
Bachelor’s thesis

Information Technology

NINFOS13

2017

Xiaochuan He

NOSQL ANALYSIS AND

A CASE STUDY OF MONGODB

BACHELOR’S THESIS | ABSTRACT

TURKU UNIVERSITY OF APPLIED SCIENCES

Information Techonogy

2017 | 25 pages

Xiaochuan He

NOSQL ANALYSIS AND
A CASE STUDY OF MONGODB

While the booming of NoSQL technology breaks the old pattern in data storage industry, experts
start to pay more attention to its performance in response to market demands. The purpose of
this thesis was to introduce NoSQL, analyze its peformance based on current industry
background as well as implement a case study of data replication in MongoDB. Fisrtly, this thesis
has focused on elaborating its origin, features as well as pros and cons. Then by analyzing and
summarizing its properties, it can be concluded that the NoSQL technology provides many
benefits to solve the problems caused by RDBMS deficiencies, however the disadvantages of
NoSQL have to be considered when implementing it. Starting a NoSQL database or converting
current RDBMS to NoSQL requires deep understanding of NoSQL and consideration of specific
scenarios. A case study of data replication by using MongoDB has been implemented to show
how MongoDB achieves high data availability.

KEYWORDS:

NoSQL, MongoDB, RDBMS, databases, SQL

CONTENTS

LIST OF ABBREVIATIONS (OR) SYMBOLS 5

1 INTRODUCTION 6

2 NOSQL FUNDAMENTALS 7

2.1 Definition 7

2.2 History 7

2.3 NoSQL theory 8

2.3.1 CAP theorem 8

2.3.2 BASE 9

2.4 Characteristics 10

2.5 NoSQL data storage types 11

2.5.1 Document store 11

2.5.2 Key-value/ tuple store 12

2.5.3 Graph store 13

2.5.4 Column store 14

3 NOSQL ANALYSIS 15

3.1 RDBMS approach 15

3.2 NoSQL approach 18

4 CASE STUDY 22

4.1 Replication in MongoDB 22

4.2 Implementation 23

4.2.1 Setting up 23

4.2.2 Data replication 26

4.2.3 Failover in replication 27

4.3 Conclusion 29

5 CONCLUSION 30

REFERENCES 31

PICTURES

Picture 1. Three characteristics of NoSQL. [8] 10
Picture 2. Key-value store. 12
Picture 3. Graph database. [9] 13
Picture 4. Replication in MongoDB [14]. 23
Picture 5. Environmental variable. 24
Picture 6. Replica sets status. 25
Picture 7. Data on secondary node. 26
Picture 8. Insert error on secondary node. 27
Picture 9. Shutting down primary node. 27
Picture 10. Secondary node becomes primary. 28
Picture 11. Insert data on primary node. 28
Picture 12. Reconnect to port 27017. 29

GRAPHS

Graph 1. ER diagram. 16
Graph 2. Class diagram 16

LIST OF ABBREVIATIONS

ACID Atomicity, Consistency, Isolation, Durability

BASE Basic Availability, Soft state, Eventual consistency

BSON Binary JavaScript Object Notation

DBMS Database Management System

RDBMS Relational Database Management System

SQL Structured Query Language

UUID Universally Unique Identifier

JSON JavaScript Object Notation

XML Extensible Markup Language

6

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Xiaochuan He

1 INTRODUCTION

Relational databases have been used in data storage over the past 40 years while SQL

has been an important language for RDBMS. In the last few years, WEB 2.0 era has

come, a generation that websites emphasize user-generated content, usability, and

interoperability for end users. As an impact to data storage market, dealing with user-

generated data that is more than ever became a technical issue. In meantime, new

market demands gradually appeared. Under this circumstance, experts realized that

RDBMS was no longer the universal key for all cases. Consequently, NoSQL products

has been developed to solve current database system problems and meet the new

market demands. By the test of time, NoSQL has attracted attention because of its

advantages such as flexible data model, elastic scalability as well as high performance.

However, as a matter of fact, many of these new database management systems while

providing great innovations and improvements have also sacrificed some critical

properties that have made RDBMS become the gold standard for decades [1]. Thus,

although NoSQL offers plenty reasons to be chosen in the current market,

implementation of NoSQL databases requires deep understanding of NoSQL products

and detailed analysis on practical application.

