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While the booming of NoSQL technology breaks the old pattern in data storage industry, experts 
start to pay more attention to its performance in response to market demands. The purpose of 
this thesis was to introduce NoSQL, analyze its peformance based on current industry 
background as well as implement a case study of data replication in MongoDB. Fisrtly, this thesis 
has focused on elaborating its origin, features as well as pros and cons. Then by analyzing and 
summarizing its properties, it can be concluded that the NoSQL technology provides many 
benefits to solve the problems caused by RDBMS deficiencies, however the disadvantages of 
NoSQL have to be considered when implementing it. Starting a NoSQL database or converting 
current RDBMS to NoSQL requires deep understanding of NoSQL and consideration of specific 
scenarios. A case study of data replication by using MongoDB has been implemented to show 
how MongoDB achieves high data availability. 
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1 INTRODUCTION 

Relational databases have been used in data storage over the past 40 years while SQL 

has been an important language for RDBMS. In the last few years, WEB 2.0 era has 

come, a generation that websites emphasize user-generated content, usability, and 

interoperability for end users. As an impact to data storage market, dealing with user-

generated data that is more than ever became a technical issue. In meantime, new 

market demands gradually appeared. Under this circumstance, experts realized that 

RDBMS was no longer the universal key for all cases. Consequently, NoSQL products 

has been developed to solve current database system problems and meet the new 

market demands. By the test of time, NoSQL has attracted attention because of its 

advantages such as flexible data model, elastic scalability as well as high performance. 

However, as a matter of fact, many of these new database management systems while 

providing great innovations and improvements have also sacrificed some critical 

properties that have made RDBMS become the gold standard for decades [1]. Thus, 

although NoSQL offers plenty reasons to be chosen in the current market, 

implementation of NoSQL databases requires deep understanding of NoSQL products 

and detailed analysis on practical application. 

This thesis shows the significant features of NoSQL that make NoSQL differ from 

RDBMS and fit better than RDBMS in Web 2.0. Additionally, a case study using 

MongoDB [2] has been implemented to show how MongoDB achieves high data 

availability by data replication. 
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2 NOSQL FUNDAMENTALS 

This chapter has introduced NoSQL fundamentals which give theoretical basis for 

NoSQL analysis. 

2.1 Definition 

In computing, NoSQL (mostly interpreted as “not only SQL”) is a broad class of database 

management systems identified by its non-adherence to the widely used relational 

databases management system model [3]. 

NoSQL is not an abbreviation for a certain technology or product. It refers to a wide 

variety of different database technologies by using a general term, for example, 

MongoDB (document-oriented databases), Cassandra (column store databases) and 

Redis (in-memory databases). Although NoSQL is a large family of those new 

technologies  developed to meet the demands in different scenarios, the non-adherence 

to RDBMS is one significant property that they have in common. Thus, NoSQL can be 

regarded as “no more SQL” or “not only SQL” . 

2.2 History 

During the last decade, World Wide Web websites have stepped in to a new generation 

that emphasizes user-generated content, usability and interoperability for end users, 

called “Web 2.0”. This change means that a website can function well and, at the same 

time, deal with other products, systems and devices.  

With Web 2.0, the amount of user-generated data has been rapidly increasing. As for 

the data storage market, relational databases have been used in industry over the past 

40 years while SQL has been an important language for RDBMS. However, because of 

the shock brought by Web 2.0, new data technology demands appeared to meet the 

market needs. For RDBMS, “one size fits all” is unlikely to successfully continue under 

these circumstances [4].  
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RDBMS is based on a complex relational framework that is constructed by tables linked 

to each other. Additionally, traditional RDBMS applications have highly focused on ACID 

transactions [3]: 

 Atomicity: Everything in a transaction succeeds lest it is rolled back. 

 Consistency: A transaction cannot leave the database in an inconsistent state. 

 Isolation: One transaction cannot interfere with another. 

 Durability: A completed transaction persists, even after applications restart. 

Thus, in other words, a company that owns relational databases should make a huge 

effort on redefining the previous schemas when the company expands business or 

integrates with other enterprises. In addition, due to the consistency that RDBMS strictly 

follows, data processing will slow down when the amount of data increases. 

