveCocoa documentation [29], the central class of the
ReactiveCocoa is RACSignal. This class represents a data stream in the app. The signal
encapsulates information about mutable data change over time. More simply, it sends
events to its subscribers. There are three possible types of events: next, completed and
error. The convention says that any signal can send multiple next events, and only one
completed or error event. After completed or error is sent no more next events will be
sent. The objects that want to receive events coming from a signal should subscribe to
that signal with the help of multiple methods of subscribe family, for example,
subscribeNext:.

The signals can unify all event-driven patterns in the general iOS development. Indeed,
many standard classes have corresponding methods to provide a RACSignal interface
instead of conventional one. For example, a category of UIButton supplied by RAC has
method rac_signalForControlEvents: which serves as a replacement for a standard
IBAction.

Apart from obtaining RACSignal instances from categories of standard classes, the
instance can be created manually with the help of class method createSignal:. That is
usually done to create a request-like object. Consider Code snippet 40 with an example
of manual signal creation. The method createSignal: takes a block argument, which is
going to be the body of the signal. This block is going to be called for each subscription.
In the example, the signal is designed to handle login operation. The signal block is
used to make an actual request and to send response to the subscriber, which it
receives as a parameter. The retun vaue of the method is RACDisposable object. It is an
object that holds instructions on how resources should be cleaned up after the signal’s
deallocation. In this case we want to cancel the request if it did not finish upon
deallocation of the signal.

Code snippet 40. An example of manual RACSignal creation.
RACSignal *loginSignal = [RACSignal
 createSignal:^RACDisposable *(id<RACSubscriber> subscriber) {
 NSError *error;
 NSString *requestId = [self loginUser:username password:password error:&error];
 if (!error) {
 [subscriber sendNext:@YES];
 [subscriber sendCompleted];
 } else {
 [subscriber sendError:error];
 }
 return [RACDisposable disposableWithBlock:^{
 [self cancelRequest:requestId];
 }];
}];

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Mark Vasiv

43

Code snippet 40 (continued).

[loginSignal subscribeNext:^(id x) {
 //handle login success
} error:^(NSError *error) {
 //handle login error
}];

Another exciting class coming with ReactiveCocoa is RACTuple. It is a representation of
a tuple in many other languages. The tuple ships with two associated macros –
RACTuplePack and RACTupleUnpack, which are used to create a tuple or to unwrap its
values. RACTuple behind the scenes is powered by NSArray class, and it supports
obtaining elements by index. Despite NSArray, RACTuple has built-in security
optimizations, for example, not allowing to get an out-of-index exception.

ReactiveCocoa has many macros for common operations. Two the most used are RAC
and RACObserve. RAC is used to set up a reactive binding theoretically described
earlier – it automatically updates a value of a variable standing by passed key path
according to the next value sent by a signal. RACObserve is used as a replacement for
KVO API. It uses the same KVO but provides a RACSignal interface instead. RACObserve
also takes keypath as a parameter and creates a signal which sends values when the
property value changes. Consider an example of these macros use in Code snippet 41.
Here the value of label’s text is bound to the model’s title variable. That means that
every time string title is changed, the text of the label is updated.

Code snippet 41. An example of RAC and RACObserve macros.

RAC(self.titleLabel, text) = RACObserve(self.viewModel, title);

Keypaths that are passed to described macros are not NSString keypaths that are used
with Cocoa Touch API’s. Instead, they are variable names that are then translated by
the ReactiveCocoa to NSString keypaths. That ensures type-safety, enabling the
programmer to identify the desired object correctly.

Apart from signal and data representation, ReactiveCocoa has a class for handling
multithreading. The class is called RACScheduler and is used to schedule work
encapsulated in the block. The mechanism is similar to the one used with GCD. Indeed
under the hood RACScheduler stores a pointer to a dispatch_queue, which is used to
perform the needed work. Schedulers are useful when working with RACSignal’s
operators to easily balance different blocks between different queues.

3.5.2 Basic operators

The power of signals comes with functional operators that can be applied to them.
Operators are used to modify the behavior of a signal. Syntactically they are
RACSignal’s instance methods, which return a new RACSignal instance. That enables us

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Mark Vasiv

44

to chain operators together, building a complex data stream handlers. There are many
operators, some of which are common to other functional-style frameworks, and some
are not. We will not go through all of them but will examine the most common ones.

Operator filter is respectively used to filter next events going through the signal. A
block passed to the operator receives a next event and returns a boolean indicating
whether this event should be passed. The example in Code snippet 42 shows how the
filter operator is used to pass only even numbers.

Code snippet 42. Example of filter operator use.

RACSignal *filtered = [signal filter:^BOOL(NSNumber *number) {
 return (number.integerValue % 2 == 0);
}];

Another commonly used operator is map. It is used to map each next value of the
signal to a new object. Code snippet 43 shows how it can be used to map all even
numbers to the string “Even” and all odd numbers to the string “Odd”.

Code snippet 43. Example of map operator use.

RACSignal *mapped = [signal map:^id(NSNumber *number) {
 if (number.integerValue % 2 == 0) {
 return @"Even";
 } else {
 return @"Odd";
 }
}];

The operator flattenMap is somehow similar to map operator, but it can only return an
instance of a RACSignal in its block. The operator is mainly used to chain independent
operations together. For example, we can use it to perform multiple network
operations. Code snippet 44 shows how it is done by chaining login and loadContacts
operations.

Code snippet 44. An example of the flattenMap operator use.

[[[[self loginUser:user password:pass]
 flattenMap:^__kindof RACSignal *(NSString *userId) {
 return [self loadContactsOfUser:userId];
 }]
 deliverOnMainThread]
 subscribeNext:^(NSArray *contacts) {
 //Display contacts
 }];

Here method loginUser:password: returns a signal, which is going to perform login
operation when subscribed to and will send userId after successful login. Method
loadContactsOfUser: also returns a signal, and is used to perform loading of contacts, it
sends an array of loaded contacts. We chain two signals together with a help of
flattenMap operator so that when the first signal succeeds we automatically switch to
the next signal. We also use operator deliverOnMainThread, which will pass all the

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Mark Vasiv

45

next events to the main queue. And finally, we subscribe to the resulting signal to
handle loaded contacts. This short declaration enables us to chain independent
operations, perform them on different queues and then pass the result to the main
thread automatically.

In Code snippet 44, we also used operator deliverOnMainThread. That is a specific
operator derived from the deliverOn. Operator deliverOn takes arbitrary RACScheduler
as an argument and is used to pass the events of the resulting signal to the scheduler.
deliverOnMainThread is the same deliverOn with the main thread scheduler.
Some operators are applied not to one signal but to multiple. For example, a merge
operator is used to combine values from multiple signals. If operator merge is applied,
the resulting signal will send events from all passed signals. Example 45 shows the
syntax of merge operator use. Here the resulting merged signal will send values from
signal1, signal2, and signal3 exactly when they do.

Code snippet 45. An example of merge operator use

RACSignal *merged = [RACSignal merge:@[signal, signal2, signal3]];

Operator combineLatest is similar to merge operator – it also takes multiple signals
and combines their values. The difference is that combineLatest sends RACTuple
objects with the latest values from all signals. The value is emitted from the signal
whenever each of the source signals sends new value. The resulting signal would send
a value if only each of combined signal sent at least one next. The syntax for
combineLatest operator is shown in Code snippet 46.

Code snippet 46. Example of combineLatest operator use.

RACSignal *combined = [RACSignal combineLatest:@[signal, signal2, signal3]];

Another abstract subset of operators are the ones responsible for injecting side
effects. Visually they look similar to subscription methods, however, they are not
performing any subscription at all. Instead, they are used to inject work in the form of
the block that is executed when corresponding event occurs. The side effect is
performed only in case of the subscription. The goal of these operators is to isolate
side effects into a definitive structure, which explicitly points that this is a side effect.
In the FRP style programming this is especially helpful because we try to minimize side
effects. Because that is not entirely possible with client programming based on OOP
language, we can use the mechanism of these operators to distinguish side effects
from regular functions' behavior making code clearer. The example of these operators
usage is shown in Code snippet 47.

Code snippet 47. An example of doNext operator usage.

[[signal doNext:^(id x) {
 //perform side effects
}] subscribeNext:^(id x) {
 //perform actual work
}];

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Mark Vasiv

46

Here we use operator doNext to perform side effects. The block passed to the operator
will be called for each next event. After the use of the operator, we subscribe to signal
to perform a standard behavior.

3.6 Syntactical difference between ReactiveCocoa and iOS SDK

Even though ReactiveCocoa is an addition to the iOS SDK and is built on top of the
same frameworks and Objective-C, it can provide a clear functional reactive code style.
Let us have a look at the example of form validation logic shown in Code snippet 48.
This code is written without the help of ReactiveCocoa. Here the logic is fragmented
across multiple methods. In a standard lifecycle callback viewDidLoad, we set our view
controller as a delegate for the input text fields. Then we listen for a delegate’s
method textFieldDidEndEditing:, use method isFormValid for validating text fields and
enabling signupButton. And finally, we use signupButtonPress: to signup a new user.

Code snippet 48. Conventional validation of a signup form.

@implementation ViewController
- (void)viewDidLoad {
 [super viewDidLoad];
 self.usernameField.delegate = self;
 self.passwordField.delegate = self;
 self.passwordConfirmationField.delegate = self;
}

- (BOOL)isFormValid {
 return self.usernameField.text.length > 0 &&
 self.passwordField.text.length > 0 &&
 [self.passwordField.text isEqual:self.passwordConfirmationField.text];
}

- (void)textFieldDidEndEditing:(UITextField *)textField {
 self.signupButton.enabled = [self isFormValid];
}

- (IBAction)signupButtonPress:(id)sender {
 [LoginManager signupWithUsername:self.usernameField.text
 andPassword:self.passwordField.text];
}
@end

Now let us re-make the whole logic in terms of the ReactiveCocoa. Code snippet 49
shows how it could be done. Here, all of the logic for validating form input is contained
in a single signal’s chain. Each time any of the text fields are updated, their inputs are
reduced to a single boolean value. The resulting signal then is used to enable or disable
the signup button automatically. And just after that declaration we can handle the
button tap. All of the logic is contained in a single method viewDidLoad. That is making
the logic clear, declarative, self-contained and easy to modify.

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Mark Vasiv

47

Code snippet 49. Reactive validation of a signup form.

RACSignal *formValid = [RACSignal
 combineLatest:@[
 self.usernameField.rac_textSignal,
 self.passwordField.rac_textSignal,
 self.passwordConfirmationField.rac_textSignal]
 reduce:^id(NSString *name, NSString *pass, NSString *confirm){
 return @(name.length>0 && pass.length>0 && [pass isEqual:confirm]);
 }];

RAC(self.signupButton, enabled) = formValid;

[[self.signupButton rac_signalForControlEvents:UIControlEventTouchUpInside]
 subscribeNext:^(id x) {
 [LoginManager signupWithUsername:self.usernameField.text
 andPassword:self.passwordField.text];
 }];

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Mark Vasiv

48

4 MESSENGER DESIGN

The app development process usually starts with the design of user interface and
architecture. To better understand the overall concept of the app let us start by
defining the user interface and possible user stories.
As schematically illustrated in Figure 10, the app is going to have a tab bar with three
tabs – contacts, chats, and settings. Contacts and chats tabs encapsulate lists of
corresponding objects, whether settings tab stores controls used for data generation.

Figure 10. Root views of the app.

Now let us have a closer look on each of the tabs and views that could be accessed
from them.

4.1 Contacts list

Contacts tab is going to be called contacts list from this moment. The list contains a
table view showing a list of the user’s contacts, and a search bar. Table view cell
contains multiple UI elements that display the contact’s information – name, avatar,
and date when the contact was last seen in the app. All the cells are divided into
sections by the first letter in the contact‘s name. Cell tap opens a chat with the
selected contact or creates one if it does not exist and then opens it. When text is
entered to the search bar, search results view is displayed with all the contacts
matching the search query. Table view cells in the search display view are almost the
same as in the contacts list. However, they lack the last seen date and are not divided
into sections. Cell tap, as previously, opens the chat with the corresponding contact.
Complete UI and described above actions are shown in Figure 11.

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Mark Vasiv

49

Figure 11. Contacts list layout.

This basic layout exposes multiple properties of a contact and a chat model objects
that should be considered when designing the model of the app. Contact objects at
least should encapsulate name, avatar and last seen date, and it should be possible to
associate a chat object with one contact and vice versa – these chats would be called
peer-to-peer chats from this moment.

4.2 Chats list

Chats list is accessible from the chat tab. Its layout, as shown in Figure 12, is similar to
the contacts list layout – it also has a table view and a search bar. Table view cell
shows information about a chat – title, last message, last update date, and avatar.
Search results view, however, differs from the one used in the contacts list. It is being
shown not after entering the text into the search bar but already after focusing on the
bar – after the user taps it. When there is no text entered into the search bar, search
results view shows horizontal collection view containing information about popular
chats – these are first ten chats from the chats list. Information displayed in the
popular chats collection view cell contains only chat title and avatar. When the text is
entered into the search bar, popular chats are hidden, and instead a list of chats with
titles matching the search query is shown. By tapping each of the cells – table view cell
from chats list or search results view or collection view cell from popular chats – user
opens the corresponding chat.

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Mark Vasiv

50

Figure 12. Chats list layout.

From the model perspective, this layout shows that chat object at least should
encapsulate chat’s title, last message, last update date, and avatar.

Chats list also has a plus button at the top right corner, which serves additional
functions, as can be seen from Figure 13. The primary function of the button is to
initiate chat creation process. After the button is tapped, contacts list view is shown.
However, this view slightly differs from the view discussed in Chapter 4.1.1 – it does
not have a search bar, and it allows multiple cells selection, which means that tapping
the cell does not open any other views, instead it highlights the cell. This view is used
to select the contacts for a new chat. After next button is pressed, a new view is
opened, which exposes additional chat settings. This view displays currently selected
chat avatar or placeholder if none selected, a text field for entering chat title, and a
table view with selected contacts. By tapping the chat avatar or the set chat photo
button, the user can choose an avatar for the chat. At this point, it is also possible to
remove selected contacts by swiping corresponding cell and pressing delete. To add
new contacts the user can press the add participant button.

Apart from regular tap action, plus button also responds to the Force Touch gesture (or
long tap if the device does not support force touch). If this gesture is detected, select
action view is presented. This view is used to control the simulation of other users
actions in the app. The list of simulated actions consists of the following buttons: users
update avatars, users log in/out of the app and last seen time hence updates, users
send new messages, users create new chats with the current user of the app.

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Mark Vasiv

51

Figure 13. Chats list actions.

4.3 Chat view

Chat view, which is accessible from both contacts and chats lists described above,
consists of two sections – a table view that shows the list of messages and a footer
view that holds multiple controls used for sending new messages.

4.3.1 List of messages

As shown in Figure 14, a table view shows the list of messages in the chat. Each table
view cell represents an individual message. Messages can have text and image
content. Outgoing messages are displayed on the right side, and incoming messages
are displayed on the left. Message bubbles – images that are used as a background for
message content – differ for incoming and outgoing messages by color and side where
the tail is displayed. Incoming messages also differ from outgoing messages by the
existence of image that displays the sender’s avatar. There are also system messages
that are used for indication of system events – change of the chat’s title, removal or
addition of the chat’s participants. These messages visually differ from standard

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Mark Vasiv

52

messages by lack of bubble background and center positioning. Most of the messages
do not support touch events, however, taping on the media message opens an image
viewer with an enlarged version of the media attachment with an ability to zoom and
drag it.

Figure 14. Chat view.

All the messages are divided into sections by the send date – messages that are sent
during one day are grouped into one section. Before each section there is a header
displaying that date. The layout of headers is similar to the layout of system messages.
Messages that have the same direction are additionally grouped by the send time – if
multiple messages are sent during one minute, all of them except the last one lack
tails. When the new message appears, it slides up from under the footer. If needed,
the previous message is reloaded – this happens if it previously had a tail and because
of grouping and appearance of the new message now it does not need to have one. By
sliding table view to the left, the user can see send time of messages that is typically
hidden over the right side of the content frame. Different messages types and overall
layout of the view is shown in Figure 15.

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Mark Vasiv

53

Figure 15. Elements of the chat view.

4.3.2 Footer

The footer is located at the bottom of the chat view and consists of a text field for
entering new message text, a send and an attach buttons. The send button is disabled
while the text field is empty or contains only whitespace characters. The button is used
to send a new text message to the chat. After the button is tapped, a new message is
sent, and the text field is automatically cleared. The attach button is used to send
media files to the chat. When it is tapped, select media file menu is shown, and the
user can select multiple images. After the done button is pressed, these images are
sent to the chat. Described actions are shown in Figure 16.

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Mark Vasiv

54

Figure 16. Send actions.

4.3.3 Navigation bar actions

The right element of the navigation bar in the chat view is an image view that shows
the current chat avatar. The behavior of the app for handling avatar tap differs for
different chat types. The behaviour is illustrated in Figure 17.

If the chat is multiuser or group, by tapping the avatar user can open chat settings view
that is similar to the one used during the chat creation process (Chapter 4.1.2). The
only difference is the presence of two buttons – shared media and delete and exit. The

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Mark Vasiv

55

first one is used for displaying shared media view, which lists all the media messages in
the chat. The second one is used for deleting the chat - after it is pressed, user
transfers back to the chats list view and the chat is being deleted.

If the chat is peer-to-peer, by tapping the avatar user opens contact profile view that
shows information about the contact, which is another peer of the chat. The view
shows user’s avatar, name, last seen date, phone numbers and has two buttons –
shared media and chat. First one behaves the same as identically titled button in the
chat settings view. The second one is used for opening the chat with the contact.
Contact profile view can also be accessed from the chat settings view by tapping one of
the participants. The information displayed in the view is not modifiable in contrast to
the information displayed in the chat settings view.

Figure 17. Chat actions.

As well as the plus button in the chats list, avatar image view also supports Force
Touch gesture. Again if this gesture is detected, select action view is presented.
However, this time the list of simulated actions is related to the chat. It consists of the
following buttons: generate a message, update avatars. The first button generates new
incoming message and second one updates avatars of all the chat participants and the
chat avatar.

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Mark Vasiv

56

4.4 Shared media

As described in the previous chapters, shared media view is accessible from the chat
settings and the contact profile views. The view lists all the images sent to the chat in a
collection view. By tapping the thumbnail of the image, the user can open an image
viewer with the enlarged version of the selected image. Image viewer supports
zooming, dragging and rotating the image. It is also possible to slide left or right on the
image viewer to view previous or next attachment. To close the image viewer the user
needs to drag the image to the bottom or the top. The same image viewer view is also
accessible by tapping the media message from the messages list, however, if opened
this way, the image viewer does not support sliding left or right.

4.5 Model

The previous chapter describes user interface of the app and additionally provides
some constraints that should be taken into consideration when building the model. All
the model entities of the app could be divided into the following separate classes:
contacts, chats, and messages. These classes describe entirely individual data entities
used in the app. Diagrams of these model objects can be seen in Figure 18.

Figure 18. Model classes.

In addition to properties of standard classes, model entities use custom enumeration
types – ContactStatus, MessageType, and MessageDirection. These enumerations’
diagrams can be seen in Figure 19.

Figure 19. Model classes’ enumerations.

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Mark Vasiv

57

The actual implementation of model objects is relatively simple and consists only of
listing properties described in Figure 18, so it is worth to have a look only at one of
classes. Interface of MVContactModel can be seen in Code snippet 50.

Code snippet 50. The interface of MVContactModel.

@interface MVContactModel : NSObject <NSCopying, NSCoding>
@property (strong, nonatomic) NSString *id;
@property (strong, nonatomic) NSString *name;
@property (assign, nonatomic) BOOL iam;
@property (assign, nonatomic) ContactStatus status;
@property (strong, nonatomic) NSArray <NSString *> *phoneNumbers;
@property (strong, nonatomic) NSDate *lastSeenDate;
@end

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Mark Vasiv

58

5 NATIVE APP WITH MVC

The rest of the app is going to differ for purely native and reactive approaches, so from
now on, we will focus on one of the approaches. This chapter is entirely dedicated to
the native app development using MVC pattern without the use of ReactiveCocoa.

5.1 Managers

Apart from the model classes described in the previous chapter, the model partition of
the app should have so-called manager objects that are responsible for manipulating
the data of the app. These objects can be separated by the primitive entities they
manipulate. The complete list of managers is following – MVContactManager,
MVChatManager, MVFileManager, and MVDatabaseManager. The last two managers
are not bound to the exact data type because they provide functionality that is shared
across contacts, chats, and messages. These managers can be considered in the class
hierarchy as the root or service managers as soon as they are not designed to be
directly accessed from the controller but instead to be accessed from other managers.
However, this is just an abstract definition because none of the managers inherits from
any other manager.

The complete implementation of each manager is not valuable for the topic, as soon as
the difference between them in different programming patterns is going to be mostly
minor. However, the interface part is going to be slightly changed to expose benefits of
reactive programming, so it is worth listing it.

All the managers are designed to abstract away the underlying mechanisms for actions
on the app data from a controller. They provide interface for these manipulations as
well as a suitable cache to optimize the overall app performance. Each manager is
executing on its dispatch queue to unload the main thread and to expose the power of
parallelism. This mechanism also ensures that all the messages coming to the manager
are serialized to that queue, and hence the order of their execution is predictable. All
the updates that are coming from the manager to the controller on contrast are
dispatched to the main queue to avoid running UI code on the background thread. The
cache of the manager is designed to be persistent, which means it is available during
the lifetime of the app and is not meant to be erased at any given point. Because of
that any manager instance is also expected to live during the whole lifetime of the app,
and it can be accomplished safely with the use of the singleton pattern that will ensure
that there is only one initialized instance of the manager class at any given point. This
approach also negates the expenses of creating a dispatch queue every time the
manager is accessed, because the associated dispatch queue will be created only
during the initialization of the manager and stored there during its lifetime.

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Mark Vasiv

59

5.1.1 Contact manager

The contact manager is designed to handle all MVContact – related events and to
provide interface for the controller (essentially MVContactsListController) to get a list
of available contacts and to receive any updates about them. The interface of the
manager can be seen in Code snippet 51.