This thesis shows the significant features of NoSQL that make NoSQL differ from

RDBMS and fit better than RDBMS in Web 2.0. Additionally, a case study using

MongoDB [2] has been implemented to show how MongoDB achieves high data

availability by data replication.

7

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Xiaochuan He

2 NOSQL FUNDAMENTALS

This chapter has introduced NoSQL fundamentals which give theoretical basis for

NoSQL analysis.

2.1 Definition

In computing, NoSQL (mostly interpreted as “not only SQL”) is a broad class of database

management systems identified by its non-adherence to the widely used relational

databases management system model [3].

NoSQL is not an abbreviation for a certain technology or product. It refers to a wide

variety of different database technologies by using a general term, for example,

MongoDB (document-oriented databases), Cassandra (column store databases) and

Redis (in-memory databases). Although NoSQL is a large family of those new

technologies developed to meet the demands in different scenarios, the non-adherence

to RDBMS is one significant property that they have in common. Thus, NoSQL can be

regarded as “no more SQL” or “not only SQL” .

2.2 History

During the last decade, World Wide Web websites have stepped in to a new generation

that emphasizes user-generated content, usability and interoperability for end users,

called “Web 2.0”. This change means that a website can function well and, at the same

time, deal with other products, systems and devices.

With Web 2.0, the amount of user-generated data has been rapidly increasing. As for

the data storage market, relational databases have been used in industry over the past

40 years while SQL has been an important language for RDBMS. However, because of

the shock brought by Web 2.0, new data technology demands appeared to meet the

market needs. For RDBMS, “one size fits all” is unlikely to successfully continue under

these circumstances [4].

8

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Xiaochuan He

RDBMS is based on a complex relational framework that is constructed by tables linked

to each other. Additionally, traditional RDBMS applications have highly focused on ACID

transactions [3]:

 Atomicity: Everything in a transaction succeeds lest it is rolled back.

 Consistency: A transaction cannot leave the database in an inconsistent state.

 Isolation: One transaction cannot interfere with another.

 Durability: A completed transaction persists, even after applications restart.

Thus, in other words, a company that owns relational databases should make a huge

effort on redefining the previous schemas when the company expands business or

integrates with other enterprises. In addition, due to the consistency that RDBMS strictly

follows, data processing will slow down when the amount of data increases.

Consequently, many new types of database management system have been developed

as solutions to the issues mentioned above.

The term NoSQL was used by Carlo Strozzi in 1998 to name his DBMS, Strozzi NoSQL

open-source relational database which was still based on relational model [5]. Since then,

the term NoSQL has been reintroduced by Johan Oskarsson of Last.fm when he

organized an event to discuss "open source distributed, non-relational databases" [6].

After that NoSQL gradually became the label for non-relational, distributed data stores

that increasingly emerged.

2.3 NoSQL theory

Unlike to RDBMS which is supported by ACID transactions, there are two basic theories

applied in NoSQL concept. In this chapter, the CAP theorem and the BASE transaction

are elaborated to help understand what tenets NoSQL are following.

2.3.1 CAP theorem

As Eric Brewer stated for distributed computer systems, “that though its desirable to have

Consistency, High-Availability and Partition-tolerance in every system, unfortunately no

system can achieve all three at the same time” [7]. The CAP theorem means that it is

impossible for a distributed computer system to achieve all of the following guarantees:

9

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Xiaochuan He

 Consistency: A read process is able to receive the most recent write or error.

 Availability: Every request receives a (non-error) response – without guarantee that

it contains the most recent write.

 Partition tolerance: the system continues to function when network partitions occur.

Because NoSQL databases are based on the distributed computer system and as a

matter of fact that networks go down frequently and unexpectedly, partition tolerance is

necessary when implementing NoSQL. Therefore, according to the CAP theorem that a

distributed computer system cannot achive consistency, availability and partition

tolarence at the same time, NoSQL databases basically focus on consistency/partition

tolerance or availability/partition tolerance.

2.3.2 BASE

The ACID transaction has been mentioned in the previous chapter when introducing the

advent of NoSQL. ACID is the prominent transaction that RDBMS strictly follows, but

NoSQL focus more on BASE [3]:

 Basic Availability: every request will receive a response that if the request succeed

or failed.

 Soft state: the system status changes over time without any input

 Eventual consistency: The database system may be temporarily inconsistent in soft

state but will be consistent eventually.