Consequently, many new types of database management system have been developed 

as solutions to the issues mentioned above.  

The term NoSQL was used by Carlo Strozzi in 1998 to name his DBMS, Strozzi NoSQL 

open-source relational database which was still based on relational model [5]. Since then, 

the term NoSQL has been reintroduced by Johan Oskarsson of Last.fm when he 

organized an event to discuss "open source distributed, non-relational databases" [6]. 

After that NoSQL gradually became the label for non-relational, distributed data stores 

that increasingly emerged. 

2.3 NoSQL theory 

Unlike to RDBMS which is supported by ACID transactions, there are two basic theories 

applied in NoSQL concept. In this chapter, the CAP theorem and the BASE transaction 

are elaborated to help understand what tenets NoSQL are following. 

2.3.1 CAP theorem  

As Eric Brewer stated for distributed computer systems, “that though its desirable to have 

Consistency, High-Availability and Partition-tolerance in every system, unfortunately no 

system can achieve all three at the same time” [7]. The CAP theorem means that it is 

impossible for a distributed computer system to achieve all of the following guarantees: 
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 Consistency: A read process is able to receive the most recent write or error. 

 Availability: Every request receives a (non-error) response – without guarantee that 

it contains the most recent write. 

 Partition tolerance: the system continues to function when network partitions occur. 

Because NoSQL databases are based on the distributed computer system and as a 

matter of fact that networks go down frequently and unexpectedly, partition tolerance is 

necessary when implementing NoSQL. Therefore, according to the CAP theorem that a 

distributed computer system cannot achive consistency, availability and partition 

tolarence at the same time, NoSQL databases basically focus on consistency/partition 

tolerance or availability/partition tolerance. 

2.3.2 BASE 

The ACID transaction has been mentioned in the previous chapter when introducing the 

advent of NoSQL. ACID is the prominent transaction that RDBMS strictly follows, but 

NoSQL focus more on BASE [3]: 

 Basic Availability: every request will receive a response that if the request succeed 

or failed. 

 Soft state: the system status changes over time without any input 

 Eventual consistency: The database system may be temporarily inconsistent in soft 

state but will be consistent eventually. 
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2.4 Characteristics 

There are 3 main characteristics of NoSQL: scale-out, replication, and flexible data 

structure [8]. 

 

Picture 1. Three characteristics of NoSQL. [8] 

Scale-out means that NoSQL uses general-purpose machines in a distributed manner 

to achieve high performance. Distributing the data over a large number of machines 

enables scaling of the data set and distribution of the processing load.  

Replication is to copy data to achieve data redundancy and load distribution. with the 

help of replication, even if data consistency has been lost temporarily among the replicas, 

consistency would be achieved eventually. When one machine goes down by accident 

or maintenance purpose, data can continually be read from replicas on other machines, 

which gives users availability for 24 hours. 

Flexible data structure means that NoSQL databases do not have to define a complex 

database schema as what traditional RDBMS always requires. Therefore, NoSQL could 

allow users to store data with various structures in the same database table, for example, 

images, tweets and geographical data. 
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2.5 NoSQL data storage types 

As mentioned above, NoSQL is compatible with various data types. Subsequently, 4 

main storage types that NoSQL provides will be introduced. 

2.5.1 Document store 

Document store means that the database is designed to store data as documents. It 

allows data inserting, manipulating and retrieving. Document databases use XML, JSON 

or BSON. Three examples of documents by using JSON follow. 

The first document contains the basic identity information for a student, however it is not 

detailed. 

{ 
    "StudentID": "1300001"  
    "Firstname”: “Xiaochuan” 
    "LastName" : "He" 
} 

Compared to the first one, more information is provided in the second example. 

{ 
    "StudentID": "1300002"  
    "FisrtName": "San" 
    "LastName" : "Zhang" 
    "Age"      : "23" 
    "Gender"   : "male"   
} 

The content in the third document is different from the two previous. 