Code snippet 51. The interface of MVContactManager.

@interface MVContactManager : NSObject
@property (weak, nonatomic) id <MVContactsUpdatesListener> updatesListener;
+ (instancetype)sharedInstance;
+ (MVContactModel *)myContact;
- (void)loadContacts;
- (NSArray <MVContactModel *> *)getAllContacts;
- (void)handleContactLastSeenTimeUpdate:(MVContactModel *)contact;
@end

Here sharedInstance: is used to obtain an instance of the MVContactManager class,
myContact: is a helper to get an instance of the MVContactModel that describes the
current user of the app, loadContacts: forces the manager to load contacts from the
database to the cache, getAllContacts: returns an array of available contacts, and
handleContactLastSeenTime: is used from outside the app main logic to provide users
activity simulation.

Apart from methods described above, the manager has a property updatesListener
which is used as a link to an object, which is interested in obtaining messages when
something changes in the contacts list. The protocol describing these methods can be
seen in Code snippet 52. This pattern can be considered as the delegate pattern,
however, semantically it is not exactly so, because the manager is not unloading any
decision-making logic to some other objects. Instead, the protocol and associated
property are used as a mechanism for propagating notifications. However, in contrast
to other native solutions that support this propagation – NSNotification, and KVO, the
use of the protocol ensures type-safety, which is valuable in such a type-unsafe
language as Objective-C.

Code snippet 52. MVContactsUpdateListener protocol.

@protocol MVContactsUpdatesListener <NSObject>
- (void)updateContacts;
@end

The interface of the manager is made in such a way that the controller needs to query
the manager for the list of contacts every time it receives updateContacts message.
Even though it may be seen as a slower solution compared to the use of potential
method updateContacts: that sends the updated list, the actual performance of chosen
solution is almost the same. At the moment of calling updateContacts on the
updatesListener, the manager already saved updated contacts to the internal cache
and getAllContacts: just returns a copy of the pointer to that cache.

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Mark Vasiv

60

5.1.2 Chat manager

The chat manager works with MVChat and MVMessage instances and since related
user stories are more rich – the app allows the user to create new chats, messages and
modify them – the manager itself is much bigger than the MVContactManager. Taking
that into consideration, it is easier to discuss its interface in small logically independent
chunks.

As well as the contact manager, the chat manager has sharedInstance: method for
obtaining the instance of the class. It can be seen in Code snippet 53.

Code snippet 53. Initializer of MVChatManager.

#pragma mark - Initialization
+ (instancetype) sharedInstance;

It also has a similar method that forces the manager to obtain chats from the database
and cache them. It is defined in Code snippet 54.

Code snippet 54. Force loading method of MVChatManager.

#pragma mark - Caching
- (void)loadAllChats;

Methods for querying the chat manager for data collections are shown in Code snippet
55. The complete description is following: chatsList: is used for getting an array of
MVChat objects, messagesPage:forChatWithId:withCallback: is used to get an array of
MVMessage objects for the specified chat, and numberOfPagesInChatWithId: is used
to get the total count of message’s pages in the specified chat.

Code snippet 55. MVChatManager’s querying fetching methods.

#pragma mark - Fetch
- (NSArray <MVChatModel *> *)chatsList;
- (void)messagesPage:(NSUInteger)pageIndex
 forChatWithId:(NSString *)chatId
 withCallback:(void (^)(NSArray <MVMessageModel *> *))callback;
- (NSUInteger)numberOfPagesInChatWithId:(NSString *)chatId;

Methods for getting an array of chats and an array of messages are designed
differently from each other. The method for getting messages fires the callback with
the requested messages instead of returning them as the function return value. This is
done so because loadAllChats is expected to be called just when the app loads, so that
the data is available immediately. If the interested controller loads after this method is
finished working, it will receive the needed information already by using chatsList:
method. Otherwise, it will get the notification about the chats list update using
delegate pattern, as it is done in the contact manager. On the contrary, caching of
messages starts just when the controller requests these messages. That means when
messagesPage:forChatWithId:withCallback: is called there is no guaranty that there

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Mark Vasiv

61

are any messages for the specified chat cached in the manager. Thus the manager
firstly tryes to load and cache them if the cache is empty. This process can be slow and
should be performed on the background dispatch queue associated with the manager.
Thus the function cannot return any value and the callback pattern here is preferred.
The use of the delegate pattern is also possible, but it would complicate the simple
process of querying for messages. The discussed method also uses a pageIndex
parameter which defines which page is requested by the controller. The use of paging
significantly increases the performance of the controller because the controller does
not need to handle all the messages in the chat but only small chunks in which the user
is interested. (Initially, controller loads only last 15 messages and loads more if the
user scrolls up).

Apart from loading data, the chat manager is capable of creating and modifying new
entities. To accomplish this, the interface supports methods listed in Code snippet 56.

Code snippet 56. MVChatManager’s create and modify methods.

#pragma mark - Handle Chats
- (void)chatWithContact:(MVContactModel *)contact
 andCompeltion:(void (^)(MVChatModel *))callback;
- (void)createChatWithContacts:(NSArray <MVContactModel *> *)contacts
 title:(NSString *)title
 andCompletion:(void (^)(MVChatModel *))callback;
- (void)updateChat:(MVChatModel *)chat;
- (void)exitAndDeleteChat:(MVChatModel *)chat;
- (void)markChatAsRead:(NSString *)chatId;

Here chatWithContact:andCompletion: creates a peer-to-peer chat with the specified
contact if it does not exist, and returns created (or cached) chat in the callback.
Method createChatWithContacts:title:andCompletion: creates and returns new group
chat with the specified participants and title. updateChat: is used to modify any
existing chat – this includes change of participants and title. exitAndDeleteChat:
deletes the specified chat. And markChatAsRead: is used to mark the specified chat as
read, so that all the messages are also marked as read. All of the specified methods are
designed to be asynchronous, which means that they return immediately preventing
the calling thread from being blocked. The initiated operation is, in turn, executes on
the manager background queue, and fires the callback on the main thread if needed.
The chat manager is also responsible for sending new messages and to serve this
functionality methods listed in Code snippet 57 are used.

Code snippet 57. Methods of MVChatManager for message send support.

#pragma mark - Send Messages
- (void)sendTextMessage:(NSString *)text toChatWithId:(NSString *)chatId;
- (void)sendMediaMessageWithAttachment:(DBAttachment *)attachment
 toChatWithId:(NSString *)chatId;

There are only two types of messages which can be sent by the user – text messages
and media messages. System messages are sent internally by the chat manager, and
therefore they should not be supported in the interface.

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Mark Vasiv

62

To react to external events chat manager supports methods listed in Code snippet 58.

Code snippet 58. Methods of MVChatManager for handling external events.

#pragma mark - External events
- (void)handleNewChats:(NSArray <MVChatModel *> *)chats;
- (void)handleNewMessages:(NSArray <MVMessageModel *> *)messages;

Here handleNewChats: is used by the app to simulate other users activity – a new chat
creation, an update of users avatars, and so on. Method handleNewMessages: is used
similarly to insert new incoming messages.

As mentioned in the previous sub-chapter, the manager should have a feedback
mechanism for notifying the interested controller of some events. In case of the chat
manager, these events correspond to external events discussed in the previous
paragraph. The mechanism should provide an interface for a controller to understand
when new messages are received, when new chats are added or removed, and when
chats are modified both by the user or by any external events. As described in Chapter
2.4, notifications in Objective-C can be implemented using multiple techniques – the
delegate pattern, KVO, and NSNotification. It is clear that the desired feedback loop
can be achieved only using delegate pattern and NSNotification because KVO is used to
provide information when some internal state of the object is changed, and this is not
the case. Need to say that technically KVO can be used, however, to accomplish that
simplistically much code should be written both in the manager and in all view
controllers. Comparing NSNotification and the delegate pattern, the first one can seem
like a less type-safe mechanism because the change there is being sent in an
NSDicitonary, and each view controller should be able to parse the received dictionary
correctly. That as well involves much code written and duplicated on the controller
side. The only logical and simple solution, therefore, is the use of the delegate pattern.
Again this is not strictly a delegate as mentioned in the previous subchapter, but is
implemented similarly and thus can be called this way. If recall controllers from Design
Subchapter in Chapter 4.1, it can be seen that there are multiple controllers interested
in updates regarding chat and messages data. The chat list controller is interested in
receiving information about new chat addition and modification of existing chats, the
chat settings controller in chat modifications, and the chat controller in all of them as
well notification about new messages. All these modifications can be described by two
protocols, shown in Code snippet 59.

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Mark Vasiv

63

Code snippet 59. Protocols for notifying about messages and chats events.

@protocol MVMessagesUpdatesListener <NSObject>
- (void)insertNewMessage:(MVMessageModel *)message;
- (NSString *)chatId;
@end

@protocol MVChatsUpdatesListener <NSObject>
- (void)updateChats;
- (void)insertNewChat:(MVChatModel *)chat;
- (void)removeChat:(MVChatModel *)chat;
- (void)updateChat:(MVChatModel *)chat
 withSorting:(BOOL)sorting
 newIndex:(NSUInteger)newIndex;
@end

Here MVMessagesUpdatesListener is used as an interface for receiving a new message.
The protocol also includes method chatId that is used by the chat manager to
differentiate each listener from each other and decide whether it is interested in any
particular event or not. Protocol MVChatUpdatesListener describes the interface for all
chat-related events, which includes a general update of chats list, insertion of a new
chat, deletion of a chat and update of the existing chat. Method
updateChat:withSorting:newIndex: takes additional parameters – sorting and
newIndex which are used to indicate if sorting of the chat list is needed, and if so,
which index updated chat should have. Because of the cache, the manager is going to
sort the chats list in any case, and the duplication of the sorting logic in the controller
can be avoided by the use of these parameters.

As discussed previously, multiple controllers are interested in the same type of events
– chat updates. These controllers are definitely can be stored in the memory at a one
time meaning that they can be loaded to corresponding navigation stacks
simultaneously and be interested in these events also simultaneously. That leads to a
limitation of the delegate pattern. Usually, the pattern is implemented by storing a
pointer to the object conforming to the protocol, and then sending messages to the
object by this pointer. However, in the case of chat events, more than one controller
should receive these events, and therefore there are going to be multiple pointers. To
get around a problem, it is possible to slightly modify the common implementation of
the delegate pattern by using an array of pointers instead of a pointer. The
corresponding part of the manager’s interface is shown in Code snippet 60.

Code snippet 60. Interface part of MVChatManager related to listeners.

#pragma mark - Listeners
@property (weak, nonatomic) id <MVMessagesUpdatesListener> messagesListener;
@property (strong, nonatomic) NSArray *chatsListeners;

Here property messagesListener is essentially a pointer to the object interested in the
message-related events and chatsListeners is an array of objects interested in the chat-
related events.

Another important aspect of the delegate pattern is the owner relationship of the
master-object and the delegate. To avoid a reference cycle, the manager should not

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Mark Vasiv

64

have a strong link to the delegate, or listener in our case. That is easily done when
there is just one pointer by using a weak keyword as it is done with messagesListener.
However, array stores strong references by default and this can not be changed
because of the internal implementation of NSArray. To get around this problem, we
could provide an interface for both adding and removing of listener objects. The
controller could then call appropriate methods, thus manually removing itself from the
array and avoiding reference cycle. This solution is, however, impractical in our case
because controllers should be notified about events during their lifetime and cannot
understand when exactly they will we be removed from the memory. Corresponding
message dealloc is not being sent to objects which have reference cycle because
technically they are not allowed to be removed from the memory at any time. There
are also methods for anticipating the hide and show of the view associated with the
controller. However, registering and de-registering in this methods would mean that
controller will miss all events coming in-between their calls, and thus controllers will
need some additional logic for querying for the whole data arrays when they show
views again. That is because method viewWillHide:, for example, is called not only
when the controller is popped back but also when the controller presents something
over or pushes new controller – not removing itself from the navigation stack. Even
though it would be technically possible to implement this in a such way, the
implementation is going to be messy and slow. Another workaround is to store
NSValue objects instead of listeners in the array. NSValue object can have an unowned
reference to the stored object, and thus this implementation simply avoids reference
cycle. The manager, however, will be responsible for securing the calls – pointer stored
in NSValue can unexpectedly (from the manager’s perspective) become nil. The
manager will also automatically clean up the array of any nil-stored NSValue objects.
This solution is also not ideal but is the most desirable in case of the multicasting
delegate. The interface of the manager should then only have a method for addition of
the listener; it is shown in Code snippet 61.

Code snippet 61. Method of MVChatManager for adding a listener.

- (void)addChatListener:(id <MVChatsUpdatesListener>)listener;

The actual definition of chatListeners array can be safely removed from the interface
because now the controller will add itself as a listener using the method shown above.
The manager, in turn, will handle these messages and modify the internal array in the
required way.

5.1.3 File manager

The file manager is designed to work with avatars and message attachments. The logic
of file saving, loading, and updating is separated from other managers because it can
be generalized and therefore avoid duplication. Even though the interface of the
manager has specific methods for saving and obtaining similar objects – for example,
chat’s and contact’s avatars, the underlying internal method is the same. This

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Mark Vasiv

65

distinction among public methods is making the interface more convenient for the
caller, eliminating the need for specifying the model type. The interface of the
manager can be seen from Code snippet 62.

Code snippet 62. Interface of MVFileManager.

@interface MVFileManager : NSObject
#pragma mark - Initialization
+ (instancetype)sharedInstance;

#pragma mark - Save Attachments
- (void)saveChatAvatar:(MVChatModel *)chat attachment:(DBAttachment *)attachment;
- (void)saveContactAvatar:(MVContactModel *)contact
 attachment:(DBAttachment *)attachment;
- (void)saveMediaMesssage:(MVMessageModel *)message
 attachment:(DBAttachment *)attachment
 completion:(void (^)(void))completion;

#pragma mark - Load Attachments
- (NSArray <DBAttachment *> *)attachmentsForChatWithId:(NSString *)chatId;
- (void)loadThumbnailAvatarForContact:(MVContactModel *)contact
 maxWidth:(CGFloat)maxWidth
 completion:(void (^)(UIImage *image))completion;
- (void)loadThumbnailAvatarForChat:(MVChatModel *)chat
 maxWidth:(CGFloat)maxWidth
 completion:(void (^)(UIImage *image))completion;
- (void)loadThumbnailAttachmentForMessage:(MVMessageModel *)message
 maxWidth:(CGFloat)maxWidth
 completion:(void (^)(UIImage *image))completion;
- (void)loadOriginalAttachmentForMessage:(MVMessageModel *)message
 completion:(void (^)(UIImage *image))completion;

- (CGSize)sizeOfAttachmentForMessage:(MVMessageModel *)message;
@end

As well as other managers, the file manager is a singleton, and it exposes method
sharedInstance, returning a pointer to the manager. All the methods are divided into
two categories – saving and loading. First category stores methods that are used to
save files, and second one stores methods that are used to load them. All of the
methods for saving files has a parameter attachment of class DBAttachment. This class
is used as a wrapper for encapsulating information about UIImage or file path and
used to unify different methods for obtaining an image. Save methods as well take a
corresponding model as a parameter – chat, contact or message. This model is used to
calculate the path and filename for the new file.
On the contrary, methods that are used to load an attachment do not use class
DBAttachment. Instead, they return an instance of UIImage using the callback. That is
done because most of the time load methods are used by controllers (which do not
need to handle any model representation). Save methods are proxied by other
managers, and thus they can expose a model representation. For example, a controller
calling MVChatManager’s method updateChat: can update the avatar of the chat, but
the actual invocation of the MVFileManager’s method saveChatAvatar: is performed
by the chat manager.
Method sizeOfAttachmentForMessage: is a helper used by cells to calculate their size.

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Mark Vasiv

66

Another peculiarity of the file manager is that it uses NSNotifications to broadcast
events about the status of files. Each time an avatar or a message attachment is saved
to the disk, the file manager sends a notification with the information about that save.
The posted notification includes the type of a file, the id of the corresponding object
and the image itself in the form of the UIImage instance. That is used for supporting
avatar updates – if the avatar of any object is changed, any object can receive a
notification about that event.

5.1.4 Database manager

As described earlier, a database manager is not being used by controllers directly. Its
primary purpose is to work with the underlying database, serving for the chat and the
contact managers. The class is not designed to perform any notifications and therefore
further refactoring will not affect the manager.

5.2 Controllers

There are overall 12 controllers in the app used for different screens and user stories.
It would be pointless, irrelative to the topic and long to describe each of them
completely. However, it is possible to highlight two of the controllers that are the most
interesting and informative in the matter of the topic. That could be the
MVChatController because it can be considered as the central controller of the app –
overall the app is a messenger, and the MVChatsListController because it is connected
to the chat controller and it represents a simple list of elements.

All of the view controllers are subclasses of UIViewController and all of them are
designed in the Interface Builder to minimize the amount of the UI code. In this
chapter we are going to dive into the MVChatsListController and the
MVChatController, highlighting the most interesting implementation details of both.

5.2.1 Chat list controller

The view and critical components of the chats list controller can be seen in Figure 20. It
is used to display a list of chats the user is invited to. The complete description of the
UI and associated behavior is made in Subchapter Design in Chapter 4.1.
The designed view consists of the navigation bar with the title and the right bar button,
and the table view used for displaying a list of chats. Cells used in the table view
consist of multiple labels used for displaying chat title, last message, last update time
and image view used for displaying chat avatar. All mentioned view components are
designed in the Interface Builder and connected to the corresponding classes using
IBOutlets.

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Mark Vasiv

67

Figure 20. Frames of MVChatListController’s and MVChatsListCell’s view.

The list of MVChatsListController properties is shown in Code snippet 63. The list
consists of IBOutlets, properties to store search-related controllers and an array of
chat models that is used to form the content of the table view. As well as listing
properties, the interface of the controller shows conformance to the following
protocols (this is not included in the Code snippet because of the length of the
corresponding line) – UITableViewDataSource, UITableViewDelegate,
UISearchResultsUpdating, MVChatsUpdateListener,
MVForceTouchPresentationDelegate.

Code snippet 63. Interface extension of MVChatsListController.

@interface MVChatsListController()
@property (strong, nonatomic) IBOutlet UIButton *createChatButton;
@property (strong, nonatomic) IBOutlet UITableView *chatsList;
@property (strong, nonatomic) MVChatsListSearchViewController
 *searchResultsController;
@property (strong, nonatomic) UISearchController *searchController;
@property (strong, nonatomic) NSArray <MVChatModel *> *chats;
@end

The controller is designed to live during the lifetime of the app under normal
circumstances – it loads as a root controller for the chat tab and lives during any future
stories in the navigation stack of the navigation controller. The main responsibilities of
the controller include converting data received from a model to a user-understandable
format (cells of the table view), setting up the search functionality by filtering that
data and feeding it to the search results controller and responding to the model
change accordingly. The controller also provides actions for the createChatButton tap
and force touch gesture.

All the implemented methods of MVChatsListController can be divided into logically
separated sections, most of which are implementations of protocols that the controller
conforms to. To inject effects when the controller loads method viewDidLoad: can be
used. As described in Chapter 2.3.2 this method is a part of UIViewController lifecycle

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Mark Vasiv

68

notifications. It is called by the system when the associated view is loaded – this is the
best place for setting up a controller because at this point all view hierarchies from IB
files are already loaded. Initial setup of MVChatsListController can be seen in Code
snippet 64.

Code snippet 64. Initial setup of MVChatsListController.

#pragma mark - View lifecycle
- (void)viewDidLoad {
 [super viewDidLoad];
 self.chatsList.tableFooterView = [UIView new];
 [self setupSearchController];

 [self registerForceTouchControllerWithDelegate:self
 andSourceView:self.createChatButton];
 self.chats = [[MVChatManager sharedInstance] chatsList];
 [[MVChatManager sharedInstance] addChatListener:self];
}

- (void)setupSearchController {
 self.searchResultsController = [MVChatsListSearchViewController

 loadFromStoryboardWithDelegate:self];
 self.searchController = [[UISearchController alloc]

initWithSearchResultsController:self.searchResultsController];

 self.searchController.searchResultsUpdater = self;
 self.searchController.dimsBackgroundDuringPresentation = NO;
 self.searchController.searchBar.searchBarStyle = UISearchBarStyleMinimal;
 self.chatsList.tableHeaderView = self.searchController.searchBar;
 self.definesPresentationContext = YES;
}

After a view of the controller is loaded, it setups the search functionality by creating
needed controllers, placing search bar in the table view and setting itself as an
updater. It also setups createChatButton to respond to the force touch gesture,
queries the chat manager for the latest chat objects array and adds itself as a listener
to the chat manger.

To support updates happening in the chat manager, the controller should conform to
the MVChatsUpdatesListener protocol. The Code snippet 65 shows corresponding
methods.

Code snippet 65. Chat listener methods in MVChatsListController.

#pragma mark - MVChatsUpdatesListener
- (void)updateChats {...}
- (void)insertNewChat:(MVChatModel *)chat {...}
- (void)removeChat:(MVChatModel *)chat {...}
- (void)updateChat:(MVChatModel *)chat
 withSorting:(BOOL)sorting
 newIndex:(NSUInteger)newInde {...}

The implementation of these methods is similar to each other – firstly the controller
updates the chats array and then it asks the chatsList table view to reload its data or to
perform needed batch updates. To fill model data to the table view, the controller
implements methods listed in the UITableViewDataSource protocol and to respond to

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Mark Vasiv

69

user actions in the table view (cell tap, for example) the controller implements the
UITableViewDelegate protocol. Methods from these protocols are shown in Code
snippet 66. The controller tells the table view number of rows, row height which is
constant in this case and provides the cell for the requested index path. Methods from
UITableViewDataSource protocol are invoked every time the table view updates
(either by using batch updates or by using reloadData method), and thus the data of
the table view always remains relevant to the model representation.

Code snippet 66. Table view delegate and data source methods in
MVChatsListController.