10

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Xiaochuan He

2.4 Characteristics

There are 3 main characteristics of NoSQL: scale-out, replication, and flexible data

structure [8].

Picture 1. Three characteristics of NoSQL. [8]

Scale-out means that NoSQL uses general-purpose machines in a distributed manner

to achieve high performance. Distributing the data over a large number of machines

enables scaling of the data set and distribution of the processing load.

Replication is to copy data to achieve data redundancy and load distribution. with the

help of replication, even if data consistency has been lost temporarily among the replicas,

consistency would be achieved eventually. When one machine goes down by accident

or maintenance purpose, data can continually be read from replicas on other machines,

which gives users availability for 24 hours.

Flexible data structure means that NoSQL databases do not have to define a complex

database schema as what traditional RDBMS always requires. Therefore, NoSQL could

allow users to store data with various structures in the same database table, for example,

images, tweets and geographical data.

11

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Xiaochuan He

2.5 NoSQL data storage types

As mentioned above, NoSQL is compatible with various data types. Subsequently, 4

main storage types that NoSQL provides will be introduced.

2.5.1 Document store

Document store means that the database is designed to store data as documents. It

allows data inserting, manipulating and retrieving. Document databases use XML, JSON

or BSON. Three examples of documents by using JSON follow.

The first document contains the basic identity information for a student, however it is not

detailed.

{
 "StudentID": "1300001"
 "Firstname”: “Xiaochuan”
 "LastName" : "He"
}

Compared to the first one, more information is provided in the second example.

{
 "StudentID": "1300002"
 "FisrtName": "San"
 "LastName" : "Zhang"
 "Age" : "23"
 "Gender" : "male"
}

The content in the third document is different from the two previous.

{
 "Degree Programme " : "Information Technology"
 "Location" : "ICT building"

"RegisteredStudentNumber": "200"
“RegisteredTeacherNumber”: “30”

}

From these examples, it is easy to see that the documents do not follow a strict schema

as RDBMS databases always do. Furthermore, there is StudentID in first two examples,

however, there is no ID information in the third one. As a matter of fact, StudentID is not

the document ID, because document store databases embed the document ID

automatically in the document somewhere. Thus, ID is not mandatory in document store.

12

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Xiaochuan He

In conclusion, the most prominent advantage of document store databases is that the

content is schemaless. This is a very helpful property for web-scale application where

DBMS is required to store different types of data that might evolve over time since

redefining the strict schema for RDBMS became a huge cost.

2.5.2 Key-value/ tuple store

Key-value store functions are similar to document store. The data structure for a key-

value database is commonly known as a dictionary or hash and it contains of a collection

of records that has many different fields, also called, columns. The records are stored by

using a unique key to identification. The structure is presented in Picture 2.

Picture 2. Key-value store.

Because of the key, it is quick to find specified data in key-value store. However, key-

value also has few constraints that should be noticed. For the document store, manually

setting UUID is not mandatory when storing a new document, but the key-value database

requires specifying the key for every record when it is inserted. Besides that, values in

records are opaque. In order to retrieve a value, the key must be known.

Key-value store has great performance on data storage, retrieval, and management. As

such, it is a strong candidate for the situations that have heavy need for in-memory

caches. Although a key-value database cannot directly query the values, it can still know

the value type, which enables extra functionality. To be specific, since the value types

are known, it is possible to keep the system performance when setting or updating

multiple fields in some part of the document.

13

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Xiaochuan He

2.5.3 Graph store

A graph database, also called a graph-oriented database, is fairly new in the market. It

refers to a database with an explicit graph structure that is constituted by nodes and links.

Nodes represent the objects/entities in the data structure and each two nodes are

connected by relationship. Picture 3 is a simple model of a graph database.

Picture 3. Graph database. [9]

One main advantage of graph databases is the powerful representation and manipulation

of relationships. Because of the performance on presenting relationship that the majority

of NoSQL products have sacrificed, a graph database is a good choice for analyzing

interconnection and social media. However, due to their design, graph databases are

essentially used to present and clarify collections of relationships. There is no place for

them if relationships are not needed. Therefore, graph databases can be considered as

an optimization of NoSQL especially for relation-heavy data. Besides, it is common that

for certain scenarios, an enterprise chooses a graph database only for relationships and

store data in a document-oriented database.