{ 
    "Degree Programme "      : "Information Technology" 
    "Location"               : "ICT building" 

"RegisteredStudentNumber": "200" 
“RegisteredTeacherNumber”: “30” 

} 

From these examples, it is easy to see that the documents do not follow a strict schema 

as RDBMS databases always do. Furthermore, there is StudentID in first two examples, 

however, there is no ID information in the third one. As a matter of fact, StudentID is not 

the document ID, because document store databases embed the document ID 

automatically in the document somewhere. Thus, ID is not mandatory in document store. 
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In conclusion, the most prominent advantage of document store databases is that the 

content is schemaless. This is a very helpful property for web-scale application where 

DBMS is required to store different types of data that might evolve over time since 

redefining the strict schema for RDBMS became a huge cost. 

2.5.2 Key-value/ tuple store 

Key-value store functions are similar to document store. The data structure for a key-

value database is commonly known as a dictionary or hash and it contains of a collection 

of records that has many different fields, also called, columns. The records are stored by 

using a unique key to identification. The structure is presented in Picture 2. 

 

Picture 2. Key-value store. 

Because of the key, it is quick to find specified data in key-value store. However, key-

value also has few constraints that should be noticed. For the document store, manually 

setting UUID is not mandatory when storing a new document, but the key-value database 

requires specifying the key for every record when it is inserted. Besides that, values in 

records are opaque. In order to retrieve a value, the key must be known. 

Key-value store has great performance on data storage, retrieval, and management. As 

such, it is a strong candidate for the situations that have heavy need for in-memory 

caches. Although a key-value database cannot directly query the values, it can still know 

the value type, which enables extra functionality. To be specific, since the value types 

are known, it is possible to keep the system performance when setting or updating 

multiple fields in some part of the document. 
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2.5.3 Graph store 

A graph database, also called a graph-oriented database, is fairly new in the market. It 

refers to a database with an explicit graph structure that is constituted by nodes and links. 

Nodes represent the objects/entities in the data structure and each two nodes are 

connected by relationship. Picture 3 is a simple model of a graph database. 

 

Picture 3. Graph database. [9] 

One main advantage of graph databases is the powerful representation and manipulation 

of relationships. Because of the performance on presenting relationship that the majority 

of NoSQL products have sacrificed, a graph database is a good choice for analyzing 

interconnection and social media. However, due to their design, graph databases are 

essentially used to present and clarify collections of relationships. There is no place for 

them if relationships are not needed. Therefore, graph databases can be considered as 

an optimization of NoSQL especially for relation-heavy data. Besides, it is common that 

for certain scenarios, an enterprise chooses a graph database only for relationships and 

store data in a document-oriented database. 
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2.5.4 Column store 

In traditional RDBMS, datasets are stored in tables which is constituted of columns and 

rows and, storing and retrieving data is processed one row at a time. However, the 

column-oriented databases use columns to manage data. 

To illustrate the ablove, a group of data (order information that contains OrderID, 

OrderName, Quantity and OrderTime for this case) for a RDBMS table can be serialized 

as: 

    0001,fish,50,25.01 
    0002,beef,80,08.02 

0003,pork,30,16.03 

But in column-oriented database, this group of data will be stored as: 

    0001,0002,0003 
    fish,beef,pork 
    50,80,30 

25.01,08.02,16.03  

Due to the difference in how the data has been stored, most column-oriented databases 

give flexibility to model and structure the data so that there is no restriction to set default 

values for existing rows when adding new columns. Therefore, one prominent advantage 

of column store is providing high flexibility for new columns. Additionally, because of the 

complex data process, the performance of RDBMS compromises when working with 

subset of columns, especially when dealing with large amount of data, to be more 

specific, calculating maximum, minimum, averages or sums. A column-oriented 

database provides reliable functionality for data computation due to its structure. 
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3 NOSQL ANALYSIS 

NoSQL does provide solutions to many data storage problems. However, it is not a 

solution to every problem. NoSQL could be applied appropriately only when we have 

comprehended its pros and cons. This chapter is going to show when NoSQL is suitable 

for data storage and fits better than RDBMS. 

In the following sections, firstly a simplified example is used to present RDBMS approach 

and the content focuses on analyzing RDBMS bottlenecks under the current data storage 

market. Subsequently, as a solution, the NoSQL approach is introduced. Pros and cons 

are summarized based on the information above. Finally, a summary of NoSQL is made. 