#pragma mark - UITableViewDataSource
- (NSInteger)tableView:(UITableView *)tableView
 numberOfRowsInSection:(NSInteger)section {
 return self.chats.count;
}

- (UITableViewCell *)tableView:(UITableView *)tableView
 cellForRowAtIndexPath:(NSIndexPath *)indexPath {
 MVChatsListCell *cell = [tableView
 dequeueReusableCellWithIdentifier:@"ChatsListCell"];
 MVChatModel *chat = self.chats[indexPath.row];
 [cell fillWithChat:chat];

 return cell;
}

#pragma mark – UITableViewDelegate
- (CGFloat)tableView:(UITableView *)tableView
 heightForRowAtIndexPath:(NSIndexPath *)indexPath {
 return 80;
}

- (void)tableView:(UITableView *)tableView
 didSelectRowAtIndexPath:(NSIndexPath *)indexPath {
 [tableView deselectRowAtIndexPath:indexPath animated:YES];
 MVChatModel *selectedChat = self.chats[indexPath.row];
 [self showChatViewWithChat:selectedChat];
}

It may be noticed that even though cellForRowAtIndexPath: returns the requested cell,
views of the cell are not filled in the method. Instead, the cell is asked to fill its views
by calling fillWithChat: method. As soon as UITableViewCell subclass can be considered
as a view, this is a slight violation of the MVC pattern. Even though the described filling
of views could be done in the controller, it would overload cellForRowAtIndexPath:
method, so in this case violating of the strict MVC can be acceptable. It is not leading
to the misunderstanding of architecture but to balancing of responsibilities between
multiple entities and eventually simplifying them. Need to say that in the iOS MVC,
Controller and View parts are tightly bound and sometimes exchange some of the
functionality when it is suitable.

Method didSelectCellAtIndexPath: is called when the user taps the cell, and the
method itself just loads an instance of MVChatController, fills it with the chat model
and pushes this controller onto the navigation stack. The implementation of

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Mark Vasiv

70

showChatViewWithChat: could be seen in Code snippet 67.

Code snippet 67. Implementation of showChatviewWithChat:.

#pragma mark - Helpers
- (void)showChatViewWithChat:(MVChatModel *)chat {
 MVChatViewController *chatVC = [MVChatViewController
 loadFromStoryboardWithChat:[chat copy]];
 [self.navigationController pushViewController:chatVC animated:YES];
}

Apart from showing the regular list of chats, the controller also supports the search
functionality. To accomplish this, it conforms to the protocol UISearchResultsUpdating.
Methods of this protocol and additional helpers are shown in Code snippet 68. Method
updateSearchResultsForSearchController: is called every time the search bar is focused,
or the text in the bar is changed. The method simply filters the current array of chats
and passes the filtered results to the search results controller. Search results controller
shows both filtered data and popular chats, which are essentially just top five objects
from the regular chats list.

Code snippet 68. Methods responsible for search-related actions.

#pragma mark - Search filter
- (void)updateSearchResultsForSearchController:
 (UISearchController *)searchController {
 if (!searchController.isActive) {
 return;
 }
 NSArray *chats = [self filterChatsWithString:searchController.searchBar.text];
 self.searchResultsController.filteredChats = chats;
 self.searchResultsController.popularChats = [self.chats
 subarrayWithRange:NSMakeRange(0, 5)];
 self.searchController.searchResultsController.view.hidden = NO;
}

- (NSArray *)filterChatsWithString:(NSString *)string {
 if (!string.length) {
 return [NSArray new];
 }
 NSPredicate *predicate = [NSPredicate
 predicateWithBlock:^BOOL(MVChatModel *evaluatedObject) {
 return [evaluatedObject.title.uppercaseString
 containsString:string.uppercaseString];
 }];
 return [self.chats filteredArrayUsingPredicate:predicate];
}

The rest of the controller’s methods are helpers or actions associated with the
createChatButton button. These actions implementations are very similar to the
implementation of showChatViewWithChat: method.

Class MVChatsListCell is used as a UITableViewCell subclass for the chatsList table view.
This view has IBOutlets shown previously in Figure 20 and methods to support filling
the views standing behind these outlets. The full implementation of the class can be
seen in the Code snippet 69.

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Mark Vasiv

71

Code snippet 69. Implementation of MVChatsListCell.

@interface MVChatsListCell ()
@property (strong, nonatomic) IBOutlet UILabel *titleLabel;
@property (strong, nonatomic) IBOutlet UILabel *messageLabel;
@property (strong, nonatomic) IBOutlet UILabel *dateLabel;
@property (strong, nonatomic) IBOutlet UIImageView *avatarImageView;
@property (strong, nonatomic) IBOutlet UIButton *unreadCountButton;
@property (strong, nonatomic) MVChatModel *chatModel;
@end

@implementation MVChatsListCell
#pragma mark - Lifecycle
- (void)dealloc {
 [[NSNotificationCenter defaultCenter] removeObserver:self];
}

- (void)awakeFromNib {...}

- (void)prepareForReuse {
 [super prepareForReuse];
 self.avatarImageView.image = nil;
}

#pragma mark - Fill with data
- (void)fillWithChat:(MVChatModel *)chat {
 self.chatModel = chat;
 ...
}
@end

The lifecycle of the cell is more complicated than the lifecycle of the controller because
of the mechanism of reuse pool used by any table view; this was discussed in more
detail in Chapter 2.3.2. To adapt to this mechanism the cell overrides two methods -
awakeFromNib and prepareForReuse. First one is used for the initial setup of the cell,
that is shared between any cell in the pool – the sizes of subviews, corner radiuses and
so on as well as subscriptions to the NSNotifications regarding avatar updates. Because
of the latter, method dealloc is also implemented to remove the subscription. The only
custom method of the cell is fillWithChat: which is used by the controller to pass the
chat model so that the cell can fill its views. The cell translates fields of the chat object
into contents of its labels and saves a reference to the chat object to use it for the
avatar updates.

This sums up the implementation details of the chats list controller and associated
views. MVChatsListSearchController, which is used as a search results controller is
implemented similarly. The only significant difference is that it is not listening for the
updates from the manager, and instead is using KVO mechanism to observe own
filteredChats and popularChats properties, which are being changed by the
MVChatsListController instance in the method
updateSearchResultsForSearchController. MVContactsListController as well as many
other table view-centered controllers in the app share very similar behavior and setup.

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Mark Vasiv

72

5.2.2 Chat controller

The chat controller can be considered as the primary controller of the app. The
controller is responsible for showing the list of messages in a particular chat as well as
for providing the controls to send new messages and access settings of the chat.
Internally the chat controller is capable of responding to events happening to the chat
and the chat messages, supports messages paging and multiple non-trivial UI
behaviors. The complete description controller’s UI was covered in Chapter 4.1.
The view associated with the controller consists of the navigation bar with the chat
title label and the chat avatar image view, the table view with the list of messages and
the footer view with buttons and the text field for entering new message text. As with
the chats list controller, the most of the UI components are designed in the Interface
Builder to reduce to some degree the amount of the UI code in the controller. Cells of
the table view, however, are not designed in the IB because they involve dynamic
layout and hence it is not trivial to design them without the use of the code. Moreover,
there are multiple different cell types used in the table view and assuming that some
of them are similar to each other yet different, designing them in the IB would have
caused a duplication of work. The list of properties of MVChatController is shown in
Code snippet 70.

Code snippet 70. Interface extension of MVChatController.

@interface MVChatViewController ()
@property (strong, nonatomic) IBOutlet UIView *footerView;
@property (strong, nonatomic) IBOutlet UITableView *messagesTableView;
@property (strong, nonatomic) IBOutlet UITextField *messageTextField;
@property (strong, nonatomic) IBOutlet UIView *messageTextFieldMask;
@property (strong, nonatomic) IBOutlet UIButton *sendButton;
@property (strong, nonatomic) IBOutlet UIButton *attatchButton;
@property (strong, nonatomic) IBOutlet NSLayoutConstraint *footerBottom;
@property (strong, nonatomic) UIImageView *avatarImageView;
@property (strong, nonatomic) IBOutlet UILabel *chatTitleLabel;
@property (assign, nonatomic) CGFloat sliderOffset;
@property (assign, nonatomic) BOOL autoscrollEnabled;
@property (assign, nonatomic) BOOL keyboardShown;
@property (assign, nonatomic) NSInteger loadedPageIndex;
@property (assign, nonatomic) BOOL processingMessages;
@property (assign, nonatomic) BOOL initialLoadComplete;
@property (assign, nonatomic) BOOL processingNewPage;
@property (assign, nonatomic) BOOL hasUnreadMessages;
@property (strong, nonatomic) NSCache *cellHeightCache;
@property (strong, nonatomic) NSMutableArray <NSString *> *sections;
@property (strong, nonatomic) NSMutableDictionary <NSString *, NSMutableArray
 <MVMessageModel *>*> *messages;
@end

The list consists of IBOutlets, private properties for handling load of messages, the
behavior of the table view and collections for storing messages and sections.

All the methods in the controller can be divided into sections by the functionality they
are responsible for. As well as the MVChatsListController, the MVChatController setups
its view in the viewDidLoad method. Then it queries the MVChatManager for the first
portion of messages. The Code snippet 71 briefly shows the actions the controller does

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Mark Vasiv

73

after its view loads as well as the implemtation of the dealloc method. Here dealloc is
again used to remove any previous observation subscriptions. In the viewDidLoad, the
controller setups some additional UI elements (that involves some layer manipulations
that are not accessible through IB), registers table view cell subclasses to be used as
reusable cells. It also setups KVO to observe the contentSize property of the table view,
registers to observe system NSNotifications about keyboard appearance,
NSNotifications about avatar updates from the MVFileManager. Finally, it sets itself as
the chats and the messages listener to the MVChatManager, and calls method
tryToLoadNextPage, which is used to load the first page of the messages.

Code snippet 71. Setup of MVChatController.

#pragma mark - Lifecycle
- (void)dealloc {
 [[NSNotificationCenter defaultCenter] removeObserver:self];
 [self.messagesTableView removeObserver:self forKeyPath:@"contentSize"];
}

- (void)viewDidLoad {
 [super viewDidLoad];
 ...some UI setup
 [self registerCells];
 [self registerForNotifications];
 [MVChatManager sharedInstance].messagesListener = self;
 [[MVChatManager sharedInstance] addChatListener:self];
 [self tryToLoadNextPage];
}

- (void)registerCells {
 [self.messagesTableView registerClass:[MVMessageHeaderCell class]
 forCellReuseIdentifier:@"MVMessageHeaderCell"];
 ...register other 18 reuse identifiers
}

- (void)registerForNotifications {
 [self.messagesTableView addObserver:self
 forKeyPath:@"contentSize"
 options:NSKeyValueObservingOptionOld
 |NSKeyValueObservingOptionNew
 context:nil];

 [[NSNotificationCenter defaultCenter] addObserver:self
 selector:@selector(keyboardWillShow:)
 name:UIKeyboardWillShowNotification
 object:nil];

 [[NSNotificationCenter defaultCenter] addObserver:self
 selector:@selector(keyboardWillHide:)
 name:UIKeyboardWillHideNotification
 object:nil];

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Mark Vasiv

74

Code snippet 71 (continued).

 __weak typeof(self) weakSelf = self;
 if (self.chat.isPeerToPeer) {
 [[NSNotificationCenter defaultCenter]
 addObserverForName:@"ContactAvatarUpdate"
 object:nil
 queue:[NSOperationQueue mainQueue]
 usingBlock:^(NSNotification *note) {
 NSString *contactId = note.userInfo[@"Id"];
 UIImage *image = note.userInfo[@"Image"];
 if (weakSelf.chat.isPeerToPeer
 && [weakSelf.chat.getPeer.id isEqualToString:contactId])
 [weakSelf.avatarImageView setImage:image];
 }];
 } else {
 [[NSNotificationCenter defaultCenter]
 addObserverForName:@"ChatAvatarUpdate"
 object:nil
 queue:[NSOperationQueue mainQueue]
 usingBlock:^(NSNotification *note) {
 NSString *chatId = note.userInfo[@"Id"];
 UIImage *image = note.userInfo[@"Image"];
 if (!weakSelf.chat.isPeerToPeer
 && [weakSelf.chat.id isEqualToString:chatId])
 [weakSelf.avatarImageView setImage:image];
 }];
 }
}

The major functionality of the controller is loading messages and transforming them
into user-readable content in the form of the table view. The methods shown in Code
snippet 72 are responsible for this piece of functionality.

Code snippet 72. Methods of MVChatController responsible for loading messages.

- (void)tryToLoadNextPage {
 if (self.processingMessages) {
 return;
 }
 self.processingMessages = YES;

 NSInteger numberOfPages = [MVChatManager.sharedInstance
 numberOfPagesInChatWithId:self.chatId];
 BOOL shouldLoad = (!self.initialLoadComplete
 || numberOfPages > self.loadedPageIndex + 1);
 if (shouldLoad) {
 [MVChatManager.sharedInstance
 messagesPage:++self.loadedPageIndex
 forChatWithId:self.chatId
 withCallback:^(NSArray<MVMessageModel *> *messages) {
 [self handleNewMessagesPage:messages];
 self.initialLoadComplete = YES;
 self.processingMessages = NO;
 }];
 } else {
 self.processingMessages = NO;
 }
}

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Mark Vasiv

75

Code snippet 72 (continued).

- (void)handleNewMessagesPage:(NSArray <MVMessageModel *> *)models {
 NSMutableArray *sections = [self.sections mutableCopy];
 NSMutableDictionary *messages = [self.messages mutableCopy];

 for (MVMessageModel *message in models) {
 NSString *sectionKey = [self headerTitleFromMessage:message];
 NSMutableArray *rows = messages[sectionKey];
 if (!rows) {
 rows = [NSMutableArray new];
 [messages setObject:rows forKey:sectionKey];
 [sections insertObject:sectionKey atIndex:0];
 }
 [rows insertObject:message atIndex:0];
 }

 if ([sections containsObject:@"New Messages"]) {
 self.hasUnreadMessages = YES;
 }

 self.messages = [messages mutableCopy];
 self.sections = [sections mutableCopy];
 self.autoscrollEnabled = (self.messagesTableView.contentOffset.y >=
 (self.messagesTableView.contentSize.height –
 self.messagesTableView.frame.size.height - 50));
 self.processingNewPage = YES;
 [self.messagesTableView reloadData];
 [[MVChatManager sharedInstance] markChatAsRead:self.chatId];
}

Here tryToLoadNextPage is used both to load the first page of messages and to load
the next page when the user scrolls up. Firstly, property processingMessages is
checked, and if the flag is true, the operation is then canceled by returning from the
function. This property is used as a gateway to the method – to ensure that only one
page is processed at a time. As soon as the body of tryToLoadNexPage is designed to
be called from the main thread, the use of a flag in this scenario can be considered
thread-safe. After the initial test is passed the processingMessages property is set to
YES to block any following calls to the method. The next check is made to ensure that
the current load is the first load or the manager has more pages that were already
processed by the controller. After that, the controller can safely request new messages
page from the manager and pass it to the handleNewMessagesPage method. After
latter is finished doing its work, the flag processingMessages is set to NO to enable
loading of new messages in the future.

Messages in the controller are stored in two data structures – NSArray sections and
NSDictionary messages. The sections array stores NSString objects that are used as
titles for the sections, and as keys for the messages dictionary. The dictionary stores
array of MVMessageModel objects for the corresponding section.

Message models received from the manager are guaranteed to be sorted in the
reverse order, which means that the first model in the array is the newest message.
Method handleNewMessagesPage: firstly creates the copies of sections and messages
collections, which will be modified during the process. That ensures that the original
collections remain untouched during the whole process, which avoids breaking the

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Mark Vasiv

76

table view that can query these collections at any time. After the copy is made, the
method iterates over an array of models received from the manager. During each
iteration, it gets a section key for the model, which is a string describing a message
send date. It then creates an array of messages behind that section key, if there is
none yet, and adds both section key and a model to the corresponding collections.
After the iteration is complete, it updates property hasUnreadMessages by merely
checking the array of section keys and assigns pointers of the modified collections to
the corresponding properties. Then the method updates property autoScrollEnabled,
which shows whether table view should be scrolled to the bottom after the update
and sets property processingNewPage to YES, which indicates that the current table
view reload was initiated by processing a new page and not processing a new message.
In the end, the method asks messagesTableView to reload its data and asks the
manager to mark the chat as read.

The next step in displaying messages is implementing UITableViewDataSource and
UITableViewDelegate protocol methods. Apart from conforming to these protocols in
the controller, the app should provide UITableViewCell subclasses to the table view.
That was partly described in Code snippet 71, however, to provide implementations of
the protocol methods, we need to have a look at these UITableViewCell subclasses and
their corresponding views. The class hierarchy of cell subclasses is shown in Figure 21.

Figure 21. Class hierarchy of cells used in messages table view.

There are two types of cells used in the messagesTableView – complex cells that are
used for messages and simple cells that are used for system events and section
headers. Corresponding classes are MVMessageBubbleCell and MVMessagePlainCell.
Complex cells can have two possible content types – text content and media content,
and for each type of content, there is a corresponding class. Text content cells are
represented as MVMessageTextCell instances, and media content cells are
represented as MVMessageMediaCell instances. Plain cells are also divided into two
subcategories – cells that are used for system messages and cells that are used as
headers, and their classes are MVMessageSystemCell and MVMessageHeaderCell
correspondingly.

Described hierarchy is useful because the lowest classes (successors) are different in
some crucial details but at the same time have many similar overlapping layout and
behavior aspects. The use of subclassing, in this case, reduces the amount of code
duplication. Another benefit could be achieved by exposing public interfaces in root

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Mark Vasiv

77

classes (MVMessageBubbleCell and MVMessagePlainCell) and implementing them in
all successors. Even though Objective-C does not support it natively by having any
special keywords, this could be considered as the abstract class pattern.

MVMessageBubbleCell is responsible for laying out a UIImageView used for displaying
a bubble image, a UILabel for showing a send time and a UIImageView for showing
user avatar if it presents an incoming message. It is also responsible for filling these
views with data when asked for and for changing the layout for showing the send time
label. MVMessageTextCell and MVMessageMediaCell are left with laying out and filling
corresponding content views – a UILabel with the message text or a UIImageView with
the attachment image. The interface and private interface extension of the
MVMessageBubbleCell are shown in Code snippet 73.

Code snippet 73. The interface of MVMessageBubbleCell.

@interface MVMessageBubbleCell : UITableViewCell <MVSlidingCell>
@property (assign, nonatomic) MessageCellTailType tailType;
@property (assign, nonatomic) MessageDirection direction;
@property (strong, nonatomic) NSIndexPath *indexPath;
@property (strong, nonatomic) UIImageView *bubbleImageView;
@property (strong, nonatomic) UILabel *timeLabel;
@property (weak, nonatomic) id <MVMessageCellDelegate> delegate;
+ (CGFloat)maxContentWidthWithDirection:(MessageDirection)direction;
- (void)setupViews;
- (void)fillWithModel:(MVMessageModel *)messageModel;
+ (CGFloat)heightWithTailType:(MessageCellTailType)tailType
direction:(MessageDirection)direction andModel:(MVMessageModel *)model;
@end

@interface MVMessageBubbleCell()
@property (strong, nonatomic) NSLayoutConstraint *timeLeftConstraint;
@property (strong, nonatomic) UIImageView *avatarImage;
@end

It has properties for storing afterward used UI objects – bubbleImageView, timeLabel,
timeLeftConstraint, and avatarImage. Apart from storing UI objects, every instance
also stores data properties associated with the cell – tailType, direction, indexPath, and
delegate. Here delegate property is an object conforming to the protocol
MVMessageCellProtocol, and this is essentially an instance of MVChatController. The
protocol is used to notify the controller when the cell is tapped – this is used only for
media cells to open image viewer. However, tap actions also can be used with text-
content cells, so it is better to store the property in the superclass.
Property direction is the same enum as the one used in MVMessageModel (described
in Chapter 4.2), and tailType is the enum describing the rules for laying out the cell.
Chapter 4.1 shows in more detail how message cells behave in the sense of bubble
image. The possible values of MessageCellTailType are shown in Code snippet 74.

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Mark Vasiv

78

Code snippet 74. Enumeration type MessageCellTailType.

typedef enum : NSUInteger {
 MessageCellTailTypeDefault,
 MessageCellTailTypeTailess,
 MessageCellTailTypeFirstTailess,
 MessageCellTailTypeLastTailess
} MessageCellTailType;

Each value uniquely describes which bubble image and which offsets for the image
view should be used when laying out the cell.
Generally, there are 16 unique reuse identifiers used with MVMessageBubbleCell
subclasses. Identifiers are built in the following form: “MVMessage” + “Text/Media” +
“TailType” + “Default/Tailess/FirstTailess/LastTailess” + “Incoming/Outgoing” + “Cell”.
The example of the reuse identifier used with theeMVMessageBubbleCell is shown in
Code snippet 75.

Code snippet 75. Example of cell reuse identifier.

@"MVMessageTextTailTypeLastTailessOutgoingCell"

The purpose of this complex form is to ensure that each associated cell does not need
to react too much to the content change by means of the view layout. For example,
changing a view hierarchy between incoming and outgoing messages can be
considered as an expensive job, and hence it negates the mechanism of the table view
reusable cell pool and leads to a laggy table view. Separating pools for incoming and
outgoing message cells, on the contrary, avoids the need of changing the layout and
leads to a smooth table view experience. Another purpose of the reuse identifier is to
identify cell's tail type uniquely. Cell tail type is needed both for cell layout and cell size
calculation, so it would be possible to get rid of using cell type in cell reuse identifiers
by calculating tail type in both heightForRowAtIndexPath: and cellForRowAtIndexPath:
methods. However, the process of calculating the tail type is also expensive, and hence
any duplication of its execution should be avoided if possible. It would also be possible
to calculate all the tail types once, cache them in the chat controller and then use
them in mentioned above methods. However, the MVC paradigm does not provide a
possibility for any intermediate model representation for cells, so it is not possible to
somehow cache cell types in the controller, which means that the only fast way to pass
cell types to the cell is by the use of the reuse identifier.

Each time new cell is created the method initWithStyle:reuseIdentifier: is invoked. Class
MVMessageBubbleCell overrides this method and parses reuse identifier to fill its
properties – direction and tailType. This method is also used as the place to configure
view hierarchy. Complete implementation can be seen in Code snippet 76.

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Mark Vasiv

79

Code snippet 76. Initialization of MVMessageBubbleCell.