14

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Xiaochuan He

2.5.4 Column store

In traditional RDBMS, datasets are stored in tables which is constituted of columns and

rows and, storing and retrieving data is processed one row at a time. However, the

column-oriented databases use columns to manage data.

To illustrate the ablove, a group of data (order information that contains OrderID,

OrderName, Quantity and OrderTime for this case) for a RDBMS table can be serialized

as:

 0001,fish,50,25.01
 0002,beef,80,08.02

0003,pork,30,16.03

But in column-oriented database, this group of data will be stored as:

 0001,0002,0003
 fish,beef,pork
 50,80,30

25.01,08.02,16.03

Due to the difference in how the data has been stored, most column-oriented databases

give flexibility to model and structure the data so that there is no restriction to set default

values for existing rows when adding new columns. Therefore, one prominent advantage

of column store is providing high flexibility for new columns. Additionally, because of the

complex data process, the performance of RDBMS compromises when working with

subset of columns, especially when dealing with large amount of data, to be more

specific, calculating maximum, minimum, averages or sums. A column-oriented

database provides reliable functionality for data computation due to its structure.

15

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Xiaochuan He

3 NOSQL ANALYSIS

NoSQL does provide solutions to many data storage problems. However, it is not a

solution to every problem. NoSQL could be applied appropriately only when we have

comprehended its pros and cons. This chapter is going to show when NoSQL is suitable

for data storage and fits better than RDBMS.

In the following sections, firstly a simplified example is used to present RDBMS approach

and the content focuses on analyzing RDBMS bottlenecks under the current data storage

market. Subsequently, as a solution, the NoSQL approach is introduced. Pros and cons

are summarized based on the information above. Finally, a summary of NoSQL is made.

3.1 RDBMS approach

The example used here is a DBMS for a business. The company in this example deals

with food delivery, recevieving orders and delivering food. It should be noticed that in

real life, it is far more complex than this one. This example is only used to give an idea

how RDMBS works, which helps summarize what challenges traditional RDBMS is

facing curently.

The RDBMS approach uses the following steps.

1. Define the actors and the objects in the transaction process.

2. Define entities, which means forming a table according to the objects for this case,

defining columns and rows. Besides, column types and constraints also should be

defined.

3. Define relationships from one table to another by using foreign keys which means

that we need to find out the relationship between entities. The entity relationships

include one-to-one, one-to-many, many-to-many and other object relationships.

4. Program database by using SQL and develop the application.

In this case, for a DBMS for a food company, firstly the actors include employee,

customer and order. Then employeeID, lastname and fisrtname are the entities for actor

employee. Foreign keys will be used to define relationships between tables, for example,

it is one-to-many relationship between order and customer, many-to-many relationship

16

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Xiaochuan He

between product and order detail. The following picture is the entity-relationship diagram

for this case.

Graph 1. ER diagram.

The following representational class diagram shows the value type of the data and

presents relationships from the table point of view.

Graph 2. Class diagram

17

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Xiaochuan He

To illustrate, here is the code that forms the Order table:

CREATE TABLE Order(
orderID INT NOT NULL AOTO_INCREMENT,
employeeID INT NOT NULL,
customerID INT NOT NULL,
orderDate DATE NOT NULL,
PRIMARY_KEY (orderID),
FOREIGN_KEY (employeeID) REFERENCES Employee(employeeID),
FOREIGN_KEY (customerID) REFERENCES Customer(customerID),
);

The RDBMS approach has been presented above and it seems great and reasonable,

however, it has challenges. The issues that the food company might have in future are

listed.

 The company wants to implement online orders to expend business, which requires

modifying the current entities or creating new entities.

 The company decides to integrate with another company for expansion. It means

that two database systems need to be integrated somehow. It is possible that they

use different table structure because of their different business model. Therefore,

redefining models, entities and table relationships are required.

 The company grows and has few branches in other cities. This means that remote

access to database from branches should be enabled. Additionally, the database

system will receive a huge amount of order per day across the country.

The cases above can be converted into technical demands for RDBMS.

 Schema flexibility: it is easy to see that because of its complex table design,

redefining relationships is hard to be implemented once a RDBMS has been set up.

As for entities modification, according to the diagram and code for table presented

above, we can tell that data constraint/type and default value are mandatory for

every column. Thus, adding or modifying entities is a complex work especially when

adding multiple columns for large number of row. Additionally, besides the huge work

of adding or creating entities itself, the schema will become more inflexible. It is an

endless loop.