3.1 RDBMS approach 

The example used here is a DBMS for a business. The company in this example deals 

with food delivery, recevieving orders and delivering food. It should be noticed that in 

real life, it is far more complex than this one. This example is only used to give an idea  

how RDMBS works, which helps summarize what challenges traditional RDBMS is 

facing curently. 

The RDBMS approach uses the following steps. 

1. Define the actors and the objects in the transaction process. 

2. Define entities, which means forming a table according to the objects for this case, 

defining columns and rows. Besides, column types and constraints also should be 

defined. 

3. Define relationships from one table to another by using foreign keys which means 

that we need to find out the relationship between entities. The entity relationships 

include one-to-one, one-to-many, many-to-many and other object relationships. 

4. Program database by using SQL and develop the application. 

In this case, for a DBMS for a food company, firstly the actors include employee, 

customer and order. Then employeeID, lastname and fisrtname are the entities for actor 

employee. Foreign keys will be used to define relationships between tables, for example, 

it is one-to-many relationship between order and customer, many-to-many relationship 
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between product and order detail. The following picture is the entity-relationship diagram 

for this case. 

 

Graph 1. ER diagram. 

The following representational class diagram shows the value type of the data and 

presents relationships from the table point of view. 

 

Graph 2. Class diagram 
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To illustrate, here is the code that forms the Order table: 

CREATE TABLE Order( 
orderID INT NOT NULL AOTO_INCREMENT, 
employeeID INT NOT NULL, 
customerID INT NOT NULL, 
orderDate DATE NOT NULL, 
PRIMARY_KEY (orderID), 
FOREIGN_KEY (employeeID) REFERENCES Employee(employeeID), 
FOREIGN_KEY (customerID) REFERENCES Customer(customerID), 
); 

The RDBMS approach has been presented above and it seems great and reasonable, 

however, it has challenges. The issues that the food company might have in future are 

listed. 

 The company wants to implement online orders to expend business, which requires 

modifying the current entities or creating new entities. 

 The company decides to integrate with another company for expansion. It means 

that two database systems need to be integrated somehow. It is possible that they 

use different table structure because of their different business model. Therefore, 

redefining models, entities and table relationships are required. 

 The company grows and has few branches in other cities. This means that remote 

access to database from branches should be enabled. Additionally, the database 

system will receive a huge amount of order per day across the country. 

The cases above can be converted into technical demands for RDBMS. 

 Schema flexibility: it is easy to see that because of its complex table design, 

redefining relationships is hard to be implemented once a RDBMS has been set up. 

As for entities modification, according to the diagram and code for table presented 

above, we can tell that data constraint/type and default value are mandatory for 

every column. Thus, adding or modifying entities is a complex work especially when 

adding multiple columns for large number of row. Additionally, besides the huge work 

of adding or creating entities itself, the schema will become more inflexible. It is an 

endless loop. 

 High-level quires: Due to the table structure, retrieving data, for example, JOIN 

queries requires implementing many database resources. The following codes are 

an example for JOIN queries. 
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SELECT b.branchNo, b.city, s.staffNo, fName, lName,propertyNo 
FROM Branch b, Staff s, PropertyForOder p 
WHERE b.branchNo = s.branchNo AND s.staffNo = p.staffNo 
ORDER BY b.branchNo, s.staffNo, propertyNo; 

 Data update: it is another technical issue that updating data across multiple tables 

is complex especially if it is in part of transaction, because keeping the transaction 

in process for a long time impact to performance negatively. 

 Scalability: When data is stored locally, scalability means adding more capacity to a 

single machine. For this case, distributed systems should be implemented to enable 

remote access from branches, scalability means add capacity by adding more 

machines to cluster. However, according to the CAP theorem, it is impossible to 

guarantee consistency, availability, and partition tolerance at the same time in a 

distributed system. Achieving ACID transactions in distributed systems makes it 

hard to build distributed database systems based on the relational model and it will 

hinder low latency and high availability [10].  