- (instancetype)initWithStyle:(UITableViewCellStyle)style
 reuseIdentifier:(NSString *)reuseIdentifier {
 if (self = [super initWithStyle:style reuseIdentifier:reuseIdentifier]) {
 _direction = [[self class] directionForReuseIdentifier:reuseIdentifier];
 _tailType = [[self class] tailTypeForReuseIdentifier:reuseIdentifier];
 self.selectionStyle = UITableViewCellSelectionStyleNone;
 [self setupViews];
 [self setupTapRecognizers];
 }

 return self;
}

Now let us have a closer look at methods shown in Code snippet 73. As described
above, setupViews is used to layout the view hierarchy of the cell, and both
MVMessageTextCell and MVMessageMediaCell override this method to add class-
specific views – a UILabel and a UIImage correspondingly. Class method
maxContentWidthWithDirection: is used by subclasses to calculate their height as well
as heightWithTailType:direction:model: method. The latter one is also overridden by
subclasses to insert calculations related to the content. The last method fillWithModel:
is respectively used to fill the cell’s views with data and again subclasses override it to
fill class-specific views.

Generally speaking, when chat controller wants to calculate the height of the cell or fill
it with data, it does not need to distinguish them by the particular message type
(subclass). Instead, it can cast it to MVMessageBubbleCell and call appropriate
methods. As soon as cells are subclasses of MVMessageBubbleCell, they are
guaranteed to respond to methods exposed in its interface, and additionally they
override these methods to inject class-specific behavior.

Classes MVMessagePlainCell, MVMessageSystemCell and MVMessageHeaderCell are
designed in similar manner, however they are simplier. The interface and private
interface extension of MVMessagePlainCell, which is a superclass of the latter two, is
shown in Code snippet 77.

Code snippet 77. Interface of MVMessagePlainCell.

@interface MVMessagePlainCell : UITableViewCell
+ (CGFloat)heightWithText:(NSString *)text;
- (void)fillWithText:(NSString *)text;
@end
@interface MVMessagePlainCell ()
@property (strong, nonatomic) UILabel *titleLabel;
@property (strong, nonatomic) UIView *container;
@end

The class supports two methods - heightWithText: and fillWithText:, respectively used
for calculating the size of a cell and filling cell views. There are only two reuse
identifiers associated with the class – each for one of the subclasses. The initialization
and initial setup are similarly done in method initWithStyle:reuseIdentifier:, however,
this time the reuse identifier is not used. The layout and behavior of two subclasses are

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Mark Vasiv

80

the same, so the subclasses are empty classes – they do not have any properties or
methods. The use of class hierarchy in this situation is overkill, and it could be entirely
possible to get rid of MVMessageSystemCell and MVMessageHeaderCell classes,
however, the use of class hierarchy here enables to later customize the layout or
behavior of one of the cell types without any additional work. After all, these are two
distinct cell types from a model point of view, and the use of subclassing provides
more scalability in the future.

Because cells are completely described at this point, it is possible to get back to the
chat controller. To make the use of the model data that it stores in the internal
collection and to feed it to the table view, the controller needs to implement
UITableViewDataSource and UITableViewDelegate protocol methods. Data source
methods are shown in Code snippet 78.

Code snippet 78. Data source methods of table view in MVChatController.

#pragma mark - UITableViewDataSource
- (NSInteger)numberOfSectionsInTableView:(UITableView *)tableView {
 return self.sections.count;
}

- (NSInteger)tableView:(UITableView *)tableView
 numberOfRowsInSection:(NSInteger)section {
 return self.messages[self.sections[section]].count + 1;
}

- (UITableViewCell *)tableView:(UITableView *)tableView
 cellForRowAtIndexPath:(NSIndexPath *)indexPath {
 NSString *cellId = [self cellIdForIndexPath:indexPath];
 UITableViewCell *cell = [tableView dequeueReusableCellWithIdentifier:cellId];

 if (indexPath.row == 0) {
 MVMessagePlainCell *headerCell = (MVMessagePlainCell *)cell;
 NSString *sectionTitle = self.sections[indexPath.section];
 [headerCell fillWithText:sectionTitle];
 } else {
 NSString *section = self.sections[indexPath.section];
 MVMessageModel *model = self.messages[section][indexPath.row - 1];
 if (model.type == MVMessageTypeSystem) {
 MVMessagePlainCell *systemCell = (MVMessagePlainCell *)cell;
 [systemCell fillWithText:model.text];
 } else {
 MVMessageBubbleCell *bubbleCell = (MVMessageBubbleCell *)cell;
 [bubbleCell fillWithModel:model];
 bubbleCell.indexPath = [NSIndexPath indexPathForRow:indexPath.row – 1
 inSection:indexPath.section];
 bubbleCell.delegate = self;
 }
 }

 return cell;
}

Methods numberOfSectionsInTableView: and numberOfRowsInSections: simply return
the number of elements in the related collections. Method cellForRowAtIndexPath:
firstly gets the cell reuse identifier by using method cellIdForIndexPath: and then uses
it to obtain a cell from the reusable pool. The cell is then casted to the corresponding

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Mark Vasiv

81

class, filled and returned from the method. Because header cells do not have
representation in the messages dictionary, we simply return headers as the first cell
for every section. That complicates a little the further process of handling other cells
because now we need to decrement the row index by 1, but this is not critical. It could
be possible to use system mechanism for returning headers using method
viewForHeaderInSection:, but the use of this method changes the scrolling behavior of
headers, which is not customizable, so the only way to provide the UI described in
Chapter 4.1 is to handle them as regular cells. Apart from the UITableViewDataSource,
the chat controller also implements some methods from the UITableViewDelegate.
These are shown in Code snippet 79.

Code snippet 79. Delegate methods of table view in MVChatController.

#pragma mark - UITableViewDelegate
- (CGFloat)tableView:(UITableView *)tableView
 heightForRowAtIndexPath:(NSIndexPath *)indexPath {
 NSString *section = self.sections[indexPath.section];
 MVMessageModel *model;
 MVMessageCellTailType tailType = 0;
 if (indexPath.row != 0) {
 model = self.messages[section][indexPath.row - 1];
 if (model.type != MVMessageTypeSystem) {
 NSIndexPath *modelIndexPath = [NSIndexPath
 indexPathForRow:indexPath.row - 1
 inSection:indexPath.section]
 tailType = [self messageCellTailTypeAtIndexPath: modelIndexPath];
 }
 }

 NSString *cacheKey = [NSString stringWithFormat:@"%@_%@_%lu",
 section,
 model.id,
 (unsigned long)tailType];
 NSNumber *cachedHeight = [self.cellHeightCache objectForKey:cacheKey];

 if (cachedHeight) {
 return [cachedHeight floatValue];
 }

 CGFloat height;
 if (indexPath.row == 0) {
 height = [MVMessageHeaderCell heightWithText:section];
 } else if (model.type == MVMessageTypeSystem) {
 height = [MVMessageSystemCell heightWithText:model.text];
 } else if (model.type == MVMessageTypeText){
 height = [MVMessageTextCell heightWithTailType:tailType
 direction:model.direction
 andModel:model];
 } else {
 height = [MVMessageMediaCell heightWithTailType:tailType
 direction:model.direction

 andModel:model];
 }
 [self.cellHeightCache setObject:@(height) forKey:cacheKey];
 return height;
}

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Mark Vasiv

82

Code snippet 79 (continued).

- (void)tableView:(UITableView *)tableView willDisplayCell:(UITableViewCell *)cell
 forRowAtIndexPath:(NSIndexPath *)indexPath {

 if (![cell conformsToProtocol:NSProtocolFromString(@"MVSlidingCell")]) {
 return;
 }

 UITableViewCell <MVSlidingCell> *slidingCell =
 (UITableViewCell <MVSlidingCell> *)cell;
 CGFloat oldSlidingConstraint = slidingCell.slidingConstraint;

 if (oldSlidingConstraint != self.sliderOffset) {
 [slidingCell setSlidingConstraint:self.sliderOffset];
 [slidingCell.contentView layoutIfNeeded];
 }
}

Method heightForRowAtIndexPath: is used to calculate and return the height of the
cell. To accomplish that, the method uses cell’s class method, passing this
responsibility to the corresponding cell class. It uses methods
heightWithTailType:direction:andModel: and heightWithText: depending on the cell
type. Apart from that, the chat controller has a cache of cell heights - cellHeightCache,
which stores all the values previously calculated in this method. This enables
heightForRowAtIndexPath: to work faster and leads to a smother table view scrolling.
The cache works similarly to a dictionary, storing values for keys. It is not possible to
use index path as thet key because cell height for a particular index path can change
when it changes the tail type or when new messages are added at the beginning of the
table view. That could happen when a new message is received, or a new page is
loaded. To identify the particular cell height record, we use a string, which
encapsulates section index, model’s id and tail type. That is the shortest and the
easiest way to calculate a unique identifier for a cell height. The determination of cell’s
tail type, as described during overlook of cell subclasses, is expensive and should be
avoided when possible, but the actual calculation of cell size is much more expensive
in comparison, and thus the use of cache is still doing a better performance when
compared to the implementation without the cache. Moreover, because the MVC does
not provide any intermediate model representation of cells and caching of cell tail type
is hence not possible, the determination of cell tail type in heightForRowAtIndexPath:
is needed in both implementations. That leads to comparing a solution without
caching, where both cell tail type determination and cell height calculation are
performed, to a solution with caching, where sometimes (actually quite often) cell
calculation step can be omitted. It is clear that the solution with caching then is much
desirable, assuming that both operations are expensive and querying cache is nearly
immediate.

Method wiiDisplayCell: is fired for each cell that is about to be displayed. We use this
point to inject behavior related to showing and hiding of a cell’s time label. The chat
controller stores the current offset in the property sliderOffset every time user drags
the table view horizontally. It then asks each cell for the current value of a constraint
attached to the time label, compares that value to the one stored in the sliderOffset
property and if needed asks cell to update its layout. To distinguish cells that react to

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Mark Vasiv

83

the user dragging the table view, we use protocol MVSlidingCell. Cells that are not
conforming to the protocol are ignored in willDisplayCell: method. The protocol has
only two methods - for getting the current constraint value, and for setting the
constraint value. The only class that conforms to the protocol at this point is
MVMessageBubbleCell. Another part of supporting the drag gesture and showing the
cell’s time label is the use of pan gesture recognizer. The action fired when the gesture
recognizer's state is changed shown in Code snippet 80.

Code snippet 80. IBAction associated with pan gesture.

- (IBAction)handlePanGesture:(UIPanGestureRecognizer *)panRecognizer {
 NSMutableArray<id <MVSlidingCell>> *visibleCells = [NSMutableArray new];

 for (UITableViewCell *cell in self.messagesTableView.visibleCells) {
 if ([cell conformsToProtocol:NSProtocolFromString(@"MVSlidingCell")]) {
 [visibleCells addObject:(id <MVSlidingCell>)cell];
 }
 }

 if (!visibleCells.count) {
 return;
 }

 if (panRecognizer.state == UIGestureRecognizerStateEnded ||
 panRecognizer.state == UIGestureRecognizerStateFailed ||
 panRecognizer.state == UIGestureRecognizerStateCancelled) {
 CGFloat constant = 0;
 for (MVMessageTextCell *cell in visibleCells) {
 [cell setSlidingConstraint:constant];
 }

 self.sliderOffset = constant;

 [UIView animateWithDuration:0.2 animations:^{
 [self.view layoutIfNeeded];
 }];

 return;
 }

 CGFloat oldConstant = [visibleCells[0] slidingConstraint];
 CGFloat constant = [panRecognizer translationInView:self.view].x;
 CGFloat velocityX = [panRecognizer velocityInView:self.view].x;

 if (constant > 0) constant = 0;

 if (constant < -40) constant = -40;

 if (oldConstant != constant) {
 CGFloat path = ABS(oldConstant - constant);
 NSTimeInterval duration = path / velocityX;
 for (MVMessageTextCell *cell in visibleCells) {
 [cell setSlidingConstraint:constant];
 }

 self.sliderOffset = constant;

 [UIView animateWithDuration:duration animations:^{
 [self.messagesTableView layoutIfNeeded];
 }];
 }
}

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Mark Vasiv

84

First of all, we filter visible cells to work only with cells which conforms to protocol
MVSlidingCell. If there is none of them, the method just returns as soon as no
additional work is needed. Otherwise, the method checks the state of the recognizer
and handles the behavior when it is canceled (when the user touches up). In this case,
we update the time label related constraints, update chat controller’s property
sliderOffset and animate the constraints to hide the time label. If the state is not
canceled, the method computes the translation and velocity of the pan gesture and
then use these values to again update the constraint and sliderOffset property with the
animation duration corresponding to the velocity.

This far we covered how chat controller loads messages, how it displays them in the
table view and how it handles some of UI actions. Another part of the the data
handling functionality is reacting to receiving a new message. That is implemented in
the same way for new incoming and new outgoing message and lays in supporting
method insertNewMessage: from MVMessagesListener protocol. The implementation
of this method is shown in Code snippet 81.

Code snippet 81. Support of message listener in MVChatController.

- (void)insertNewMessage:(MVMessageModel *)message {
 self.processingMessages = YES;
 [self handleNewMessage:message];
 self.processingMessages = NO;
}

- (void)handleNewMessage:(MVMessageModel *)message {
 NSMutableArray *sections = [self.sections mutableCopy];
 NSMutableDictionary *messages = [self.messages mutableCopy];

 NSString *sectionKey = [self headerTitleFromMessage:message];
 NSMutableArray *rows = messages[sectionKey];

 BOOL insertedSection = NO;
 if (!rows) {
 insertedSection = YES;
 rows = [NSMutableArray new];
 [messages setObject:rows forKey:sectionKey];
 [sections addObject:sectionKey];
 }

 [rows addObject:message];

 self.messages = [messages mutableCopy];
 self.sections = [sections mutableCopy];

 self.autoscrollEnabled = (self.messagesTableView.contentOffset.y >=
 (self.messagesTableView.contentSize.height –
 self.messagesTableView.frame.size.height - 50));
 self.processingNewPage = NO;

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Mark Vasiv

85

Code snippet 81 (continued).

 if (insertedSection) {
 NSIndexSet *insert = [NSIndexSet
 indexSetWithIndex:self.sections.count - 1];
 [self.messagesTableView insertSections:insert

 withRowAnimation:UITableViewRowAnimationBottom];
 } else {
 NSIndexPath *indexPathToInsert = [NSIndexPath indexPathForRow:rows.count
 inSection:sections.count - 1];
 NSIndexPath *indexPathToReload =
 [NSIndexPath indexPathForRow:rows.count - 1

 inSection:sections.count - 1];
 [self.messagesTableView insertRowsAtIndexPaths:@[indexPathToInsert]

 withRowAnimation:UITableViewRowAnimationBottom];
 [self.messagesTableView reloadRowsAtIndexPaths:@[indexPathToReload]

 withRowAnimation:UITableViewRowAnimationNone];
 }
 [[MVChatManager sharedInstance] markChatAsRead:self.chatId];
}

Method insertNewMessage: is called by the chat manager every time a new message is
added to the chat. The method implementation modifies flag processingMessages to
ensure unique access to messages-related collections and calls method
handleNewMessage:, which performs the main work. Method handleNewMessage:
works similarly to the method handleNewMessagesPage: discussed earlier. It again
creates copies of controller’s collections, inserts new data into them and finally assigns
their pointers to original properties, as well as, updates flags autoscrollEnabled and
procesingNewPage. The only difference is that it does not reload the table view after
the data is changed. Instead it performs batch updates - inserts a new section or a new
row with the reload of the previous. At the end of the execution, it asks the chat
manager to mark the chat as read as it as done in handleMessagesPage: method.
To support updates of the chat object, the controller implements method
updateChat:withSorting:newIndex: from protocol MVChatsUpdatesListener. The
method simply compares chat ids to filter updates only about the currently opened
chat and then updates the chat object and string displayed in chatTitleLabel in the
navigation bar. The implementation is shown in Code snippet 82.

Code snippet 82. Support of chat listener in MVChatController.

- (void)updateChat:(MVChatModel *)chat
 withSorting:(BOOL)sorting
 newIndex:(NSUInteger)newIndex {
 if ([chat.id isEqualToString:self.chat.id]) {
 self.chat = chat;
 self.chatTitleLabel.text = chat.title;
 }
}

To react to avatar changes, the controller subscribes to NSNotifications coming from
MVFileManager. Even though updates are related to the contact model or chat model,
avatar changes do not affect the actual model object, and thus another mechanism is
used.

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Mark Vasiv

86

In the viewDidLoad method, the controller also registers to receive NSNotifications
about keyboard appearance and sets up a KVO observation on the content size of the
messagesTableView. These observations are needed to correctly adapt the interface to
the size of the keyboard and data addition to the table view. Consider methods shown
in Code snippet 83.

Code snippet 83. Support for keyboard appearance in MVChatController.

#pragma mark - Keyboard
- (void)keyboardWillShow:(NSNotification *)notification {
 if (!self.keyboardShown) {
 [self adjustContentOffsetDuringKeyboardAppear:YES
 withNotification:notification];
 self.keyboardShown = YES;
 }
}
- (void)keyboardWillHide:(NSNotification *)notification {
 if (self.keyboardShown) {
 [self adjustContentOffsetDuringKeyboardAppear:NO
 withNotification:notification];
 self.keyboardShown = NO;
 }
}

- (void)adjustForKeyboardAppear:(BOOL)appear
 withNotification:(NSNotification *)notification {...}

Methods keyboardWillShow: and keyboardWillHide: are called when appropriate
NSNotifications are received. They both call
adjustForKeyboardAppear:withNotification:, which in turn changes the value of
footerBottom constraint and move footer appropriately, as well as, recalculate
contentOffset and contentInset of the table view accordingly to the size of the
keyboard.
Code snippet 84 shows other methods related to the update of contentOffset and
contentInset properties of the table view.

Code snippet 84. Other methods related to the update of content offset and inset.

- (void)observeValueForKeyPath:(NSString *)keyPath
 ofObject:(id)object
 change:(NSDictionary<NSKeyValueChangeKey,id> *)change
 context:(void *)context {
 if (object != self.messagesTableView
 || ![keyPath isEqualToString:@"contentSize"]) {
 return;
 }
 CGSize oldSize = [[change objectForKey:NSKeyValueChangeOldKey] CGSizeValue];
 CGSize newSize = [[change objectForKey:NSKeyValueChangeNewKey] CGSizeValue];

 if (CGSizeEqualToSize(oldSize, newSize)) {
 return;
 }

 NSTimeInterval duration = (!self.processingNewPage
 && self.autoscrollEnabled)? 0.2 : 0;

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Mark Vasiv

87

Code snippet 84 (continued).

 [UIView animateWithDuration:duration animations:^{
 [self updateContentOffsetForOldContent:oldSize
 andNewContent:newSize
 processingNewPage:self.processingNewPage
 autoScrollEnabled:self.autoscrollEnabled];

 [self updateContentInsetForNewContent:newSize
 frame:self.messagesTableView.frame.size.height];
 }];
 }
}

- (void)updateContentInsetForNewContent:(CGSize)contentSize
 frame:(CGFloat)frameHeight {...}

- (void)updateContentOffsetForOldContent:(CGSize)oldSize
 andNewContent:(CGSize)newSize
 processingNewPage:(BOOL)processingNewPage
 autoScrollEnabled:(BOOL)autoScroll {...}

Method observeValueForKeyPath: is fired when any of KVO observed properties are
changed. In case of the chat controller, we are interested only in the change of the
contentSize property of the messagesTableView, so we can safely omit any other
notifications by filtering them by the object and the keyPath. Moreover, we do not
want to execute anything if the content size is just reassigned without the actual
change of the value, so we can filter that by the use of the macro CGSizeEqualToSize. If
we met all of the above-menthioned conditions, we conclude that there has been an
update on the content size of the table view, which should be considered to update
the table view’s contentOffset and contentInset. That serves multiple aims – to scroll
down the table view when the scroll position was near the bottom and a new message
was received, and to preserve the scroll offset after loading a new page. These
methods are also called from adjustForKeyboardAppear: described in Code snippet 83.
The rest of methods in the chat controller are either actions to handle UI events or
helpers, which aim is to calculate any values mentioned in all the other methods or to
create other controllers, which will be presented after appropriate UI actions. The
complete list is shown in Code snippet 85.

Code snippet 85. The rest of MVChatController methods.

- (NSString *)headerTitleFromMessage:(MVMessageModel *)message {...}
- (NSString *)cellIdForIndexPath:(NSIndexPath *)indexPath {...}
- (MVMessageCellTailType)messageCellTailTypeAtIndexPath:(NSIndexPath *)indexPath
 {...}
- (id<MVForceTouchControllerProtocol>
 *)forceTouchViewControllerForContext:(NSString *)context {...}
- (void)showChatSettings {...}
- (void)showContactProfile {...}
- (void)chatAvatarTapped {...}
- (IBAction)tableViewTapped:(id)sender {...}
- (void)cellTapped:(UITableViewCell *)cell {...}
- (IBAction)attatchButtonTapped:(id)sender {...}

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Mark Vasiv

88

Code snippet 85 (continued).

- (IBAction)messageTextFieldChanged:(id)sender {
 NSCharacterSet *whiteSpace = [NSCharacterSet whitespaceCharacterSet];
 NSString *trimmedText = [self.messageTextField.text
 stringByTrimmingCharactersInSet:whitespace];
 self.sendButton.enabled = trimmedText.length > 0;
}

- (IBAction)sendButtonTapped:(id)sender {
 self.sendButton.enabled = NO;
 [[MVChatManager sharedInstance] sendTextMessage:self.messageTextField.text
 toChatWithId:self.chatId];
 self.messageTextField.text = @"";
}

Implementation of these methods is irrelevant; it is only worth mentioning that the
last two IBActions – messageTextFieldChanged: and sendButtonTapped: are used to
send a new message to the chat. The first one is used to enable or disable the send
button depending on the content of the text field, and the second one disables the
send button, sends a text message to the chat manager and clears the text field.