 High-level quires: Due to the table structure, retrieving data, for example, JOIN

queries requires implementing many database resources. The following codes are

an example for JOIN queries.

18

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Xiaochuan He

SELECT b.branchNo, b.city, s.staffNo, fName, lName,propertyNo
FROM Branch b, Staff s, PropertyForOder p
WHERE b.branchNo = s.branchNo AND s.staffNo = p.staffNo
ORDER BY b.branchNo, s.staffNo, propertyNo;

 Data update: it is another technical issue that updating data across multiple tables

is complex especially if it is in part of transaction, because keeping the transaction

in process for a long time impact to performance negatively.

 Scalability: When data is stored locally, scalability means adding more capacity to a

single machine. For this case, distributed systems should be implemented to enable

remote access from branches, scalability means add capacity by adding more

machines to cluster. However, according to the CAP theorem, it is impossible to

guarantee consistency, availability, and partition tolerance at the same time in a

distributed system. Achieving ACID transactions in distributed systems makes it

hard to build distributed database systems based on the relational model and it will

hinder low latency and high availability [10].

 Data availability: distributed relational databases use replication to provide data

availability. Data on the main server will be copied to other servers and it

automatically copies the latest change. However, due to the restrictions from the

CAP theorem, ACID transactions and the complex table structure, data integrity is

complex to be maintained from multiple machines. Furthermore, because of the low

tolerance to partition, there is a high possibility that the whole database system shuts

down when a single machine crashes.

3.2 NoSQL approach

Here is the NoSQL approach that provides solutions to the technical issue listed in the

RDBMS approach.

 Schema flexibility: compared to RDBMS that stores data in complex table connected

by relationships, there is no such constraint in NoSQL databases. Column-oriented

databases give adequate convenience and flexibility for adding columns.

Additionally, document databases are strong candidates due to their support for

semi-structed data.

 High-level queries: There are no relationships or foreign keys in NoSQL structure,

thus, there are not complicated quires that are executed across multiple tables. To

some extent, NoSQL maintains the high performance of database system.

19

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Xiaochuan He

 High scalability: NoSQL is ACID non-compliant as there is no complexity to add

machines to current cluster. As such, NoSQL products provide better scalability than

RDBMS. It is easier to scale out for the sake of future development. Besides, high

scalability is the prerequisite for achieving high availability of data, data safety and

some other purposes.

 Data update: data update and synchronization are always hard to balance within a

datacenter or across multiple datacenters. For NoSQL databases, the system may

be temporarily inconsistent in soft state but will be consistent eventually. Every

transaction does not need to strictly follow consistency. It gives NoSQL databases

strong ability on data update especially when dealing with huge amount of data, e.g.

MongoDB implements concurrency control which allows concurrent updates to be

synchronized and eventually be consistent across nodes in few milliseconds [12].

 High data availability: NoSQL provide replication among multiple datacenters to

achieve data redundancy and load distribution. Compared to distributed relational

databases, NoSQL has sacrificed consistency but in return, it ensures high partition

tolarence which helps achieve data availability for 24 hours. When one machine

goes down, data can still be read from replica sets on other machines without the

risk of downtime.

 Massive writing performance: NoSQL provides outstanding write performance which

is able to easily handle the massive user-generated data from different applications

at the same time. For example, Netflix has switched their databases from RDBMS

to Cassandra (one product of NoSQL) and the write performance could reach over

a million times per second [13].

It is worthwhile to mention that the RDBMS license price for enterprise is hard to afford

for small companies, and it rises rapidly with the increase of scale. Comparably, there is

no high expenditure for database license and maintenance for NoSQL databases since

most of NoSQL database software is open source.

The drawbacks of NoSQL cannot be ignored:

 No support for high-level query languages. Most NoSQL databases do not support

high-level query languages such as SQL, which means there is no JOIN and cross-

entity query for data manipulating. Although the complexity of SQL in RDBMS is an

issue that can compromise the system performance, no support for these queries in

NoSQL is still a drawback. To fix this, many databases focus on the integration of

queries simplification, data cache, and complex operations in application layer.

20

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Xiaochuan He

Additionally, due to the varieties of different NoSQL database, learning and

immigration would cost more than expected.