 Data availability: distributed relational databases use replication to provide data 

availability. Data on the main server will be copied to other servers and it 

automatically copies the latest change. However, due to the restrictions from the 

CAP theorem, ACID transactions and the complex table structure, data integrity is 

complex to be maintained from multiple machines. Furthermore, because of the low 

tolerance to partition, there is a high possibility that the whole database system shuts 

down when a single machine crashes. 

3.2 NoSQL approach 

Here is the NoSQL approach that provides solutions to the technical issue listed in the 

RDBMS approach. 

 Schema flexibility: compared to RDBMS that stores data in complex table connected 

by relationships, there is no such constraint in NoSQL databases. Column-oriented 

databases give adequate convenience and flexibility for adding columns. 

Additionally, document databases are strong candidates due to their support for 

semi-structed data.  

 High-level queries: There are no relationships or foreign keys in NoSQL structure, 

thus, there are not complicated quires that are executed across multiple tables. To 

some extent, NoSQL maintains the high performance of database system. 



19 

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Xiaochuan He 

 High scalability: NoSQL is ACID non-compliant as there is no complexity to add 

machines to current cluster. As such, NoSQL products provide better scalability than 

RDBMS. It is easier to scale out for the sake of future development. Besides, high 

scalability is the prerequisite for achieving high availability of data, data safety and 

some other purposes. 

 Data update: data update and synchronization are always hard to balance within a 

datacenter or across multiple datacenters. For NoSQL databases, the system may 

be temporarily inconsistent in soft state but will be consistent eventually. Every 

transaction does not need to strictly follow consistency. It gives NoSQL databases 

strong ability on data update especially when dealing with huge amount of data, e.g. 

MongoDB implements concurrency control which allows concurrent updates to be 

synchronized and eventually be consistent across nodes in few milliseconds [12].  

 High data availability: NoSQL provide replication among multiple datacenters to 

achieve data redundancy and load distribution. Compared to distributed relational 

databases, NoSQL has sacrificed consistency but in return, it ensures high partition 

tolarence which helps achieve data availability for 24 hours. When one machine 

goes down, data can still be read from replica sets on other machines without the 

risk of downtime. 

 Massive writing performance: NoSQL provides outstanding write performance which 

is able to easily handle the massive user-generated data from different applications 

at the same time. For example, Netflix has switched their databases from RDBMS 

to Cassandra (one product of NoSQL) and the write performance could reach over 

a million times per second [13]. 

It is worthwhile to mention that the RDBMS license price for enterprise is hard to afford 

for small companies, and it rises rapidly with the increase of scale. Comparably, there is 

no high expenditure for database license and maintenance for NoSQL databases since 

most of NoSQL database software is open source. 

The drawbacks of NoSQL cannot be ignored: 

 No support for high-level query languages. Most NoSQL databases do not support 

high-level query languages such as SQL, which means there is no JOIN and cross-

entity query for data manipulating. Although the complexity of SQL in RDBMS is an 

issue that can compromise the system performance, no support for these queries in 

NoSQL is still a drawback. To fix this, many databases focus on the integration of 

queries simplification, data cache, and complex operations in application layer. 
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Additionally, due to the varieties of different NoSQL database, learning and 

immigration would cost more than expected. 

 No ACID transactions: ACID transactions provide the strongest guarantees for data 

consistency and make it much easier for developers to build reliable abstractions. 

However, NoSQL focuses more on BASE transactions. Thus, this property makes 

NoSQL a weak choice for transactional applications. 

 Less support: all the RDBMS vendors have made a great effort to keep data 

reassurance service available at any time, which gives enterprises strong support. 

In contrast, because NoSQL databases tend to be open source, many of them lacks 

the resources to fund support on a global scale, as well as the credibility that the 

RDBMS vendors have established for years, for example, Oracle, IBM and 

Microsoft.  

Indeed, NoSQL does bring a lot of benefits to current data storage industry, but it still 

has obviouse deficiencies. Which one are we supposed to choose, traditional RDBMS 

or NoSQL? There is no necessity to give an absolute answer because the final decision 

depends on the type and scale of application. 