5.3 Native app problems

The app described in the previous chapter introduces some problems specific to the
iOS development that were discussed before. A chapter dedicated to the managers
showed how many similar event-handling mechanisms are treated differently. That
includes the use of the delegate pattern in the MVContactManager and the
MVChatManager, NSNotification in the MVFileManager. It also shows the limitation of
the delegate pattern (protocol and a link actually), when multiple objects are
interested in a particular update – the use of an array of NSValues is definitely a
workaround and not an altogether desirable solution. The chapter about controllers
highlighted these limitations and introduced other event-based mechanisms based on
NSNotification and KVO, which again serve the very similar functionality but are
implemented in a completely different manner. That chapter also showed that
controller and view entities are tightly bound together in Apple’s MVC, which leads to
an overload of the controller with responsibilities. Schematically the real relations in
the Apple’s MVC can be seen in Figure 22.

Figure 22. Massive view controller.

The chat controller covered in Chapter 4.3.2 consists of about 800-900 lines of code,
which is too many for one class. Even though the number of lines in a particular file is
not a metric, it is clear that chat controller is overloaded – it is responsible for handling
model data, building views, responding to user actions and system events. Limitations
of the MVC were in particular reflected in the chat controller functionality related to

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Mark Vasiv

89

the table view handling. Inability to store a convenient cache for some intermediate
cells’ models leads to an over-computation and duplication of work, lowering the
performance of the app.

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Mark Vasiv

90

6 REFACTORING WITH MVVM AND REACTIVECOCA

Considering the facts mentioned above, we can conclude that to resolve these
problems we can slightly modify the Apple’s MVC to allow it to have another entity,
which is not so tightly bound to the view, as well as, provide a mechanism for unifying
event-based mechanisms in the app. The following chapter will cover the refactoring of
the app with the help of the MVVM pattern and the ReactiveCocoa framework, which
are exactly the solutions we are looking for.
As was done with the development of the app, refactoring will start from changing
model objects and then will continue on to the controller’s modifications.

6.1 Managers

All the managers will be modified by transforming all of the event-based mechanisms
to RACSignal’s. That, at first glance a small change, is actually a robust solution, solving
the problem of multicast delegates as well as providing a concise interface for similar
mechanisms.

6.1.1 Contact manager

The contact manager previously had a property updatesListener confirming to the
protocol MVContactsUpdatesListener. The internals of the manager are changed in a
way to expose two RACSignal’s – listUpdateSignal and lastSeenTimeSignal. The
updated interface is shown in Code snippet 86.

Code snippet 86. Interface of MVContactManager.

@interface MVContactManager : NSObject
@property (strong, nonatomic) RACSignal *lastSeenTimeSignal;
@property (strong, nonatomic) RACSignal *listUpdateSignal;
+ (instancetype)sharedInstance;
- (void)loadContacts;
- (NSArray <MVContactModel *> *)getAllContacts;
+ (MVContactModel *)myContact;
- (void)handleContactLastSeenTimeUpdate:(MVContactModel *)contact;
- (void)clearAllCache;
@end

The rest of the interface and overall behavior remains untouched. Signal
listUpdateSignal is used to notify the subscriber that contacts list needs to be updated
and sends boolean values, but in this case, any value can be used because it does not
provide any meaning to the listener, the only purpose of the signal is to send any value
when the list should be updated. Signal lastSeenTimeSignal, on the contrary, sends
meaningful data. It sends MVContact model object each time last seen time of the
contact is changed. The subscriber then can check model’s id and update the value of
the lastSeenTime appropriately. Not only signals provide a concise interface here, but

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Mark Vasiv

91

support multicasting which enables multiple subscribers to independently listen to the
signals without any additional work on the manager side.

6.1.2 Chat manager

The chat manager had a property messagesListener and array for chat listeners with
public method addChatListener:. Both properties are as well replaced with RACSignal
instances: chatUpdateSignal and messageUpdate signal correspondingly. The interface
of MVChatManager is too long, and it is not modified in any other aspects, so the Code
snippet 87 shows only occured changes.

Code snippet 87. MVChatManager interface.

interface MVChatManager : NSObject
@property (strong, nonatomic) RACSignal *chatUpdateSignal;
@property (strong, nonatomic) RACSignal *messageUpdateSignal;
@property (strong, nonatomic) RACScheduler *viewModelScheduler;
@property (strong, nonatomic) dispatch_queue_t viewModelQueue;
- (RACSignal *)messagesPage:(NSInteger)pageIndex forChatWithId:(NSString *)chatId;

...other methods
@end

Signal chatUpdatesSignal is used to notify subscribers about any change happening to
the chat’s list or any chat in particular. The signal, as well as others, just substitutes the
protocol that was used previously, completely re-implementing its functionality. To
support this, chatUpdateSignal sends small intermediate objects that are also defined
in the header of MVChatManager class. The Code snippet 88 shows the interface of
that object.

Code snippet 88. Interface of MVChatUpdate.

typedef enum : NSUInteger {
 ChatUpdateTypeReload,
 ChatUpdateTypeInsert,
 ChatUpdateTypeDelete,
 ChatUpdateTypeModify
} ChatUpdateType;

@interface MVChatUpdate
@property (assign, nonatomic) ChatUpdateType updateType;
@property (strong, nonatomic) MVChatModel *chat;
@property (assign, nonatomic) BOOL sorting;
@property (assign, nonatomic) NSInteger index;
@end

Class MVChatUpdate wraps update type and MVChatModel instance, allowing a type-
safe access to the value received by the signal’s subscriber. The use of such small
intermediate objects is preferable over using a dictionary type because it is more
transparent on the receiver side, which kind of object a signal sends. The value of the
chat property in the class is optional and will be empty when updateType is going to
store value ChatUpdateTypeReload. Objective-C does not have support for optional

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Mark Vasiv

92

types, but it is clear from the context that when the whole list is reloaded, there is no
need to use a chat value and even potentially it can not store any meaningful data.
Properties sorting and index are also optional and are used only with the update type
ChatUpdateTypeModify.

Signal messageUpdatesSignal is only responsible for notifying observers when a new
message is added to the internal collection, and thus it does not need any wrapper
class for the sent values. Instead, it sends MVMessageModel objects. The sent
messages are the messages that are added to the chat.

Apart from signal properties, MVChatManager interface also got two similar
properties for storing thread-related objects. Property viewModelQueue is used to
store a dispatch queue designated to handle work of any chat-related ViewModel.
Property viewModelScheduler is just a wrapper of that queue to be used in the
ReactiveCocoa world.

The concept of having not only queues associated with each manager but also queues
associated with ViewModels helps to unload the main thread even more. ViewModel is
a separate object not modifying any of UI components, so it safely can execute its code
on the background thread. Even though it is not modifying the UI of the app, it works
together with the controller, which accesses the UI-related parts of the app and
executes on the main thread, so their synchronization should be considered on the
ViewModel or view side. The queue used for encapsulating ViewModel’s work should
be serial because most of the time ViewModel’s work cannot be paralleled and the
order of different function invocation is relevant. Moreover, not all ViewModel really
need to have a dedicated queue, and it depends entirely on the amount of work they
are doing. In our case, any ViewModel associated with contacts can safely execute on
the main thread without the necessity of using a background queue. The use of
background thread, in this case, can be considered as a premature optimization when
there is actually no visible problem, and optimization is just making things more
complicated without any actual benefit. On the contrary, ViewModels that are going to
be derived from MVChatsListController and MVChatController are likely to be in need
of background queue, because of the type of work and computation complexity that
they are facing.

Method messagesPage:forChatWithId: is changed to return a signal instead of calling a
passed callback as it was done previously. Callbacks in operations where they are used
to return requested data asynchronously can be changed to RACSignal interfaces to
unify API and make handling more natural on the user side. Usability comes from
consolidating interfaces for working with related objects and from the ease of use of
RACSignal’s operators related to scheduling and switching between different
schedulers.

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Mark Vasiv

93

6.1.3 File manager

The mechanism of sending notifications previously used in the file manager is changed
to RACSignal interface. This minor change not only explicitly exposes the behavior of
the manager in its interface, but also make it easier on the controller side to parse
notifications. Instead of parsing a dictionary, a controller now receives a wrapper
object which holds all the needed information. The interface change of file manager is
shown in Code snippet 89.

Code snippet 89. Interface change of MVFileManager.

#pragma mark - Signals
@property (strong, nonatomic) RACSignal *avatarUpdateSignal;

Signal avatarUpdateSignal send events when any avatar is being changed. The object
that is being sent is of class MVAvatarUpdate. Its interface is shown in Code snippet
90.

Code snippet 90. Interface of MVChatAvatarUpdate.

@interface MVAvatarUpdate : NSObject
@property (assign, nonatomic) MVAvatarUpdateType type;
@property (strong, nonatomic) NSString *id;
@property (strong, nonatomic) UIImage *avatar;
@end

The class stores the same data that was previously enclosed in a dictionary of
NSNotification. The use of the wrapper object, in this case, ensures type safety on the
receiver’s side as well as provides a clear understanding of which data to expect from
the signal.

6.2 Views and view models

As discussed in Chapter 2.5, the MVVM pattern does not have a concept of controllers.
Instead, it introduces a ViewModel entity that is responsible for handling the data for
the view. In the case of the iOS, the composition of the UIViewController and the
UIView is going to be considered together as a view entity, and ViewModel (which is
going to be NSObject subclass) is going to take some of the responsibilities previously
loaded onto the controller.

6.2.1 Chats list

Class MVChatsListController is divided into 2 classes – MVChatsListController and
MVChatsListViewModel. The word controller used in the name of the
MVChatsListController just illustrates that the class is still a subclass of the
UIViewController but it has nothing to do with controller in the MVC pattern. Cells

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Mark Vasiv

94

used in the table view also obtain associated ViewModels –
MVChatsListCellViewModel. This model is going to serve as intermediate
representation between MVChatModel and the view in the form of MVChatsListCell.
The interface and private interface extension of MVChatsListViewModel are shown in
Code snippet 91.

Code snippet 91. Interface of MVChatsListViewModel.

@interface MVChatsListViewModel : NSObject <UISearchResultsUpdating>
@property (strong, nonatomic, readonly) NSArray <MVChatsListUpdate *> *listUpdates;
@property (assign, nonatomic, readonly) BOOL shouldShowPopularData;
@property (strong, nonatomic) MVChatsListCellViewModel *recentSearchChat;
@property (strong, nonatomic, readonly)
 NSArray <MVChatsListCellViewModel *> *chats;
@property (strong, nonatomic, readonly)
 NSArray <MVChatsListCellViewModel *> *filteredChats;
@property (strong, nonatomic, readonly)
 NSArray <MVChatsListCellViewModel *> *popularChats;
@end

@interface MVChatsListViewModel ()
@property (strong, nonatomic, readwrite) NSArray *chats;
@property (strong, nonatomic, readwrite) NSArray *filteredChats;
@property (strong, nonatomic, readwrite) NSArray *popularChats;
@property (assign, nonatomic, readwrite) BOOL shouldShowPopularData;
@property (strong, nonatomic, readwrite) NSArray *listUpdates;
@end

The class stores properties for all data-related objects that were previously stored in
the controller as well as such properties of the search controller. The ViewModel is
going to provide data not only to the MVChatsListController but also to the
MVChatsListSearchController. There are some duplicates of properties in the public
interface, and its private extension. These properties are not meant to be modified
outside of the MVChatsListViewModel class, and thus they are marked with the
readonly attribute. That makes the intent clear, and to support changing the properties
in the class, we need to override their definition in the interface extension with a
property attribute readwrite. Apart from the invariants migrated from the controller,
the ViewModel also has a new property – listUpdates array. This array is used to store
updates happening in the chat’s array in the form that is the most convenient for the
view. The objects that are stored in this array are of type MVChatsListUpdate. The
interface of this class in also defined in the header of the MVChatsListViewModel and
can be seen in Code snippet 92.

Code snippet 92. Interface of MVChatsListUpdate.

typedef enum : NSUInteger {
 MVChatsListUpdateTypeReloadAll,
 MVChatsListUpdateTypeReload,
 MVChatsListUpdateTypeInsert,
 MVChatsListUpdateTypeDelete,
 MVChatsListUpdateTypeMove
} MVChatsListUpdateType;

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Mark Vasiv

95

Code snippet 92 (continued).

@interface MVChatsListUpdate : NSObject
@property (assign, nonatomic) MVChatsListUpdateType updateType;
@property (strong, nonatomic) NSIndexPath *startIndexPath;
@property (strong, nonatomic) NSIndexPath *endIndexPath;
@property (strong, nonatomic) NSIndexPath *insertIndexPath;
@property (strong, nonatomic) NSIndexPath *removeIndexPath;
@property (strong, nonatomic) NSIndexPath *reloadIndexPath;
@end

This class stores information about the update that should be translated to the table
view. Its property updateType uniquely identifies the type of a batch update, or a
complete table view reload, and multiple NSIndexPath’s properties are used to pass
data relevant to the specified update. It could be possible to store only two
NSIndexPath properties because this is the most amount that is needed for any
particular update, however, the use of descriptive naming associated with each update
type makes the semantics of the property clearer.

The objects stored in the chats array also changed their class, comparing to the same
array in the native app. Now the array does not store MVChat objects but instead
stores cell’s ViewModels of class MVChatsListCellViewModel. These objects partially
mirror the data stored in the MVChatModel, but with some extra tuning, which makes
them easier to use in the view. The point here is to maximally simplify the code in the
view instances, taking all the responsibility of model handling to the ViewModel. The
interface of MVChatsListCellModel can be seen in Code snippet 93.

Code snippet 93. Interface of MVChatsListCellViewModel.

@interface MVChatsListCellViewModel : NSObject
@property (strong, nonatomic) MVChatModel *chat;
@property (strong, nonatomic) NSString *title;
@property (strong, nonatomic) NSString *message;
@property (strong, nonatomic) NSString *unreadCount;
@property (strong, nonatomic) NSString *updateDate;
@property (strong, nonatomic) UIImage *avatar;
@end

MVChatsListCellViewModel is a pure data class; it does not support any methods but
entirely mirrors the view hierarchy of the cell, with which it is associated. Cell in turn
needs only to obtain the data from its ViewModel and fill the corresponding views,
which is trivial.

Now let us look at the MVChatsListController interface and methods. The Code snippet
94 shows the private interface extension of the class, the public interface remains
empty.

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Mark Vasiv

96

Code snippet 94. Interface of MVChatsListViewController.

@interface MVChatsListViewController () <UITableViewDelegate,
UITableViewDataSource, MVForceTouchPresentaionDelegate, UICollectionViewDelegate>
@property (strong, nonatomic) IBOutlet UITableView *chatsList;
@property (strong, nonatomic) IBOutlet UIButton *createChatButton;
@property (nonatomic) MVChatsListSearchViewController *searchResultsController;
@property (strong, nonatomic) UISearchController *searchController;
@property (strong, nonatomic) MVChatsListViewModel *viewModel;
@end

Now the controller does not store any other properties than ones related to the view
objects and property for storing its ViewModel. The initialization of the controller is
also simplified. Corresponding methods are shown in Code snippet 95. The controller is
responsible for initialization of its ViewModel and it does it even before the view is
fully loaded. As soon as the ViewModel is mainly working on the background queue,
this can improve the overall performance of the view. The data potentially can be
already processed by the ViewModel at the time when viewDidLoad is called and
controller just left with displaying it.

Code snippet 95. Initialization related methods of MVChatsListViewController.

#pragma mark - Initialization
- (instancetype)initWithCoder:(NSCoder *)aDecoder {
 if (self = [super initWithCoder:aDecoder]) {
 _viewModel = [MVChatsListViewModel new];
 }

 return self;
}

#pragma mark - View lifecycle
- (void)viewDidLoad {
 [super viewDidLoad];
 ...allold view setups

 [self bindAll];
 [self.chatsList reloadData];
}

In the viewDidLoad, the controller does all the view setups related to the search
controller and force touch recognition that was done previously, setups binding to the
ViewModel and reloads the table view. The code responsible to bind to the ViewModel
is shown in Code snippet 96.

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Mark Vasiv

97

Code snippet 96. Binding of MVChatsListViewController.

- (void)bindAll {
 @weakify(self);
 [[[RACObserve(self.viewModel, listUpdates) skip:1] deliverOnMainThread]
 subscribeNext:^(NSArray *updates) {
 @strongify(self);
 for (MVChatsListUpdate *update in updates) {
 switch (update.updateType) {
 case MVChatsListUpdateTypeReloadAll:
 [self.chatsList reloadData];
 break;

 case MVChatsListUpdateTypeInsert:
 [self.chatsList
 insertRowsAtIndexPaths:@[update.insertIndexPath]

 withRowAnimation:UITableViewRowAnimationBottom];
 break;

 case MVChatsListUpdateTypeDelete:
 [self.chatsList
 deleteRowsAtIndexPaths:@[update.removeIndexPath]
 withRowAnimation:UITableViewRowAnimationAutomatic];
 break;

 case MVChatsListUpdateTypeMove:
 [self.chatsList moveRowAtIndexPath:update.startIndexPath
 toIndexPath:update.endIndexPath];
 break;

 case MVChatsListUpdateTypeReload:
 [UIView setAnimationsEnabled:NO];
 [self.chatsList
 reloadRowsAtIndexPaths:@[update.reloadIndexPath]
 withRowAnimation:UITableViewRowAnimationAutomatic];
 [UIView setAnimationsEnabled:YES];
 break;

 default:
 break;
 }
 }
 }];

 [[self.createChatButton rac_signalForControlEvents:UIControlEventTouchUpInside]
 subscribeNext:^(__kindof UIControl *x) {
 @strongify(self);
 [self createNewChat];
 }];
}

The binding consists of using RACObserve macro to create a signal from a KVO on the
ViewModel’s property listUpdates and then subscribing to that signal. In the
subscription block controller responds to different types of updates by calling
appropriate methods of the table view. The signal has two modifying operators –
skip:1 and deliverOnMainThread. The first one is used to skip the first value of the
signal, which is irrelevant to the controller as soon as it is calling table view’s
reloadData in the viewDidLoad in any case, and the second is used to schedule the
subscription block on the main queue, which is obligatory for the UI manipulations.

Another signal used in the bindAll method is related to the button tap handling. That is
accomplished by the use of rac interface added to all the UIControlls –

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Mark Vasiv

98

rac_signalForControlEvents. The returned signal is sending values when the specified
control events are happening. This subscription block is an equivalent of IBAction use.
However, it provides a concise RACSignal interface.

Macros @weakify and @strongify used in the previous snippet are used to create
correspondingly weak and strong references to the object passed to the macro. As
soon as these signals are eternal – they last the lifetime of the associated objects, and
subscription’s blocks are just Objective-C blocks, retaining a strong link to self in the
block is causing a reference cycle. To break this cycle, these macros are used.

Another method that is somehow related to the major functionality of the view is
cellForRowAtIndexPath: from UITableViewDataSource. The method is shown in Code
snippet 97.

Code snippet 97. Method cellForRowAtIndexPath: from MVChatsListViewController.

- (UITableViewCell *)tableView:(UITableView *)tableView
 cellForRowAtIndexPath:(NSIndexPath *)indexPath {
 MVChatsListCell *cell = [tableView
 dequeueReusableCellWithIdentifier:@"ChatsListCell"];
 MVChatsListCellViewModel *model = self.viewModel.chats[indexPath.row];
 [cell fillWithModel:model];

 return cell;
}

Implementation of the method is rather simple – it just obtains a cell by the reuse
identifier, gets a cell’s ViewModel from the controller’s ViewModel and fills the cell
with its ViewModel. The cell, in turn, is responsible for filling out its views. The
implementation of fillWithModel: method is shown in Code snippet 98.

Code snippet 98. Method fillWithModel: from MVChatsListCell.

- (void)fillWithModel:(MVChatsListCellViewModel *)model {
 self.titleLabel.text = model.title;
 self.messageLabel.text = model.message;
 self.dateLabel.text = model.updateDate;

 if (model.unreadCount) {
 [self.unreadCountButton setTitle:model.unreadCount
 forState:UIControlStateNormal];
 self.unreadCountButton.hidden = NO;
 } else {
 self.unreadCountButton.hidden = YES;
 }

 RAC(self.avatarImageView, image) = [[RACObserve(model, avatar)
 deliverOnMainThread] takeUntil:self.rac_prepareForReuseSignal];

 self.chatModel = model.chat;
}

Here cell fills all the views as well as subscribes to the signal related to the avatar
updates. As soon as an avatar of a particular cell can be changed, this change can be
handled by the main ViewModel, propagated to the cell’s ViewModel and eventually

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Mark Vasiv

99

be determined by the cell itself. Such solution efficiently balances responsibilities
between different entities, leaving the cell with the only one – listening to its own
ViewModel without full understanding how the underlying change is occurring. The
mechanism is built on using two macros – RAC and RACObserve. Macros RACObserve
as described earlier, setups a KVO over passed object and returns the signal, which
sends values each time the object is changed. Macros RAC, in turn, is used to create an
automatic subscription to a signal and to save all the sent values to the passed
property – image of the image view in this case. The signal also uses operator
deliverOnTheMainThread to ensure that image view is updated on the main queue and
takeUntil: self.rac_prepareForReuseSignal. The latter is used to terminate the signal
subscription and eventually the signal itself as soon as the cell is added to the reuse
pool. That helps to avoid reference cycle and unpredictable behavior of the cell’s
avatar image view. Because every time the cell is reused it is being filled and
associated with another ViewModel, it should forget about all the bindings related to
the previously used ViewModel.

The cell does not have any other interesting methods, as well as the view. All the rest
methods just migrated from the native implementation and are responsible for view
setup and trivial support of the UI protocols.

The MVChatsListViewModel initialization is shown in Code snippet 99. Method
setupBindings is large but contains independent blocks of execution that are going to
be listed separately.

Code snippet 99. Initialization of MVChatsListViewModel.

#pragma mark - Lifecycle
- (instancetype)init {
 if (self = [super init]) {
 [self setupBindings];
 }

 return self;
}

- (void)setupBindings {
 MVChatManager *chatManager = [MVChatManager sharedInstance];
 RACScheduler *viewModelScheduler = chatManager.viewModelScheduler;
 RACSignal *chatUpdateSignal = [chatManager.chatUpdateSignal
 deliverOn:viewModelScheduler];

 self.chats = [self viewModelsForChats:chatManager.chatsList];
 self.listUpdates = @[[MVChatsListUpdate reloadAllUpdate]];

 ...other bindings
}

During initialization the ViewModel stores frequently used instances to variables – this
includes chatManager, viewModelScheduler and chatUpdatesSignal. Signal
chatUpdatesSignal obtained from the manager is also modified to schedule all the
events to the viewModelSheduler. After that, the ViewModel obtains the current list of
chats from the chat manager and stores the initial value to the listUpdates property.