 No ACID transactions: ACID transactions provide the strongest guarantees for data

consistency and make it much easier for developers to build reliable abstractions.

However, NoSQL focuses more on BASE transactions. Thus, this property makes

NoSQL a weak choice for transactional applications.

 Less support: all the RDBMS vendors have made a great effort to keep data

reassurance service available at any time, which gives enterprises strong support.

In contrast, because NoSQL databases tend to be open source, many of them lacks

the resources to fund support on a global scale, as well as the credibility that the

RDBMS vendors have established for years, for example, Oracle, IBM and

Microsoft.

Indeed, NoSQL does bring a lot of benefits to current data storage industry, but it still

has obviouse deficiencies. Which one are we supposed to choose, traditional RDBMS

or NoSQL? There is no necessity to give an absolute answer because the final decision

depends on the type and scale of application.

To illustrate the above point, for transactional application, generally speaking, the

consistency and integrity of data and ACID transaction are extremely important

properties. NoSQL cannot replace RDBMS for this case. For web-scale application,

however, it would generate massive user-generated data all day and most of enterprises

do not want to compromise the database performance. Additionally, in the long term for

business, it requires high scalability and flexible schema. Consequently, NoSQL perform

a better implementation for web-scale application. Additionally, as for computational

application, both of RDBMS and NoSQL can be implemented. RDBMS support high-

level queries and the column-oriented database can reach high speed for data

computation. Theoretically it depends only on the size of data. Besides, a composite

choice of RDBMS and NoSQL are possibly needed in certain situation, having said that,

relationships can be designed by using graph database and data sets can be stored in

RDBMS, for example. On the one hand, the application type is an important factor to

make a decision. On the other hand, the scale of application also should be taken into

account. RDBMS is able to handle most of small-scale application. When scale grows,

there is an increasing need on scalability and data availability. NoSQL is a good choice

for this case if there is no special requirement on ACID transactions and high-level query.

21

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Xiaochuan He

In conclusion, NoSQL provides huge benefits that are able to remedy RDBMS

deficiencies but the disadvantages do exist. However, it is not the solution to all database

problems. Starting a NoSQL database or switching a current RDBMS requires more

considerations depending on actual situation.

22

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Xiaochuan He

4 CASE STUDY

In the previous sections, the pros and cons of NoSQL have been analyzed and

summarized at a macro level. To narrow it down, NoSQL products provide different

technical solution to meet different market demands. This case study is to show how

MongoDB achieves high availability and some other purposes by implementing data

replication.

4.1 Replication in MongoDB

MongoDB is a document store database system encoded in BSON. A MongoDB

database is set up by multiple collections and each one collection contains documents

that carries data. MongoDB features automatic sharding, replication, support to rich

queries and full indexes, and more.

According to the documents in MongoDB official website [14], a replica set is a group of

instances that carry the same data set. A replica set constitutes of multiple data bearing

nodes, one and only one node is assigned to be primary node, the other nodes are

assigned as secondary nodes. The primary node has all write operations. The secondary

nodes will replicate the operations of primary node and apply them to its own data sets.

When the primary node is unavailable, one eligible secondary node will automatically

become a new primary node which ensures that there is always a primary node available

for all write operations.

23

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Xiaochuan He

Picture 4. Replication in MongoDB [14].

Because of the replication function, MongoDB provides high availability of data.

Furthermore, replication ensures the possibility for data recovery. No downtime for

maintenance is needed. Last but not the least, the replica set is transparent to the

application.

4.2 Implementation

For this case study, MongoDB 3.4.2 downloaded from MongoDB official website is used.

To implement data replication in MongoDB, 3 nodes as replica sets will be configured

first. Then one of them will be deemed to primary and the others will be deemed as

secondary. Subsequently, a set of data will be inserted to test the write operation access

on those nodes. The final step is to shut down the primary node and check how

secondary nodes react.

4.2.1 Setting up

It is necessary to set environment variable first.

24

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Xiaochuan He

Picture 5. Environmental variable.