To illustrate the above point, for transactional application, generally speaking, the 

consistency and integrity of data and ACID transaction are extremely important 

properties. NoSQL cannot replace RDBMS for this case. For web-scale application, 

however, it would generate massive user-generated data all day and most of enterprises 

do not want to compromise the database performance. Additionally, in the long term for 

business, it requires high scalability and flexible schema. Consequently, NoSQL perform 

a better implementation for web-scale application. Additionally, as for computational 

application, both of RDBMS and NoSQL can be implemented. RDBMS support high-

level queries and the column-oriented database can reach high speed for data 

computation. Theoretically it depends only on the size of data. Besides, a composite 

choice of RDBMS and NoSQL are possibly needed in certain situation, having said that, 

relationships can be designed by using graph database  and data sets can be stored in 

RDBMS, for example. On the one hand, the application type is an important factor to 

make a decision. On the other hand, the scale of application also should be taken into 

account. RDBMS is able to handle most of small-scale application. When scale grows, 

there is an increasing need on scalability and data availability. NoSQL is a good choice 

for this case if there is no special requirement on ACID transactions and high-level query. 
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In conclusion, NoSQL provides huge benefits that are able to remedy RDBMS 

deficiencies but the disadvantages do exist. However, it is not the solution to all database 

problems. Starting a NoSQL database or switching a current RDBMS requires more 

considerations depending on actual situation. 
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4 CASE STUDY 

In the previous sections, the pros and cons of NoSQL have been analyzed and 

summarized at a macro level. To narrow it down, NoSQL products provide different 

technical solution to meet different market demands. This case study is to show how 

MongoDB achieves high availability and some other purposes by implementing data 

replication. 

4.1 Replication in MongoDB 

MongoDB is a document store database system encoded in BSON. A MongoDB 

database is set up by multiple collections and each one collection contains documents 

that carries data. MongoDB features automatic sharding, replication, support to rich 

queries and full indexes, and more. 

According to the documents in MongoDB official website [14], a replica set is a group of 

instances that carry the same data set. A replica set constitutes of multiple data bearing 

nodes, one and only one node is assigned to be primary node, the other nodes are 

assigned as secondary nodes. The primary node has all write operations. The secondary 

nodes will replicate the operations of primary node and apply them to its own data sets. 

When the primary node is unavailable, one eligible secondary node will automatically 

become a new primary node which ensures that there is always a primary node available 

for all write operations. 
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Picture 4. Replication in MongoDB [14]. 

Because of the replication function, MongoDB provides high availability of data. 

Furthermore, replication ensures the possibility for data recovery. No downtime for 

maintenance is needed. Last but not the least, the replica set is transparent to the 

application. 

4.2 Implementation 

For this case study, MongoDB 3.4.2 downloaded from MongoDB official website is used. 

To implement data replication in MongoDB, 3 nodes as replica sets will be configured 

first. Then one of them will be deemed to primary and the others will be deemed as 

secondary. Subsequently, a set of data will be inserted to test the write operation access 

on those nodes. The final step is to shut down the primary node and check how 

secondary nodes react. 

4.2.1 Setting up 

It is necessary to set environment variable first. 
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Picture 5. Environmental variable. 

Firstly, three directories were created to store three instances data (three replica sets). 

mkdir \data\rs1 \data\rs2 \data\rs3 

Subsequently, start three Mongod instances by following command on command prompt. 

start mongod  --replSet Xiaochuan --logpath \data\rs1\1.log --dbpath \data\rs1 --

port 27017 --smallfiles --oplogSize 64 

start mongod  --replSet Xiaochuan --logpath \data\rs1\2.log --dbpath \data\rs2 --

port 27018 --smallfiles --oplogSize 64 

start mongod  --replSet Xiaochuan --logpath \data\rs1\3.log --dbpath \data\rs3 --

port 27019 --smallfiles --oplogSize 64 

Three processes of Mongod.exe have started which are rs1, rs2 and rs3. Note that port 

27017 is the default port for mongod instance and the replica sets are named as 

Xiaochuan. 