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Mark Vasiv

100

The data handling initiated by the chatUpdatesSignal is set up later in the method and
separated to independent execution blocks by the update type. The Code snippet 100
shows the setup of the reloadSignal and the insertSignal, responsible for handling
updates of ChatUpdateTypeReload and ChatUpdateTypeInsert types.

Code snippet 100. Setup of reloadSignal and insertSignal inside of setupBindings
method.

@weakify(self);
RACSignal *reloadSignal = [[[[chatUpdateSignal filter:^BOOL(MVChatUpdate
*listUpdate) {
 return listUpdate.updateType == ChatUpdateTypeReload;
}] map:^id(MVChatUpdate *listUpdate) {
 @strongify(self);
 return [self viewModelsForChats:chatManager.chatsList];
}] doNext:^(NSArray *models) {
 @strongify(self);
 self.chats = models;
}] map:^id (NSArray *models) {
 return @[[MVChatsListUpdate reloadAllUpdate]];
}];

RACSignal *insertSignal = [[[[chatUpdateSignal filter:^BOOL(MVChatUpdate
*listUpdate) {
 return listUpdate.updateType == ChatUpdateTypeInsert;
}] map:^id (MVChatUpdate *listUpdate) {
 @strongify(self);
 return [self viewModelForChat:listUpdate.chat];
}] doNext:^(MVChatsListViewModel *model) {
 @strongify(self);
 NSMutableArray *chats = [self.chats mutableCopy];
 [chats insertObject:model atIndex:0];
 self.chats = [chats copy];
}] map:^id (MVChatsListViewModel *model) {
 NSIndexPath *insertIndexPath = [NSIndexPath indexPathForRow:0 inSection:0];
 return @[[MVChatsListUpdate insertUpdateWithIndex:insertIndexPath]];
}];

Both signals first filter the value received from chatUpdateSignal by the updateType to
handle only events, in which they are interested. After reloadSignal receives a value, it
obtains a current list of chats from the chat manager, creates cells' ViewModels and
stores them in the chats property. As the final steps, it maps the received value to an
object of class MVChatsListUpdate, which later will be used by the view. Signal
isnertSignal does similar actions – it generates cell’s ViewModel for the received chat
and inserts it into the chats array. As well as the reloadSignal, it maps the value to the
MVChatsListUpdate object. Code snippet 101 contains two other signals responsible
for updates of ChatUpdateTypeDelete and ChatUpdateTypeModify types.

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Mark Vasiv

101

Code snippet 101. Setup of deleteSignal and modifySignal inside of setupBindings
method.

RACSignal *deleteSignal = [[[[[chatUpdateSignal filter:^BOOL(id listUpdate) {
 return listUpdate.updateType == ChatUpdateTypeDelete;
}] map:^id(MVChatUpdate *listUpdate)
 @strongify(self);
 return @([self indexOfChat:listUpdate.chat]);
}] filter:^BOOL(NSNumber *index) {
 return index.integerValue != NSNotFound;
}] doNext:^(NSNumber *index) {
 @strongify(self);
 NSMutableArray *chats = [self.chats mutableCopy];
 [chats removeObjectAtIndex:index.integerValue];
 self.chats = [chats copy];
}] map:^id (NSNumber *index) {
 NSIndexPath *deleteIndexPath = [NSIndexPath indexPathForRow:index.integerValue
 inSection:0];
 return @[[MVChatsListUpdate deleteUpdateWithIndex: deleteIndexPath]];
}];
RACSignal *modifySignal = [[[[chatUpdateSignal filter:^BOOL(id listUpdate) {
 return listUpdate.updateType == ChatUpdateTypeModify;
}] map:^id (MVChatUpdate *listUpdate) {
 @strongify(self);
 return RACTuplePack(@(listUpdate.sorting),
 [self viewModelForChat:listUpdate.chat],
 @([self indexOfChat:listUpdate.chat]),
 @(listUpdate.index));
}] doNext:^(RACTuple *tuple) {
 RACTupleUnpack(NSNumber *sorting, MVChatsListCellViewModel *model,
 NSNumber *oldIndex, NSNumber *newIndex) = tuple;
 @strongify(self);
 NSMutableArray *chats = [self.chats mutableCopy];
 if (sorting.boolValue) {
 [chats removeObjectAtIndex:oldIndex.integerValue];
 [chats insertObject:model atIndex:newIndex.integerValue];
 } else {
 [chats replaceObjectAtIndex:oldIndex.integerValue withObject:model];
 }
 self.chats = [chats copy];
}] map:^id (RACTuple *tuple) {
 RACTupleUnpack(NSNumber *sorting, MVChatsListCellViewModel *model,
 NSNumber *oldIndex, NSNumber *newIndex) = tuple;
 NSMutableArray *updates = [NSMutableArray new];
 if (sorting.boolValue) {
 NSIndexPath *oldIndexPath = [NSIndexPath
 indexPathForRow:oldIndex.integerValue
 inSection:0];
 NSIndexPath *newIndexPath = [NSIndexPath
 indexPathForRow:newIndex.integerValue
 inSection:0];
 MVChatsListUpdate *move = [MVChatsListUpdate
 moveUpdateWithStartIndex:oldIndexPath
 endIndex:newIndexPath];
 [updates addObject:move];
 }
 NSInteger rowToReload = sorting.boolValue?
 newIndex.integerValue : oldIndex.integerValue;
 NSIndexPath *reloadIndexPath = [NSIndexPath indexPathForRow:rowToReload
 inSection:0]
 MVChatsListUpdate *reload = [MVChatsListUpdate
 reloadUpdateWithIndex:reloadIndexPath];
 [updates addObject:reload];
 return updates.copy;
}];

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Mark Vasiv

102

These signals, as well as the ones, discussed earlier firstly filter the update received
from the chat manager to receive only events of the corresponding type. Signal
deleteSignal then finds the index of the needed chat, removes associated cells’
ViewModel from the chats array and eventually maps the value to an
MVChatsListUpdate object, passing there the index of the deleted row. Signal
modifySignal creates a cell’s ViewModel, finds the current index of the modified chat
and passes all these data as well as some of the data encapsulated in the
MVChatUpdate object to the next block with the use of the RACTuple object. Macros
RACTuplePack and RACTupleUnpack here are used correspondingly to create a
RACTuple with passed objects and to unwrap a tuple and store its values in the passed
variables. The signal modifies the chat array according to the sorting flag and creates
MVChatsListUpdate objects, which are then added to the array and returned from the
last map operator.

Described above signals inject side effects with the use of such operators as map,
doNext, and filter. All the signals are designed to do some work using these side effects
and eventually map the values to an array of MVChatsListUpdate instances. The code
encapsulated into side-effect blocks of a signal is going to be executed only when there
is a subscription to that signal, so the next step is to subscribe to all update-related
signals. That is also done in the body of the setupBindings method and showed in Code
snippet 102, as well as another not-related subscription finishing the method.

Code snippet 102. Final setup of bindings inside setupBindings method.

RAC(self, listUpdates) = [RACSignal merge:@[reloadSignal, insertSignal,
 deleteSignal, modifySignal]];

RAC(self, shouldShowPopularData) = [[RACObserve(self, filteredChats)
map:^id(NSArray *chats) {
 return @((BOOL)chats);
}] not];

Signals described previously are combined using merge operator, which creates a new
signal that will send all the values from the passed signals at the same time they send
values. The resulting signal then writes all the values to the property listUpdates with
the help of the RAC macros. That inherently creates the subscription needed to
perform the work encapsulated in the signals as side effects and stores update objects
to the ViewModel’s property listUpdates that is then observed by the view to update
its contents. Essentially, the binding process setups a tunnel from the chat manager to
the view, modifying events coming from the manager and performing some additional
work as these events occur. The signal’s side-effects work is serialized on the
viewModelScheduler which ensures that the view will receive a value only when side
effects work is finished.

Another binding shown in the previous listing is mapping the value of filteredChats
array to the shouldShowPopularData property – the property will be YES if only
filteredChats pointer is nil and vice versa.

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Mark Vasiv

103

The rest of MVChatsListViewModel methods are mostly helpers used to create cell’s
ViewModels and filter them to support search functionality. The complete list is shown
in Code snippet 103.

Code snippet 103. The rest of MVChatsListViewModel methods.

- (MVChatsListCellViewModel *)viewModelForChat:(MVChatModel *)chat {...}
- (NSArray <MVChatsListCellViewModel *> *)viewModelsForChats:
 (NSArray <MVChatModel *> *)chats {...}
- (void)updateSearchResultsForSearchController:(UISearchController
*)searchController {...}
- (NSArray *)filterChatsWithString:(NSString *)string {...}
- (NSUInteger)indexOfChat:(MVChatModel *)chat {...}
- (NSString *)textFromMessage:(MVMessageModel *)message {...}
- (NSString *)textFromUpdateDate:(NSDate *)date {...}

Implementation of listed above methods is trivial and mostly was previously done in
the code of MVChatsListController. Implementation of viewModelForChat: method is
partially interesting because it does not only create a cell’s ViewModel but also setups
a binding for the avatar updates that was described when discussing cells. The
implementation is shown in Code snippet 104.

Code snippet 104. Implementation of viewModelForChat: method.

- (MVChatsListCellViewModel *)viewModelForChat:(MVChatModel *)chat {
 MVChatsListCellViewModel *viewModel = [MVChatsListCellViewModel new];
 viewModel.chat = chat;
 if (chat.isPeerToPeer) {
 viewModel.title = chat.getPeer.name;
 } else {
 viewModel.title = chat.title;
 }
 viewModel.message = [self textFromMessage:chat.lastMessage];

 if (chat.unreadCount != 0) {
 viewModel.unreadCount = [NSString stringWithFormat:@"%lu",
 (unsigned long)chat.unreadCount];
 }
 viewModel.updateDate = [self textFromUpdateDate:chat.lastUpdateDate];

 [[MVFileManager sharedInstance] loadThumbnailAvatarForChat:chat
 maxWidth:50
 completion:^(UIImage *image) {
 viewModel.avatar = image;
 }];
 RAC(viewModel, avatar) =
 [[[[MVFileManager sharedInstance].avatarUpdateSignal filter:^BOOL(id update) {
 if (chat.isPeerToPeer) {
 return (update.type == MVAvatarUpdateTypeContact
 && [update.id isEqualToString:chat.getPeer.id]);
 } else {
 return (update.type == MVAvatarUpdateTypeChat
 && [update.id isEqualToString:chat.id]);
 }
 }] map:^id (MVAvatarUpdate *update) {
 return update.avatar;
 }] takeUntil:viewModel.rac_willDeallocSignal];

 return viewModel;
}

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Mark Vasiv

104

The method is responsible for mapping MVChatModel to MVChatsListCellViewModel,
which is more convinient for the cell to display. Apart from the object creation and
filling the properties, the method setups a binding for supporting avatar updates. The
signal exposed by the MVFileManager is filtered to pass only events about a particular
chat, mapped to send an actual UIImage value and eventually binded to the avatar
property of the cell’s ViewModel. This property is then going to be observed by the cell
to update the contents of the corresponding UIImageView object. Operator takeUntil:
is also applied to the signal to discard it when associated ViewModel is removed from
the memory to avoid a memory leak in that place.

Refactoring of the MVChatListController reduced its size, shifted some of its
responsibilities to the ViewModel and introduced a clearer and more concise
implementation. Now every object has an area of responsibilities which is sharply
different from another. All of the data flow in this part of the app are described in a
declarative way and thus are easy to read and understand. The performance of the
controller is also improved because ViewModel as an independent object can work on
a dedicated background queue.

6.2.2 Chat controller

The chat controller is refactored similarly – by adding the MVChatViewModel as the
view’s ViewModel and the MVMessageCellModel as the cell’s ViewModel. In contrast
to the chats list controller, ViewModels related to the chat controller are going to take
much more responsibility and overall be capable of much more functionality because
the refactored controller is much complex in turn. The interface of the
MVChatViewModel as well as its private interface extension are shown in Code snippet
105.

Code snippet 105. Interface of MVChatViewModel.

@interface MVChatViewModel : NSObject
- (instancetype)initWithChat:(MVChatModel *)chat;
@property (strong, nonatomic) NSArray <MVMessageCellModel *> *rows;
@property (strong, nonatomic) UIImage *avatar;
@property (strong, nonatomic) NSString *title;
@property (strong, nonatomic) NSString *messageText;
@property (strong, nonatomic) RACSignal *updateSignal;
@property (strong, nonatomic) RACCommand *sendCommand;
@property (assign, nonatomic) CGFloat sliderOffset;
@property (strong, nonatomic) NSString *chatId;
@property (strong, nonatomic) NSArray *chatParticipants;
- (void)tryToLoadNextPage;
- (UIViewController *)relevantSettingsController;
- (UIViewController *)attachmentPicker;
- (void)imageViewerForMessage:(MVMessageCellModel *)model
 fromImageView:(UIImageView *)imageView
 completion:(void (^)(UIViewController *))completion;
@end

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Mark Vasiv

105

Code snippet 105 (continued).

@interface MVChatViewModel()
@property (strong, nonatomic) MVChatModel *chat;
@property (strong, nonatomic) RACScheduler *scheduler;
@property (strong, nonatomic) dispatch_queue_t queue;
@property (strong, nonatomic) NSMutableArray <MVMessageCellModel *> *messages;
@property (assign, nonatomic) BOOL processingMessages;
@property (assign, nonatomic) BOOL initialLoadComplete;
@property (assign, nonatomic) NSInteger loadedPageIndex;
@property (assign, nonatomic) NSInteger numberOfProcessedMessages;
@property (strong, nonatomic) RACReplaySubject *updateSubject;
@property (nonatomic, copy) BOOL (^insertMessage)(MVMessageModel *,
 MVMessageModel *,
 MVMessageModel *,
 NSMutableArray <MVMessageCellModel *> *, BOOL);
@end

The interface stores data-related properties migrated from the MVChatController as
well as some new properties. It provides a simple interface for the view to obtain
desired data objects. For example, avatar and title are not queried from some other
objects; they are exposed in a one-step way. Apart from these simple data properties,
the ViewModel stores updateSignal, which is used by the view to receive update
events and sendCommand, which is used as RACCommand for the send button.
Interestingly, but the ViewModel has two properties for storing cell’s ViewModels –
array rows and mutable array messages. This separation will be covered shortly when
we will get to the view’s code. Briefly, it is used to provide better thread-safety for the
controller. Another interesting property, which was not presented before, is
insertMessage. It is a block taking multiple parameters and returning a boolean. The
block is used internally by the ViewModel to insert new messages into the collection
passed to the block. The same functionality could be achieved by using the method,
but if the operation is designed to be performed very frequently, the use of block is
faster compared to the use of the method. The class also has a method for loading a
new page of messages and obtaining viewcontroller’s instances requested by its view.
There is one designated initializer – initWithChat:, which takes chat object.
Implementation of this method is shown in Code snippet 106.

Code snippet 106. Implementation of initWithChat: method.

- (instancetype)initWithChat:(MVChatModel *)chat {П
 if (self = [super init]) {
 _loadedPageIndex = -1;
 _sliderOffset = 0;
 _chat = chat;
 _messages = [NSMutableArray new];
 _updateSubject = [RACReplaySubject replaySubjectWithCapacity:1];
 _scheduler = [MVChatManager sharedInstance].viewModelScheduler;
 _queue = [MVChatManager sharedInstance].viewModelQueue;
 _chatId = chat.id;
 _updateSignal = [_updateSubject deliverOnMainThread];

 @weakify(self);
 self.insertMessage = ^BOOL (MVMessageModel *previous,
 MVMessageModel *current,

 MVMessageModel *next,
 NSMutableArray *rows,
 BOOL reverse) {

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Mark Vasiv

106

Code snippet 106 (continued).

 @strongify(self);
 if (previous && !previous.read && !reverse) {
 current.read = NO;
 }

 NSString *sectionKey = [self headerTitleFromMessage:current];
 NSString *previousSectionKey = [self headerTitleFromMessage:previous];
 MVMessageCellModel *viewModel = [self viewModelForMessage:current

 previousMessage:previous
 nextMessage:next];

 MVMessageCellModel *headerViewModel = [self
 viewModelForSection:sectionKey];
 BOOL shouldInsertHeader = ![previousSectionKey
 isEqualToString:sectionKey];

 NSInteger insertIndex = reverse? 0 : rows.count;

 [rows insertObject:viewModel atIndex:insertIndex];
 if (shouldInsertHeader) {
 [rows insertObject:headerViewModel atIndex:insertIndex];
 }

 return shouldInsertHeader;
 };

 [self setupAll];
 [self tryToLoadNextPage];
 }

 return self;
}

The initialization consists of simple filling all the properties with the initial values. The
passed value of the chat object is saved so that it can be used during the lifetime of the
ViewModel. Properties queue and scheduler are the queue and associated scheduler
provided by the chat manager. Property updateSubejct is used to be a provider of
events for the updateSignal, it is in some sense an interface between non-reactive and
reactive worlds. Its semantics allows to manually send values to the subject, which are
then tunneled to the corresponding signal. The subject is of class RACReplaySubject
and is initialized with capacity 1, which means it will save the last value that it sent and
re-send it to all the new subscribers when they are subscribed. This subject is used to
send update values to the view, and we use here replay subject because at the time
when the signal is subscribed (the view is loaded, in our case), the ViewModel
potentially could be fast enough to handle messages and send an update to the
subject just before the subscription. Replay subject ensures that this initial value will
be received by the subscriber (the view in our case). Initialization also has initialization
of the insertMessage block. As mentioned previously, the block is used to insert a
message to the passed collection. The block expects to receive a message, which is
needed to be inserted – the current parameter, messages that go before that and after
that – the previous and the next parameters, mutable collection where to insert a
message – the rows parameter, and a flag indicating whether this message should be
inserted at the end or the beginning of the collection – the reverse parameter.
Parameters previous and next are optional and can be nil. When the block is invoked, it
firstly handles the read property of the message – all the messages that come after

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Mark Vasiv

107

unread messages should be stored in the same section according to the UI, so it
tweaks the read property to ensure this. Then it generates cell’s ViewModel for the
message itself and the section header, and inserts them to the array. Viewmodel of the
section header is inserted only if the currently processing message and the previous
message have different section keys. The block then returns a boolean, indicating
whether section header was inserted or not.

Important to note at this point that the storing of data is changed. Previously we
stored two collections – an array of section keys and a dictionary that maps this
section keys to the array of messages. That was the only possible implementation in
terms of the MVC, but lead to some complications in handling of the section headers in
the UITableViewDataSource methods. MVVM can provide an intermediate model –
cell’s ViewModel and thus we can represent both a message and a header with the
same model class. That is why ViewModel does not have a dictionary of messages and
array of section keys. Instead, it stores all the cell’s ViewModels in the array. The logic
for special handling of section headers, decreasing the index path and so on is then can
be omitted. Technically, messages table view has only one section and multiple rows in
that section, that are actually from multiple abstract sections.

After filling properties the initialization method transfers control to setupAll and
tryToLoadNextPage methods, which finish the initialization. Afterwards instance is
successfully returned from the method. Method setupAll is shown in Code snippet 107.

Code snippet 107. Implementation of setupAll method.

- (void)setupAll {
 self.title = self.chat.title;
 self.chatParticipants = self.chat.participants;
 [[MVFileManager sharedInstance] loadThumbnailAvatarForChat:self.chat
 maxWidth:50
 completion:^(UIImage *image) {
 self.avatar = image;
 }];

 @weakify(self);
 RAC(self, avatar) =
 [[[[MVFileManager sharedInstance] avatarUpdateSignal]
filter:^BOOL(MVAvatarUpdate *update) {
 @strongify(self);
 if (self.chat.isPeerToPeer) {
 return [update.id isEqualToString:self.chat.getPeer.id];
 } else {
 return [update.id isEqualToString:self.chat.id];
 }
 }] map:^id (MVAvatarUpdate *update) {
 return update.avatar;
 }];

 RACSignal *messageTextValid = [RACObserve(self, messageText)
 map:^id (NSString *text) {
 NSCharacterSet *whitespace = [NSCharacterSet
 whitespaceAndNewlineCharacterSet];
 return @([text stringByTrimmingCharactersInSet:whitespace].length > 0);
 }];

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Mark Vasiv

108

Code snippet 107 (continued).

 self.sendCommand = [[RACCommand alloc] initWithEnabled:messageTextValid
 signalBlock:^RACSignal *(id input) {
 @strongify(self);
 return [self sendCommandSignal];
 }];

 [[[MVChatManager sharedInstance].messageUpdateSignal
 deliverOn:self.scheduler]
 subscribeNext:^(MVMessageModel *message) {
 @strongify(self);
 [self insertNewMessage:message];
 }];

 NSString *chatId = [self.chat.id copy];
 [[[MVChatManager sharedInstance].chatUpdateSignal
 filter:^BOOL(MVChatUpdate *chatUpdate) {
 return chatUpdate.updateType == ChatUpdateTypeModify
 && [chatUpdate.chat.id isEqualToString:chatId];
 }] subscribeNext:^(MVChatUpdate *chatUpdate) {
 @strongify(self);
 self.chat = chatUpdate.chat;
 self.title = chatUpdate.chat.title;
 self.chatParticipants = chatUpdate.chat.participants;
 }];

 [self.rac_willDeallocSignal subscribeCompleted:^{
 [[MVChatManager sharedInstance] markChatAsRead:chatId];
 }];
}

The method fills the rest of the properties with the data obtained from the chat object,
loads avatar and setups bindings, which is the primary purpose of the method. First
binding is a subscription to the avatar update signal which saves new values to the
avatar property. Signal messageTextValid is used to validate the messageText
property, which previously was done in the textfield’s IBAction. The signal determines
whether the string is valid by checking if it contains any values except whitespace
characters, and sends booleans indicating this validity. The signal is then used to create
a RACCommand object as an enabled option. Command sendCommand is going to
handle tap of the send button in the view, disabling and enabling the button according
to the enabled signal. The signal which is returned in the signalBlock of the command
encapsulates the work which needs to be performed when the command is executed –
button is pressed. Viewmodel also subscribes to the chatUpdatesSignal to update its
data when the chat is updated, and to the rac_willDiallocSignal to ask the chat
manager to mark the chat as read. The latter signal sends a value when ViewModel is
about to be removed from the memory – in our case, it happens when the associated
view is being closed.