Firstly, three directories were created to store three instances data (three replica sets).

mkdir \data\rs1 \data\rs2 \data\rs3

Subsequently, start three Mongod instances by following command on command prompt.

start mongod --replSet Xiaochuan --logpath \data\rs1\1.log --dbpath \data\rs1 --

port 27017 --smallfiles --oplogSize 64

start mongod --replSet Xiaochuan --logpath \data\rs1\2.log --dbpath \data\rs2 --

port 27018 --smallfiles --oplogSize 64

start mongod --replSet Xiaochuan --logpath \data\rs1\3.log --dbpath \data\rs3 --

port 27019 --smallfiles --oplogSize 64

Three processes of Mongod.exe have started which are rs1, rs2 and rs3. Note that port

27017 is the default port for mongod instance and the replica sets are named as

Xiaochuan.

Now three mongod servers are running, however, they are not configured to interconnect

with each other. The next step is to configure the interconnection for all three nodes on

port 27017 which means port 27017 will be deemed to be primary nodes and the other

two will be secondary.

mongo --port 27017

25

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Xiaochuan He

config = {_id:"Xiaochuan", members: [
 {_id:0,host:"localhost:27017"},
 {_id:1,host:"localhost:27018"},
 {_id:2,host:"localhost:27019"}]
};

rs.initiate(config)

The command rs.status() is used to check the status of replica sets. As it shown from

the following picture, local host 27017, 27018 and 27019 have been on the list, besides

that, port 27017 become primary.

Picture 6. Replica sets status.

26

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Xiaochuan He

4.2.2 Data replication

Now three nodes are properly configured and initiated. The next step is to insert data on

primary node and check the operation authority on the other two secondary nodes.

Insert data on primary node.

db.test.insert({name:"He Xiaochuan",age:"23",address:"Turku"})

As it has been mentioned in previous chapter, there is no need to set data constraint,

default value and identity in document type NoSQL database. The test is the name of

collection. MongoDB will creat the collection automatically by inserting query if it has not

been created beforehand.

Connect to port 27018.

mongo --port 27018

Although port 27018 has already configured as secondary, it will report error once the

node receives any read operation because by default the data on secondary node cannot

be read . One more command is needed to set the secondary node as a slave to primary

node.

rs.slaveOk();

After setting up, use following command to read data on secondary node. The result is

shown as follows

db.test.find().pretty()

Picture 7. Data on secondary node.

Thus, it means the data sets on primary node has been copied to secondary nodes which

is also readable. However users are not allowed to insert any data to secondary node.

27

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Xiaochuan He

As it shown in the screenshot, inserting data is not allowed because the node is not a

master.

Picture 8. Insert error on secondary node.

The following command is used to check the log for previous operations.

db.oplog.rs.find().pretty()

The similarity of the oplog.rs files in three replica sets shows that data sets on primary

node have been copied to secondary nodes

4.2.3 Failover in replication

To see how MongoDB react to system failover, firstly the primary node should be shut

down.

use admin
db.shutdownServer()

Picture 9. Shutting down primary node.

After that, it is needed to check the status of other two secondary nodes by using

rs.status() command.

28

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Xiaochuan He

Picture 10. Secondary node becomes primary.

It could be easily seen that port 27018 now is deemed to be primay node and data can

be inserted successfully into new primary node.

Picture 11. Insert data on primary node.

When reconnecting port 27017, it functions as secondary node, only read operation is

allowed.

29

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Xiaochuan He

Picture 12. Reconnect to port 27017.

From the picture above, it can be noticed that port 27017 has automatically update the

replica set as soon as it has been configured as slave to primary node because it

contains the data(Teemo) which was inserted on port 27018 when port 27017 was down.

4.3 Conclusion

By implementing replication in MongoDB, how replication actually works has been

presented. On the one hand, multiple secondary nodes garuantees the high data

availability. On the other hand, one and the only one primary node keeps the balance

between system performance and the access to write operation. Both of the advatages

are welcome in Web 2.0 era.

30

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Xiaochuan He

5 CONCLUSION

This thesis has analyzed and summarized the pros and cons of NoSQL, and a case

study of data replication has implemented to present how MongoDB achieves high data

availability.

NoSQL products provide solutions to most of technical problems that RDBMS cannot

deal with in current market, namely, flexible schema lets users no longer struggle with

complicated relational model and complex query, high scalability gives higher possibility

to optimize transmission and synchronization when dealing with massive data. For

developing enterprises, NoSQL databases can easily evolve over time. Besides that,

dissimilar to RDMBS, the diversity of NoSQL products gives enterprises more options so

that they can choose one that fits their own applications. However, there are few points

that cannot be ignored. Non-adherence to ACID transaction and high-level query makes

NoSQL a weak choice for transactional applications. Additionally, it costs more on

learning immigration for NoSQL technology because NoSQL products diffier from each

other and they are encoded in different language. As for RDBMS products, SQL is the

universal language. It is always difficult to balance the cost and benefit. Therefore,

implementing NoSQL database or changing current RDBMS to NoSQL requires deep

consideration of NoSQL products and the actual scenario.