Now three mongod servers are running, however, they are not configured to interconnect 

with each other. The next step is to configure the interconnection for all three nodes on 

port 27017 which means port 27017 will be deemed to be primary nodes and the other 

two will be secondary. 

mongo --port 27017 
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config = {_id:"Xiaochuan", members: [ 
        {_id:0,host:"localhost:27017"}, 
        {_id:1,host:"localhost:27018"}, 
        {_id:2,host:"localhost:27019"}] 
}; 

rs.initiate(config) 

The command rs.status() is used to check the status of replica sets. As it shown from 

the following picture, local host 27017, 27018 and 27019 have been on the list, besides 

that, port 27017 become primary. 

 

Picture 6. Replica sets status. 
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4.2.2 Data replication 

Now three nodes are properly configured and initiated. The next step is to insert data on 

primary node and check the operation authority on the other two secondary nodes. 

Insert data on primary node. 

db.test.insert({name:"He Xiaochuan",age:"23",address:"Turku"}) 

As it has been mentioned in previous chapter, there is no need to set data constraint, 

default value and identity in document type NoSQL database. The test is the name of 

collection. MongoDB will creat the collection automatically by inserting query if it has not 

been created beforehand. 

Connect to port 27018. 

mongo --port 27018 

Although port 27018 has already configured as secondary, it will report error once the 

node receives any read operation because by default the data on secondary node cannot 

be read . One more command is needed to set the secondary node as a slave to primary 

node. 

rs.slaveOk(); 

After setting up, use following command to read data on secondary node. The result is 

shown as follows 

db.test.find().pretty() 

 

Picture 7. Data on secondary node. 

Thus, it means the data sets on primary node has been copied to secondary nodes which 

is also readable. However users are not allowed to insert any data to secondary node. 
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As it shown in the screenshot, inserting data is not allowed because the node is not a 

master. 

 

Picture 8. Insert error on secondary node. 

The following command is used to check the log for previous operations. 

db.oplog.rs.find().pretty() 

The similarity of the oplog.rs files in three replica sets shows that data sets on primary 

node have been copied to secondary nodes 

4.2.3 Failover in replication 

To see how MongoDB react to system failover, firstly the primary node should be shut 

down. 

use admin 
db.shutdownServer() 

 

Picture 9. Shutting down primary node. 

After that, it is needed to check the status of other two secondary nodes by using 

rs.status() command.  
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Picture 10. Secondary node becomes primary. 

It could be easily seen that port 27018 now is deemed to be primay node and data can 

be inserted successfully into new primary node. 

 

Picture 11. Insert data on primary node. 

When reconnecting port 27017, it functions as secondary node, only read operation is 

allowed.  



29 

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Xiaochuan He 

 

Picture 12. Reconnect to port 27017. 

From the picture above, it can be noticed that port 27017 has automatically update the 

replica set as soon as it has been configured as slave to primary node because it 

contains the data(Teemo)  which was inserted on port 27018 when port 27017 was down. 

4.3 Conclusion 

By implementing replication in MongoDB, how replication actually works has been 

presented. On the one hand, multiple secondary nodes garuantees the high data 

availability. On the other hand, one and the only one primary node keeps the balance 

between system performance and the access to write operation. Both of the advatages 

are welcome in Web 2.0 era. 
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5 CONCLUSION 

This thesis has analyzed and summarized the pros and cons of NoSQL, and a case 

study of data replication has implemented to present how MongoDB achieves high data 

availability.  

NoSQL products provide solutions to most of technical problems that RDBMS cannot 

deal with in current market, namely, flexible schema lets users no longer struggle with 

complicated relational model and complex query, high scalability gives higher possibility 

to optimize transmission and synchronization when dealing with massive data. For 

developing enterprises, NoSQL databases can easily evolve over time. Besides that, 

dissimilar to RDMBS, the diversity of NoSQL products gives enterprises more options so 

that they can choose one that fits their own applications. However, there are few points 

that cannot be ignored. Non-adherence to ACID transaction and high-level query makes 

NoSQL a weak choice for transactional  applications. Additionally, it costs more on 

learning immigration for NoSQL technology because NoSQL products diffier from each 

other and they are encoded in different language. As for RDBMS products, SQL is the 

universal language. It is always difficult to balance the cost and benefit. Therefore, 

implementing NoSQL database or changing current RDBMS to NoSQL requires deep 

consideration of NoSQL products and the actual scenario.  
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