Apart from the method setupAll, initialization method calls tryToLoadNextPage before
returning. The method should be familiar from the native implementation, it is used to
obtain a new messages page. Even though the same method was used in the native
approach, now it has a different implementation. It is shown in the Code snippet 108.

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Mark Vasiv

109

Code snippet 108. Implementation of tryToLoadNextPage method.

- (void)tryToLoadNextPage {
 if (self.processingMessages) {
 return;
 }
 self.processingMessages = YES;

 BOOL shouldLoad = (!self.initialLoadComplete ||
 ([[MVChatManager sharedInstance]
 numberOfPagesInChatWithId:self.chatId]) > self.loadedPageIndex + 1);

 if (!shouldLoad) {
 self.processingMessages = NO;
 return;
 }

 @weakify(self);
 [[[[[MVChatManager sharedInstance]
 messagesPage:++self.loadedPageIndex
 forChatWithId:self.chatId] map:^id (NSArray *models) {
 @strongify(self);
 NSMutableArray <MVMessageCellModel *> *messages = self.messages;
 MVMessageModel *lastLoadedMessage = [messages
 optionalObjectAtIndex:1].message;
 MVMessageModel *beforeLastLoadedMessage = [messages
 optionalObjectAtIndex:2].message;
 RACTuple *firstTuple = RACTuplePack(beforeLastLoadedMessage,
 lastLoadedMessage);
 return [[models.rac_sequence scanWithStart:firstTuple
 reduceWithIndex:^id (RACTuple *running,
 MVMessageModel *next,
 NSUInteger index) {
 if (index == 0) {
 return RACTuplePack(running.first, running.second, next, @(index));
 } else {
 return RACTuplePack(running.second, running.third, next, @(index));
 }

 }] map:^id (RACTuple *tuple) {
 return RACTuplePack(messages, tuple.first, tuple.second,
 tuple.third, tuple.fourth, @(models.count));
 }];
 }] flattenMap:^__kindof RACSignal *(RACSequence *sequence) {
 @strongify(self);
 return [sequence signalWithScheduler:self.scheduler];
 }] subscribeNext:^(RACTuple *tuple) {
 RACTupleUnpack(NSMutableArray <MVMessageCellModel *> *rows,
 MVMessageModel *nextModel, MVMessageModel *currentModel,
 MVMessageModel *previousModel, NSNumber *idx,
 NSNumber *count) = tuple;
 @strongify(self);
 if (idx.integerValue == 0 && currentModel) {
 [rows removeObjectAtIndex:0];
 [rows removeObjectAtIndex:0];
 }
 if (currentModel) {
 self.insertMessage(previousModel, currentModel, nextModel, rows, YES);
 }
 if (idx.integerValue == count.integerValue - 1) {
 self.insertMessage(nil, previousModel, currentModel, rows, YES);
 }
 }

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Mark Vasiv

110

Code snippet 108 (continued).

 completed:^{
 @strongify(self);
 self.processingMessages = NO;
 self.initialLoadComplete = YES;
 self.numberOfProcessedMessages += self.messages.count;
 MVMessagesListUpdate *update = [[MVMessagesListUpdate alloc]
 initWithType:MVMessagesListUpdateTypeReloadAll
 indexPath:nil
 rows:[self.messages copy]];
 [self.updateSubject sendNext:update];
 }];
}

As well as the previous implementation, method firstly secures its execution with the
help of processingMessages flag. If the execution proceeds, and this is the case for the
very first call, it obtains an array of messages from the chat manager. As discussed
earlier the corresponding chat manager’s method is changed in a way, so that it
returns a signal that sends a requested value instead of calling a callback with that
value. Viewmodel then applies multiple operators to that signal to handle the value
and notify the view about it. The first operator is map, which transforms the received
array of MVMessageModel objects into the RACSequence of RACTuple objects. The
algorithm of the mapping enclosed in the map block firstly maps each
MVMessageModel object into 4-spaced RACTuple that holds references to the current
processing model, the previous model, and the next model as well as the index of the
current model in the initial array. The order of objects in the tuple is following –
nextModel, currentModel, previousModel, index. Then each of these RACTuples is
mapped to the 5-spaced RACTuple by adding a pointer to the messages array (internal
mutable collection of the ViewModels) at index 0. The process of mapping obtains a
RACSequence obtained from the models array and modifies it to send described above
RACTuple objects instead of MVMessageModel instances. It is done with the help of
scanWithStart:reduceWithIndex: and map operators. The map operator performed on
the top-level signal then returns a modified RACSequence instance. On the next step
operator flattenMap is used to create a signal that is going to send each value from the
passed sequence. The construction of RACTuples makes the process of actual data
handling rather easy because it provides MVMessageModel objects in order that is the
most convenient for the underlying algorithm as well as other relevant data.

Subscription to the resulting signal involves using subscribeNext:completed: operator.
Here next block is going to be executed for every value sent by the signal and the
completed block is only executed once after all the next values are processed. The first
value sent by the signal stores the last message from the ViewModel’s messages array
as the current message. The first if condition in the next block is designed to handle
this object – it removes first two ViewModels if they were presented before. We need
to remove the very first section header in the messages list and the very first message
model because this header can potentially move up because of the new models, and
the message model can change its properties due to the same reasons. The message
model and optionally its header are added back to the array in the second if condition.
Here we use insertMessage block discussed previously to insert currently processed

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Mark Vasiv

111

message. Another peculiarity of the data sent by the signal is that it is not going to
send the last value of the array as the current message – this is because we substituted
it with the value of the last message in the messages array in the very first map
operator. To handle the last object we use the last if condition in the subscribeNext
block. It simply processes the last object, shifting objects of the RACTuple one position
left. The completed block is executed when signal finishes sending its next values and
completes. In this block, the ViewModel updates relevant properties and creates an
update object, which is then sent to the updateSubject and eventually is received by
the view.

The method can be seen relatively complicated due to the amount of blocks, but the
underlying algorithm is simple and clear. The object, which is sent to the updateSubject
subject is of MVMessagesListUpdate class. The interface of that class is shown in Code
snippet 109.

Code snippet 109. Interface of MVMessagesListUpdate.

typedef enum : NSUInteger {
 MVMessagesListUpdateTypeReloadAll,
 MVMessagesListUpdateTypeInsertRow
} MVMessagesListUpdateType;

@interface MVMessagesListUpdate : NSObject
- (instancetype)initWithType:(MVMessagesListUpdateType)type
 indexPath:(NSIndexPath *)indexPath
 rows:(NSArray *)rows;
@property (assign, nonatomic) MVMessagesListUpdateType type;
@property (strong, nonatomic) NSIndexPath *indexPath;
@property (assign, nonatomic) BOOL shouldReloadPrevious;
@property (assign, nonatomic) BOOL shouldInsertHeader;
@property (strong, nonatomic) NSArray *rows;
@end

There are two types of updates that chat view should support – complete reload of the
table view and insertion of a new row to the end of the table view. To tune the later,
update MVMessagesListUpdate also has properties for defining its aspects – the index
path of the inserted row, and flags regulating whether the previous row should be
reloaded and whether the section should also be inserted. The object also
encapsulates an array of cell ViewModels. This array is a snapshot of the messages
array stored in the MVChatViewModel made just after this particular update. When
the view receives the update, it saves this snapshot to the rows property of its
ViewModel and this collection is then used by the table view delegate and data source
methods. Such handling ensures that data remains persistent during the update of the
view. Viewmodel works on the background thread and can modify messages array, for
example, after receiving a new message, while the view is still handling the previous
update on the main thread. That can cause race condition which will mostly result in
the crash of the app. The mechanism of taking snapshots of modified collection and
then using that snapshot only on one thread is the way to avoid that problem.
As described previously, during the initialization the MVChatViewModel subscribes to
the messageUpdateSignal exposed by the chat manager. For each value passed by that

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Mark Vasiv

112

signal, it calls insertNewMessage: method. Its implementation is shown in Code
snippet 110.

Code snippet 110. Implementation of insertMessage: method.

- (void)insertNewMessage:(MVMessageModel *)message {
 self.processingMessages = YES;
 [self handleNewMessage:message];
 self.numberOfProcessedMessages++;
 if (self.numberOfProcessedMessages % MVMessagesPageSize == 0) {
 self.loadedPageIndex++;
 }
 self.processingMessages = NO;
}

- (void)handleNewMessage:(MVMessageModel *)message {
 NSMutableArray <MVMessageCellModel *> *rows = self.messages;
 MVMessageCellModel *previousModel = rows.optionalLastObject;

 BOOL reloadPrevious = NO;
 if (previousModel.message && [self messageModel:previousModel.message
 hasEqualDirectionAndTypeWith:message]) {
 MVMessageModel *beforeLastMessage = [rows
 optionalObjectAtIndex:rows.count - 2].message;
 MVMessageCellModel *updatedModel = [self
 viewModelForMessage:previousModel.message
 previousMessage:beforeLastMessage
 nextMessage:message];
 if (updatedModel.tailType != previousModel.tailType) {
 [rows replaceObjectAtIndex:rows.count - 1 withObject:updatedModel];
 reloadPrevious = YES;
 }
 }

 BOOL insertHeader = self.insertMessage(previousModel.message,
 message, nil, rows, NO);
 NSIndexPath *insertPath = [NSIndexPath indexPathForRow:rows.count - 1
 inSection:0];
 MVMessagesListUpdate *insert = [[MVMessagesListUpdate alloc]
 initWithType:MVMessagesListUpdateTypeInsertRow
 indexPath:insertPath
 rows:[rows copy]];
 insert.shouldReloadPrevious = reloadPrevious;
 insert.shouldInsertHeader = insertHeader;
 [self.updateSubject sendNext:insert];
}

Method insertNewMessage: updates processingMessage flag, recalculates a number of
already processed messages and adjusts loadedPageIndex property if needed. That
happens when a number of processed messages is a multiple of a page size. To process
the message it calls handleNewMessage: method. Its algorithm is pretty
straightforward – it creates a MVMessageCellModel instance for the inserted message,
if needed creates a ViewModel for the header, inserts both of them to the messages
array with the help of insertMessage block, and finally creates an update object for the
view.

Objects of MVMessageCellModel class are used as a ViewModels for cells in the table
view of messages. These ViewModels not only serve as intermediate data models for
cells with convenient interface exposed but also take some of the functionality that

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Mark Vasiv

113

previously was done by cells and the controller. The interface of MVMessageCellModel
can be seen in Code snippet 111.

Code snippet 111. Interface of MVMessageCellModel.

typedef enum : NSUInteger {
 MVMessageCellModelTypeHeader,
 MVMessageCellModelTypeSystemMessage,
 MVMessageCellModelTypeTextMessage,
 MVMessageCellModelTypeMediaMessage
} MVMessageCellModelType;

typedef enum : NSUInteger {
 MVMessageCellTailTypeDefault,
 MVMessageCellTailTypeTailess,
 MVMessageCellTailTypeFirstTailess,
 MVMessageCellTailTypeLastTailess
} MVMessageCellTailType;

typedef enum : NSUInteger {
 MVMessageCellModelDirectionIncoming,
 MVMessageCellModelDirectionOutgoing
} MVMessageCellModelDirection;

@interface MVMessageCellModel : NSObject
@property (assign, nonatomic) MVMessageCellModelType type;
@property (assign, nonatomic) MVMessageCellTailType tailType;
@property (assign, nonatomic) MVMessageCellModelDirection direction;
@property (strong, nonatomic) MVMessageModel *message;
@property (assign, nonatomic) CGFloat height;
@property (assign, nonatomic) CGFloat width;
@property (strong, nonatomic) NSString *text;
@property (strong, nonatomic) NSString *sendDateString;
@property (strong, nonatomic) UIImage *avatar;
@property (strong, nonatomic) UIImage *mediaImage;
- (void)calculateSize;
- (NSString *)cellId;
+ (CGFloat)bubbleWidthMultiplierForDirection:
(MVMessageCellModelDirection)direction;
+ (CGFloat)bubbleBottomOffsetForTailType:(MVMessageCellTailType)tailType;
+ (CGFloat)bubbleTopOffsetForTailType:(MVMessageCellTailType)tailType;
+ (CGFloat)contentOffsetForMessageType:(MVMessageCellModelType)type
tailType:(MVMessageCellTailType)tailType tailSide:(BOOL)tailSide;
+ (MVMessageCellModelDirection)directionForReuseIdentifier:(NSString *)reuseId;
+ (MVMessageCellTailType)tailTypeForReuseIdentifier:(NSString *)reuseId;
@end

Enumeration types that are used as types for type, tailType and direction properties
are similar to those that were used in the cell subclasses. The only difference is that
MVMessageCellModelType now has a value for header cells. The rest of properties
include data values, in which cells are interested such as text or sendDataString and
properties for storing the calculated size of the cell – width and height properties. The
list of instance methods include calculateSize and cellId. The first one is used to
calculate the size of the cell depending on its data and the second one is used to
determine the cell’s reuse identifier. Class methods are used as helpers for cells and
include determination of some layout paramenters and cell types according to reuse
identifiers. To calculate the size, the ViewModel use hardcoded layout rules – the same
as used for drawing cells – and appropriate methods for calculating size of the content.

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Mark Vasiv

114

These methods include NSString’s boundingRectWithSize:attributes:context: method
and AVFoundation’s function AVMakeRectWithAspectRatioInsideRect().
Methods responsible for the creation of cell ViewModels that were used when
processing a new page of messages or a new message are shown in Code snippet 112.

Code snippet 112. Creation of cell’s ViewModel.

- (MVMessageCellModel *)viewModelForMessage:(MVMessageModel *)message
 previousMessage:(MVMessageModel *)previousMessage
 nextMessage:(MVMessageModel *)nextMessage {
 MVMessageCellModel *viewModel = [MVMessageCellModel new];
 viewModel.type = [self modelTypeForMessageType:message.type];
 if (message.type != MVMessageTypeSystem) {
 viewModel.tailType = [self messageCellTailTypeForModel:message
 previousModel:previousMessage
 nextModel:nextMessage];
 }
 viewModel.message = message;
 viewModel.text = message.text;
 if (message.type == MVMessageTypeMedia) {
 [message.attachment thumbnailImageWithMaxWidth:viewModel.width
 completion:^(UIImage *resultImage) {
 viewModel.mediaImage = resultImage;
 }];
 }
 viewModel.direction = [self
 modeldirectionForMessageDirection:message.direction];
 viewModel.sendDateString = [NSString messageTimeFromDate:message.sendDate];
 [viewModel calculateSize];

 if (message.direction == MessageDirectionIncoming) {
 [[MVFileManager sharedInstance]
 loadThumbnailAvatarForContact:message.contact
 maxWidth:50
 completion:^(UIImage *image) {
 viewModel.avatar = image;
 }];

 RAC(viewModel, avatar) =
 [[[[MVFileManager sharedInstance].avatarUpdateSignal
 filter:^BOOL(MVAvatarUpdate *update) {
 return (update.type == MVAvatarUpdateTypeContact
 && [update.id isEqualToString:message.contact.id]);
 }] map:^id(MVAvatarUpdate *update) {
 return update.avatar;
 }] takeUntil:viewModel.rac_willDeallocSignal];
 }
 return viewModel;
}

- (MVMessageCellModel *)viewModelForSection:(NSString *)section {
 MVMessageCellModel *viewModel = [MVMessageCellModel new];
 viewModel.text = section;
 viewModel.type = MVMessageCellModelTypeHeader;
 [viewModel calculateSize];
 return viewModel;
}

Apart from the regular filling of the model with data, the method setups binding for an
avatar in case of the incoming message, subscribing to the signal coming from the
MVFileManager instance. During the creation, the ViewModel is also asked to
calculate the size for the future used cell with the help of the calculateSize method.

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Mark Vasiv

115

Calculated size later will be accessed by the view to pass it to the table view delegate
method. The calculation of cell’s size at this point loads this quite massive task on the
ViewModel and subsequently on the background queue, which leads to a smoother
interface and better performance in general.

During initialization MVChatViewModel also setups a sendCommand with the use of
the sendCommandSignal method. This command as described is used with the send
button. The implementation of sendCommandSignal is shown in Code snippet 113.
The method just creates a RACSignal passing it the block, which will be executed once
the button is pressed. The button press will trigger as previously, the send of the
message, and will clear the text field (messageText property in this case).

Code snippet 113. Creation of sendCommandSignal.

- (RACSignal *)sendCommandSignal {
 @weakify(self);
 return [RACSignal createSignal:^RACDisposable *(id<RACSubscriber> subscriber) {
 @strongify(self);
 [[MVChatManager sharedInstance] sendTextMessage:self.messageText
 toChatWithId:self.chatId];
 self.messageText = @"";
 [subscriber sendCompleted];
 return nil;
 }];
}

Viewmodel contains many other methods, some of which were just copied from the
controller’s implementation, and some of which even appear in some of the method
implementations listed above. However, these methods are helpers without any
regard to the ReactiveCocoa or the MVVM described in this chapter. This sums up the
code of the MVChatViewModel, and it is time to get back to the view – the
MVChatViewController class.

The MVChatViewController class has a helper method for loading from the storyboard.
This method is the only one used to initialize the controller. It calls a superclass
method for loading from the storyboard, creates a ViewModel and passes it to the
generated instance. The implementation is shown in Code snippet 114.

Code snippet 114. Initialization of MVChatController.

+ (instancetype)loadFromStoryboardWithViewModel:(MVChatViewModel *)viewModel {
 MVChatViewController *instance = [super loadFromStoryboard];
 instance.viewModel = viewModel;
 return instance;
}

Initialization of the ViewModel at this step makes it possible to the ViewModel to
process messages even before the view is loaded. However, the bindings responsible
for the connection between the view and the ViewModel are still made in the
viewDidLoad method, because most of them work with the UI elements which
otherwise may be absent. Implementation of the viewDidLoad has all the setup
previously presented in the controller’s code – setting up the navigation bar, the table

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Mark Vasiv

116

view and all the others views. The only difference that now it also calls the bindAll
method responsible for bindings. The implementation of this method is shown in Code
snippet 115. It will be divided into small chunks because the whole implementation is
quite long.

Code snippet 115. Setup of bindnings for handling user data.

RAC(self.navigationItem, title) = RACObserve(self.viewModel, title);
RAC(self.viewModel, messageText) = [self.messageTextField rac_textSignal];
@weakify(self);
[RACObserve(self.viewModel, messageText) subscribeNext:^(NSString *text) {
 @strongify(self);
 self.messageTextField.text = text;
}];

[RACObserve(self.viewModel, avatar) subscribeNext:^(UIImage *image) {
 @strongify(self);
 [self.avatarButton setImage:image forState:UIControlStateNormal];
}];

Firstly it setups bindings to all the visible elements used to display or input data. Each
component has a corresponding data property in the ViewModel. Binding to the
messageTextField and the messageText property is bidirectional – the property is
updated when the textfield has a new value and vice versa, so they are entirely
synchronized nevertheless the update’s origin. The next step is supporting user
interaction on buttons, which is shown in Code snippet 116.

Code snippet 116. Setup of bindings for handling user interaction.

self.sendButton.rac_command = self.viewModel.sendCommand;
[[[self.attatchButton rac_signalForControlEvents:UIControlEventTouchUpInside]
 map:^id (UIControl *value) {
 @strongify(self);
 return self.viewModel.attachmentPicker;
 }]
 subscribeNext:^(DBAttachmentPickerController *controller) {
 @strongify(self);
 [controller presentOnViewController:self];
 }];

[[[self.avatarButton rac_signalForControlEvents:UIControlEventTouchUpInside]
 map:^id (UIControl *value) {
 @strongify(self);
 return [self.viewModel relevantSettingsController];
 }]
 subscribeNext:^(UIViewController *viewController) {
 @strongify(self);
 [self.navigationController pushViewController:viewController animated:YES];
 }];

The sendButton is set up with the help of the RACCommand. This very short
assignment regulates two aspects of the button’s behavior – what happens when it is
tapped, and when it should be enabled or disabled. Button avatarButton is handled
differently – view is listening to its signal which sends values when the button is
tapped, queries the ViewModel to create and configure relevant settings controller
and finally pushes it onto the navigation stack. That could also be done with the help of

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Mark Vasiv

117

the RACCommand interface, but as soon as the view is responsible for presenting or
pushing new view controllers, this implementation is more explicit.

After that, the view setups the UI-related behavior – update of view’s layout to
support the appearance of the keyboard and change of the table view’s content size.
That is shown in Code snippet 117.

Code snippet 117. Setup bindings for handling layout updates.

__block BOOL processingNewPage = NO;
__block BOOL autoscroll = YES;
__block NSValue *oldSize;
__block BOOL keyboardShown = NO;

[[[[NSNotificationCenter defaultCenter]
 rac_addObserverForName:UIKeyboardWillShowNotification
 object:nil]
 filter:^BOOL(NSNotification *value) {
 return !keyboardShown;
 }]
 subscribeNext:^(NSNotification *x) {
 @strongify(self);
 keyboardShown = YES;
 autoscroll = NO;
 [self adjustContentOffsetDuringKeyboardAppear:YES withNotification:x];
 }];

[[[[NSNotificationCenter defaultCenter]
 rac_addObserverForName:UIKeyboardWillHideNotification
 object:nil]
 filter:^BOOL(NSNotification *value) {
 return keyboardShown;
 }]
 subscribeNext:^(NSNotification *x) {
 @strongify(self);
 keyboardShown = NO;
 autoscroll = NO;
 [self adjustContentOffsetDuringKeyboardAppear:NO withNotification:x];
 }];

[[RACObserve(self.messagesTableView, contentSize) distinctUntilChanged]
 subscribeNext:^(NSValue *newSize) {
 @strongify(self);

 [UIView animateWithDuration:(!processingNewPage && autoscroll)? 0.2 : 0
 animations:^{
 [self updateContentOffsetForOldContent:oldSize.CGSizeValue
 andNewContent:newSize.CGSizeValue
 processingNewPage:processingNewPage
 autoScrollEnabled:autoscroll];

 [self updateContentInsetForNewContent:newSize.CGSizeValue
 frame:self.messagesTableView.frame.size.height];
 }];

 oldSize = newSize;
 }];

First two signals are used to transform NSSNotifications into RACSignal interfaces and
the last one to do the same with the KVO. The actions the view performs for these
events is almost the same as before, the only change is unifying of different API’s.