31

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Xiaochuan He

REFERENCES

[1] NoSQL Databases Pros and Cons. [online] Available at
https://www.mongodb.com/scale/nosql-databases-pros-and-cons [Accessed 25 February 2017]

[2] MongoDB. [online] Available at https://www.mongodb.com/ [Accessed 25 February 2017]

[3] Vaish, G. (2013). Getting started with NoSQL. 1st ed. Birmingham: Packet publishing

[4] Stonebraker, M., Cetintemel, U. (2005). "One Size Fits All": An Idea Whose Time Has Come
and Gone. the 21st International Conference on Data. [online] P. 10. Available at
https://cs.brown.edu/~ugur/fits_all.pdf [Accessed 25 February 2017]

[5] Lith, A., Mattson, J (2010). Investigating storage solutions for large data. Göteborg:
Department of Computer Science and Engineering, Chalmers University of Technology. [online]
p. 70. Available at http://publications.lib.chalmers.se/records/fulltext/123839.pdf [Accessed 25
February 2017]

[6] NoSQL 2009. [online] Available at http://blog.sym-link.com/2009/05/12/nosql_2009.html .
[Accessed 25 February 2017]

[7] Brewers CAP Theorem on distributed systems (2010) [online] Available at
http://www.royans.net/wp/2010/02/14/brewers-cap-theorem-on-distributed-systems/ [Accessed
25 February 2017]

[8] Tsuyuzaki, K., Onizuka, M. (2012). NoSQL Database Characteristics and Benchmark System.
NTT Technical Review. [online] Available at https://www.ntt-
review.jp/archive/ntttechnical.php?contents=ntr201212fa3.pdf&mode=show_pdf [Accessed 25
February 2017].

[9] What is a Graph Database? [online] Available at https://neo4j.com/developer/graph-database/
[Accessed 25 February 2017]

[10] Alvaro, P., Conway, N., Hellerstein, J., Marczak, W. Consistency Analysis in Bloom: a CALM
and Collected Approach [online] Available at
http://www.neilconway.org/docs/bloom_calm_cidr11.pdf [Accessed 12 April 2017].

https://www.mongodb.com/scale/nosql-databases-pros-and-cons
https://www.mongodb.com/
https://cs.brown.edu/~ugur/fits_all.pdf
http://publications.lib.chalmers.se/records/fulltext/123839.pdf
http://blog.sym-link.com/2009/05/12/nosql_2009.html
http://www.royans.net/wp/2010/02/14/brewers-cap-theorem-on-distributed-systems/
https://www.ntt-review.jp/archive/ntttechnical.php?contents=ntr201212fa3.pdf&mode=show_pdf
https://www.ntt-review.jp/archive/ntttechnical.php?contents=ntr201212fa3.pdf&mode=show_pdf
https://neo4j.com/developer/graph-database/
http://www.neilconway.org/docs/bloom_calm_cidr11.pdf

32

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Xiaochuan He

[11] What is Cassandra. [online] Available at http://cassandra.apache.org/ [Accessed 23 March
2017]

[12] FAQ: Concurrency [online] Available at
https://docs.mongodb.com/manual/faq/concurrency/#what-type-of-locking-does-mongodb-use
[Accessed 23 March 2017]

[13] Cockcroft, A., Sheahan, D. (2011). Benchmarking Cassandra Scalability on AWS - Over a
million writes per second. The Netflix Tech Blog. [online] Available at
http://techblog.netflix.com/2011/11/benchmarking-cassandra-scalability-on.html [Accessed 23
March 2017]

[14] Replication [online] Available at https://docs.mongodb.com/manual/replication/ [Accessed 30
March 2017]

http://cassandra.apache.org/
https://docs.mongodb.com/manual/faq/concurrency/#what-type-of-locking-does-mongodb-use
http://techblog.netflix.com/2011/11/benchmarking-cassandra-scalability-on.html
https://docs.mongodb.com/manual/replication/