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Mark Vasiv

118

The last step is a subscription to ViewModel’s updateSignal which regulates when and
how table view should be updated. The corresponding code is shown in Code snippet
118.

Code snippet 118. Setup of bindings related to the model data flow.

[self.viewModel.updateSignal subscribeNext:^(MVMessagesListUpdate *update) {
 @strongify(self);
 processingNewPage = (update.type == MVMessagesListUpdateTypeReloadAll);
 autoscroll = (self.messagesTableView.contentOffset.y >=
 (self.messagesTableView.contentSize.height –
 self.messagesTableView.frame.size.height - 50))
 || !self.viewModel.rows.count;

 self.viewModel.rows = update.rows;
 if (update.type == MVMessagesListUpdateTypeReloadAll) {
 [self.messagesTableView reloadData];
 } else if (update.type == MVMessagesListUpdateTypeInsertRow) {
 NSIndexPath *previousIndexPath = [NSIndexPath
 indexPathForRow:update.indexPath.row-1
 inSection:0];
 NSArray *insertIndexPaths = @[update.indexPath];
 if (update.shouldInsertHeader) {
 insertIndexPaths = @[update.indexPath, previousIndexPath];
 }
 [self.messagesTableView insertRowsAtIndexPaths:insertIndexPaths
 withRowAnimation:UITableViewRowAnimationNone];
 if (update.shouldReloadPrevious) {
 [self.messagesTableView reloadRowsAtIndexPaths:@[previousIndexPath]
 withRowAnimation:UITableViewRowAnimationNone];
 }
 }
}];

The handling on the view side setups appropriately properties regulating the scrolling
of the table view, copies received rows update to a persistent collection and performs
needed updates on the table view.

Table view delegate’s and data source’s methods have almost the same
implementation that they had previously. The biggest change occurred in the
heightForRowAtIndexPath: and the cellForRowAtIndexPath: methods. They are shown
in Code snippet 119.

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Mark Vasiv

119

Code snippet 119. Changed table view delegate and data source methods.

- (CGFloat)tableView:(UITableView *)tableView
 heightForRowAtIndexPath:(NSIndexPath *)indexPath {
 return self.viewModel.rows[indexPath.row].height;
}

- (UITableViewCell *)tableView:(UITableView *)tableView
 cellForRowAtIndexPath:(NSIndexPath *)indexPath {
 MVMessageCellModel *model = self.viewModel.rows[indexPath.row];
 UITableViewCell <MVMessageCell> *cell = [tableView
 dequeueReusableCellWithIdentifier:model.cellId];
 [cell fillWithModel:model];

 @weakify(self);
 [[[[cell.tapRecognizer.rac_gestureSignal
 map:^id (UIGestureRecognizer *value) {
 return cell.model;
 }]
 doNext:^(id _Nullable x) {
 @strongify(self);
 [self.messageTextField resignFirstResponder];
 }]
 filter:^BOOL(MVMessageCellModel *model) {
 return model.type == MVMessageCellModelTypeMediaMessage;
 }]
 subscribeNext:^(MVMessageCellModel *model) {
 @strongify(self);
 MVMessageMediaCell *mediaCell = (MVMessageMediaCell *)cell;
 [self showImageViewerForMessage:model
 fromImageView:mediaCell.mediaImageView];
 }];

 return cell;
}

First one now does not have any code specific to the size calculation as well as does
not support any caching. The caching is now naturally implemented by the ViewModel
because cell’s ViewModels store size of the cell and controller’s ViewModel
persistently stores cell’s ViewModels. Delegate’s method now simply returns a value
stored in the corresponding cell’s ViewModel. That is much faster than calculating the
size of on the main thread by request.

Method cellForRowAtIndexPath: as previously, obtains a cell from the table view’s
reusable pool and asks it to fill itself with the model. The difference here in the
handling of tap events. Previously it was done with the use of the delegate – controller
conformed to a protocol and passed a weak link to itself, the cell then could notify the
controller about the tap event with the help of the method defined in that protocol.
Now cell exposes its tap recognizer, and the controller can handle it with the help of
the RACSignal interface. That places cell-related code into one method making it easier
to navigate through the code.

Generally speaking, MVChatViewController got rid of functionality related to data
handling and multiple workarounds for improving the performance. This functionality
is now transferred to the ViewModel, and logic behind workarounds is tightly
integrated into the programming pattern that is used.

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Mark Vasiv

120

7 POSSIBLE PROBLEMS WITH REACTIVECOCOA

The use of the ReactiveCocoa introduced declarative syntax, mechanisms for unifying
data streams, and abstractions over some native Objective-C components. Declarative
syntax and richness of the framework not only help to build clear self-descriptive code
but also introduces a language barrier for developers not familiar with the
ReactiveCocoa. That can lead to a violation of the conventions, improper use of the
classes and overall low quality of the app. The abstraction level of the framework is too
high to make decisions regarding its use intuitively – after all, all abstract objects
underneath are standard Objective-C classes and mechanisms that can show low
performance if not used correctly. This problem is naturally solved if some developers
in the team know the basics of the ReactiveCocoa and can point out these improper
uses of the framework, share their experience and knowledge. Moreover, the
framework has a comprehensive documentation in its header files, making it easier to
understand how each component behaves. Community on the GitHub is very active,
providing the support with any issues and storing information about known pitfalls.
After all, the framework is not bigger than CocoaTouch thus making it possible for
developers to pick up a technology in a reasonable time.

Even when using the framework properly according to the documentation,
conventions and common sense, the performance should be taken into consideration.
As described earlier, the use of any technology that builds a layer of abstraction leads
to more or less lower performance. We can use code from Chapter 4 to identify
possible bottlenecks and then measure the difference between similar operations in
the ReactiveCocoa and pure Objective-C.

7.1 Performance of object creations

The common pattern for many iOS application is setting up a controller inside the
method viewDidLoad:. Normally this method is called when the view controller’s view
is about to move onscreen – just before the viewWillAppear: is called. If we stop just
before the call to the viewDidLoad: method, the user interface will still display the
previous controller. The method is always called on the main thread, as well as most of
the UI-related operations. That means that if we block the viewDidLoad: execution, the
interface will become unresponsive and the user will be stuck on the previous screen.
Blocking here means not a complete block of the thread (or a deadlock), but costly
operations performed on the thread. Summing up, if we put something high-intensive
in terms of computing in the viewDidLoad:, the interface will be stuck until this work is
done.

In case of the ReactiveCocoa, we usually place the RAC macro, create new KVO signals
with RACObserve, and subscribe to existing signals inside the viewDidLoad: method.

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Mark Vasiv

121

We can measure how much time each of these operations usually takes and then
make a conclusion whether they are really lowering the performance or not.
To measure the performance of these events we can use GCD function
dispatch_benchmark(), which automatically makes an iterator and schedules work. We
will use 100000 as a number of iterations to make the results more precise. All the
measurements are going to be performed on iPhone 6S running iOS11; the app is going
to be executed in the production mode to reduce the amount of the debug code. That
is not crucial where to perform tests but to make them relevant, we should run all of
them on the same system.

7.1.1 RACSignal

According to measurements a creation of custom RACSignal using the method
createSignal: is cheap and takes about 700 ns. There are other types os signals
(internally they are represented as different classes), which initialize even faster – they
are separated to provide these optimizations. For example, internal class
RACReturnSignal is used to represent a signal which returns specified value and
immediately completes. As soon as that is a common and easy to implement
functionality, the class is separated from more general RACDynamicSignal, allowing it
to be implemented in a simplistic and fast manner.

About half of time spent on the creation of a signal goes to the process of block
copying – the block which is passed to the method createSignal: ultimately needs to be
copied internally.

When working with signals, it is a common operation to modify their behavior with the
use of operators. Measurements show that adding a filter operator can increase
creation cost to 2100 ns. The same number is valid for a map operator. Chaining
multiple operators, therefore, can dramatically increase the cost of a signal creation.

Another part of working with any signal is a subscription to the signal using
subscribeNext: method. That costs approximately 4550 ns. The most time again is
spent on block’s copying. Subscribing involves creation and handling of multiple
RACDisposable objects internally, which also takes a significant portion of the
execution time.

7.1.2 RACObserve

Setting up a RACObserve signal is much more costly and takes 4.8 ms. We can examine
its source code to find out why this operation is relatively expensive. It turns out that
the underlying mechanism for RACObserve – essentially performing addObserver:
selector – is quite expensive itself, and takes about 2.3 ms to execute. That is only a

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Mark Vasiv

122

part of the answer because it is still twice less than the cost of setting up a
RACObserve. The essence lies in the internal mechanisms inside the RACObserve
macro. The macro is mapped to a method
rac_valuesAndChangesForKeyPath:options:observer:. The method creates multiple
signals and uses NSRecursiveLock for thread safety. Recursive locks in any C-like
language are known to be slow. And, as we can see from the previous chapter,
creating of complex signals is also relatively slow. That easily can add up 2.3 ms to the
RACObserve creation.

7.1.3 RAC

Using RAC binding is also costly, but no as using RACObserve. Its takes about 7600 ns to
create a binding from an existing signal. The most time-consuming operation beneath
the macro is a subscription to a signal, which takes 4550 ns. Other 3000 ns are spent
on setting up multiple RACDisposables and using OSAtomicCompareAndSwapPtrBarrier
to cancel binding in case the variable becomes null. The actual mechanism for setting a
variable value uses method setValueForKey:, which takes about 360 ns to execute.
That is also costly compared to the regular pointer assignment that takes 30 ns.

7.1.4 RACCommand

According to measurements, a creation of RACCommand takes about 0.58 ms when
doing 1000 iterations and about 18 ms when doing 100000 iterations. That is
extremely slow, and it is clear that by increasing the number of iterations we somehow
slow down the creation process. The latter is due to the fact that RACCommand builds
a complex system of signals and uses multicast connections during initialization.
Because some of these singnals have replayLast operator applied and because of
multicast connections, initialization uses scheduling extremely. The default thread for
schedulers is the main thread, and it eventually gets slowed down because of
excessive use of the schedulers blocking each other, delaying execution and
performing context switches. This finding means that it is not recommended to create
RACCommand objects frequently – it is better to reuse one or substitute it with
another ReactiveCocoa mechanism. We can check that by placing a RACCommand
creation to a table view’s data source method cellForRowAtIndexPath:, for example, to
support button tap actions. And indeed, if we do so, we will notice a significant
decrease in table view’s scrolling performance, because the method is called
frequently.

7.2 Speed of events propagation

Another aspect of measuring ReactiveCocoa performance is defining the speed of
events propagation. We can observe how different entities of the framework behave

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Mark Vasiv

123

in the sense of the speed of reaction. Basically, this is a measurement of the amount of
time passed between the send of the event and receival of the same event.

7.2.1 KVO and RACObserve

KVO is a common way to share and expose data when using ReactiveCocoa. To
measure the time of KVO event propagation we firstly need to set up an observation.
After that, we can take time sample just before setting the observable property, as
well sample when a corresponding method or the subscribeNext’s block is called.
Measurements show that time for event propagation when using RACObserve is about
14300 ns. When using pure KVO, the time is reduced to 1650 ns. That shows that
RACObserve creates an overhead that costs about ten times more than the standard
handling mechanism. However, these numbers are small considering that KVO events
are usually distributed across the timeline and are not happening close to each other.

7.2.2 RACSignal

As briefly mentioned before, there are multiple types of RACSignals and to measure
performance we are focusing only on the most abstract one – RACDynamicSignal,
which should show the worst performance possible. It is pointless to measure the time
difference between method calls inside signal’s block ([subscriber sendNext:]) and
subscribeNext’s block execution, because this way we are going to measure the time of
a standard message sending process. Instead, we can use RACSubject to send events
manually, and then create a RACSignal from that subject, subscribe to it and perform
observation on its subscribeNext’s block. That will show us how much time it takes to
send a custom event through a RACSignal. That can be compared to a message sending
process because this particular pattern was used in the previous chapter to substitute
delegates.

Measurements show that single event propagation from RACSubject to subscribeNext’s
block takes about 2465 ns. That is nearly twice as much than using regular message
sending, which takes 1183 ns. If we add the usage of method conformsToProtocol: to
the regular message sending (which is commonly used when working with delegates),
the execution time will increase to 1820 ns. That shows that using RACSubject and
signals for general event handling is not making any significant performance decrease.

7.2.3 NSNotification and RACSignal wrapper

Another mechanism used for sending events in Objective-C is NSNotification. This
technique could be substituted by a wrapper signal, added to the
NSNotificationCenter. We can measure the difference between the speed of a
standard NSNotification listening and doing the same with the RACSignal.

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Mark Vasiv

124

It takes 2670 ns for NSNotification to propagate to a default block handler, the
propagation to RACSignal’s subscribeNext’s block takes 3370 ns. Although it is 1.5
times slower, the overall time is still short making RACSignal a suitable choice.

7.3 Implications

Measurements discussed above lead us to the conclusion that using ReactiveCocoa
always creates an overhead in the sense of computing speed. However, most of the
times this overhead can be neglected because of relatively small numbers – it is really
not a big difference between 2000 ns and 5000 ns in the real world.

Some of the objects in the Reactive world are extremely expensive – for example,
RACCommand. That always should be taken into consideration, when building
software using the framework. Previously mentioned example of using RACCommand
with UITableView is a good demonstration of using the ReactiveCocoa without an
understanding of its internals. Debugging of the laggy table view, in that case, could
result in a long and tedious process. Otherwise, all objects and techniques exposed by
ReactiveCocoa are powerful and yet fast when used in the right context.

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Mark Vasiv

125

8 CONCLUSION

FRP allows programmers to abstract away many non-crucial details and focus on
essential tasks making the programming process more abstract. The use of the FRP
while developing iOS apps can make the code more clear and definitive by providing
reactive interfaces and unifying event-based interfaces of Objective-C. The
ReactiveCocoa framework offers needed data types and mechanisms to implement
FRP while developing iOS apps. The framework has a relatively good performance
when applied in the right way. However, some problems may arise if the user of the
framework is not familiar with the internals of the ReactiveCocoa.

The app developed in this thesis can be used not only to demonstrate the beauty of
the ReactiveCocoa but also to serve some practical use. More and more apps are
taking advantage of the messenger functionality – that not only includes conventional
social networks, but all sort of apps for supporting prompt customer service. If we look
at the UI of the most of the messengers, we can see that they all look and behave
similarly. However, the process of creating one can be quite long. The app developed
throughout the thesis can serve as an external UI component, enabling developers to
integrate messaging logic to their apps quickly. A brief analysis of existing libraries of
that type shows that although some exist, all of them are either old (not using new iOS
APIs), slow, or not much extensible (not letting the developer to customize the look
and behavior in a full manner). We can overcome all these limitations of existing
libraries, and provide an up-to-date customizable solution. In order to achieve that, the
project should transform. We need to remove irrelevant pieces of code (contacts list,
contact profile) to provide only a chat view functionality. This part of the app should be
extended to give the developers an easy way to customize different aspects of the
view. Even though that is a long process of trial and error, the project can serve as a
backbone for that library.

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Mark Vasiv

126

REFERENCES

[1] D. Bohn, ”Mark Zuckerberg promises a native Android app, says betting on
HTML5 for mobile was a 'mistake',” 11 September 2012. [Online]. Available:
https://www.theverge.com/2012/9/11/3317230/mark-zuckerberg-betting-on-
html5-for-mobile-was-a-mistake-hints-at. [Retrieved 21 November 2017].

[2] S. Jobs, ”Third Party Applications on the iPhone,” 17 October 2017. [Online].
Available: http://fortune.com/2007/10/17/steve-jobs-apple-will-open-iphone-
to-3rd-party-apps-in-february/. [Retrieved 21 November 2017].

[3] Apple, ”Xcode Release Notes,” 31 October 2017. [Online]. Available:
https://developer.apple.com/library/content/releasenotes/DeveloperTools/RN-
Xcode/Chapters/Introduction.html#//apple_ref/doc/uid/TP40001051.
[Retrieved 21 November 2017].

[4] Apple, ”Swift Has Reached 1.0,” 9 September 2014. [Online]. Available:
https://developer.apple.com/swift/blog/?id=14. [Retrieved 21 November 2017].

[5] Apple, ”Programming with Objective-C,” 17 September 2014. [Online]. Available:
https://developer.apple.com/library/content/documentation/Cocoa/Conceptual
/ProgrammingWithObjectiveC/Introduction/Introduction.html#//apple_ref/doc/
uid/TP40011210-CH1-SW1. [Retrieved 21 November 2017].

[6] Apple, ”Advanced Memory Management Programming Guide,” 17 July 2012.
[Online]. Available:
https://developer.apple.com/library/content/documentation/Cocoa/Conceptual
/MemoryMgmt/Articles/MemoryMgmt.html. [Retrieved 21 November 2017].

[7] The Clang Team, ”Objective-C Automatic Reference Counting (ARC),” [Online].
Available: http://clang.llvm.org/docs/AutomaticReferenceCounting.html.
[Retrieved 21 November 2017].

[8] Apple, ”Objective-C Runtime Programming Guide,” 19 October 2009. [Online].
Available:
https://developer.apple.com/library/content/documentation/Cocoa/Conceptual
/ObjCRuntimeGuide/Introduction/Introduction.html. [Retrieved 21 November
2017].

[9] Apple, ”Apple Open Source,” [Online]. Available: https://opensource.apple.com.
[Retrieved 21 November 2017].

[10] M. Thompson, ”Method Swizzling,” 17 February 2014. [Online]. Available:
http://nshipster.com/method-swizzling/. [Retrieved 21 November 2017].

[11] C. Wheeler, ”Understanding the Objective-C Runtime,” 20 January 2010.
[Online]. Available: http://cocoasamurai.blogspot.ru/2010/01/understanding-
objective-c-runtime.html. [Retrieved 21 November 2017].

[12] Apple, ”UIViewController,” [Online]. Available:
https://developer.apple.com/documentation/uikit/uiviewcontroller. [Retrieved
21 November 2017].

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Mark Vasiv

127

[13] Apple, ”UINavigationController,” [Online]. Available:
https://developer.apple.com/documentation/uikit/uinavigationcontroller.
[Retrieved 21 November 2017].

[14] Apple, 18 September 2013. [Online]. Available:
https://developer.apple.com/library/content/documentation/UserExperience/C
onceptual/TableView_iPhone/AboutTableViewsiPhone/AboutTableViewsiPhone
.html. [Retrieved 21 November 2017].

[15] Apple, ”Concurrency Programming Guide,” 13 December 2012. [Online].
Available:
https://developer.apple.com/library/content/documentation/General/Conceptu
al/ConcurrencyProgrammingGuide/Introduction/Introduction.html. [Retrieved
21 November 2017].

[16] Apple, ”Key-Value Coding Programming Guide,” [Online]. Available:
https://developer.apple.com/library/content/documentation/Cocoa/Conceptual
/KeyValueCoding/index.html. [Retrieved 21 November 2017].

[17] Apple, ”Key-Value Observing Programming Guide,” 13 September 2016.
[Online]. Available:
https://developer.apple.com/library/content/documentation/Cocoa/Conceptual
/KeyValueObserving/KeyValueObserving.html. [Retrieved 21 November 2017].

[18] Apple, ”Xcode Help,” [Online]. Available:
http://help.apple.com/xcode/mac/8.0/#/dev31645f17f. [Retrieved 21
November 2017].

[19] Apple, ”Notification Programming Topics,” 18 August 2009. [Online]. Available:
https://developer.apple.com/library/content/documentation/Cocoa/Conceptual
/Notifications/Introduction/introNotifications.html. [Retrieved 21 November
2017].

[20] Apple, ”Concepts in Objective-C Programming,” 09 January 2012. [Online].
Available:
https://developer.apple.com/library/content/documentation/General/Conceptu
al/CocoaEncyclopedia/DelegatesandDataSources/DelegatesandDataSources.htm
l. [Retrieved 21 November 2017].

[21] M. Gallagher, ”How blocks are implemented (and the consequences),” 18
October 2009. [Online]. Available:
http://www.cocoawithlove.com/2009/10/how-blocks-are-implemented-
and.html. [Retrieved 21 November 2017].

[22] Apple, ”Model-View-Controller,” 21 October 2015. [Online]. Available:
https://developer.apple.com/library/content/documentation/General/Conceptu
al/DevPedia-CocoaCore/MVC.html. [Retrieved 21 November 2017].

[23] J. Smith, ”Patterns - WPF Apps With The Model-View-ViewModel Design
Pattern,” February 2009. [Online]. Available: https://msdn.microsoft.com/en-
us/magazine/dd419663.aspx. [Retrieved 30 November 2017].

[24] C. E. a. P. Hudak, ”Functional Reactive Animation,” 1997. [Online]. Available:
http://conal.net/papers/icfp97/icfp97.pdf. [Retrieved 30 November 2017].

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Mark Vasiv

128

[25] W. T. Z. W. Paul Hudak, ”Real-Time FRP,” Yale, 2001.
[26] P. Hudak, ”Conception, Evolution, and Application of Functional Programming

Languages,” Yale University, Department of Computer Science, New Haven,
1989.

[27] A. C. J. P. Henrik Nilsson, ”Functional Reactive Programming, Continued,” Yale
University, Department of Computer Science, Pittsburgh, 2002.

[28] M. Thompson, ”ReactiveCocoa,” NSHipster, 18 February 2013. [Online].
Available: http://nshipster.com/reactivecocoa/. [Retrieved 30 November 2017].

[29] ReactiveCocoa, ”The 2.x ReactiveCocoa Objective-C API: Streams of values over
time,” ReactiveCocoa, [Online]. Available:
https://github.com/ReactiveCocoa/ReactiveObjC. [Retrieved 30 November
2017].

