
Bachelor's thesis

Information Technology

Internet Technology

2016

Hugo Sastre

UNIX secure server

– a free, secure, and functional server example

BACHELOR’S THESIS │ABSTRACT

TURKU UNIVERSITY OF APPLIED SCIENCES

Information Technology | Internet Technology

2016 | 38

Patric Granholm

Hugo Sastre

UNIX secure server

The purpose of this thesis work was to introduce UNIX server as a personal server but also as a
start point for investigation and developing at a professional level.

The objective of this thesis was to build a secure server providing not only a FTP server but also
an HTTP server and a cloud system for remote backups. OpenBSD was used as the operating
system.

OpenBSD is a UNIX-like operating system made by hackers for hackers. The difference with
other systems that might partially provide solutions is that OpenBSD requires a fully
understanding of the configuration files in order to cover all the security holes, therefore, is
needed to go through the documentation and examples of these files.

As a result we have a fully functional server with the next following features: anonymous FTP
server, HTTP server including PHP, SSH server and of course a backup system in a cloud with
cryptography enabled.

KEYWORDS:

UNIX, OpenBSD, Web, FTP, Security, OpenSSH, LibreSSL

CONTENTS

1 INTRODUCTION..4

2 THE OPENBSD SERVER..5

3 HARDWARE SPECIFICATIONS..9

4 SERVER SETUP..11

4.1 Installation..11

4.2 Partitioning...12

4.3 Networking...14

4.4 Management..17

4.5 LibreSSL..22

5 REMOTE ACCESS...25

5.1 Name server and domains...25

5.2 SSHD...28

5.3 FTPD...30

5.4 HTTPD...32

6 BACKUPS..36

7 CONCLUSION..37

REFERENCES..38

1 INTRODUCTION

Since Edward Snowden leaked classified information about global surveillance

programs run by the NSA and the PRISM program, security and privacy have

become a very important issue.

It looks almost impossible to stay away from surveillance, especially now that

large companies and tools are compromised. OpenBSD is developed all over

the world but its headquarters are located in Canada where it is possible to

export cryptography within an operating system. In countries like the USA

cryptography is considered a weapon by the law and has several restrictions.

The next sections discuss how to configure a secure server from scratch

providing basic services as file transfer protocol (FTP), a web server,

cryptography with LibreSSl and basic notions for backup and restore files.

The hardware used is a Lenovo ThinkPad T400, a regular internet connection

and an external hard drive for the backups.

The software is the last stable OpenBSD, starting with version 5.7 and updated

to 5.8 during the process.

An account on dot tk (http://www.dot.tk/en/index.html) was used in order to

obtain the domains and subdomains used on the project.

As a result, there is an anonymous FTP server for sharing files and software, a

ssh server for secure communications, a HTTP server with php enabled for

dynamic contents and a cloud for remote backups. This server also provides

secure connections with LibreSSL instead of OpenSSL for really secure

cryptography.

http://www.dot.tk/en/index.html

2 THE OPENBSD SERVER

What is a server good for? Why are they needed? These are good questions

and very difficult to answer. One of the more accurate answers may be “it

depends on the situation”. However what is for sure is that the internet and the

networks as we conceive them today would not be possible without servers.

The act of making a query in a browser involves a server to provide the

information required. Servers are needed to provide websites, to organize

companies, for building applications, and many more functions.

Etymologically a server's task is to serve. If we are talking about a computer a

good start would be doing it in a secure way, functionality would also be a

desirable feature and the only way to achieve both is by freedom. At this point,

trying to define freedom would be an act of futility. Fortunately this is about

machines, software, and/or the combination of both, therefore the meaning of

freedom in this context becomes more tangible. However, in English, the word

“free” could be understood in economic terms of no cost or the possibility to be

used in any way. Due to this ambiguity many hardware and software developers

are using the Spanish word “libre” to explicitly refer to the second meaning of

“free”.

Going deeper into the meaning of the concept lead us to the last term: open.

Applied to software, and even to hardware, an open system allows access to

the source code in order to understand how it works. It is also possible to

modify it according to the needs or desires of the user and share with other

users the new version or “recipe”.

At this point we are talking about licenses and there is a great deal of them out

there. As a starting point, we can describe the most famous of the permissive

type licenses as:

 GPL and compatibles: grants all the rights, read, study, modify and share

but is viral meaning that it will put any project, where GPL is included,

under the same license. This is a good method for guaranteeing the

future of the license and the software but scares possible investors or

companies interested in these projects.

 BSD and compatibles: grants all the rights, read, study, modify and share

but is not viral. This can be interpreted as an even freer level and which

causes heated debates about this subject. In any case the software

under this license can be used for any purpose.

In short, BSD License is a gift. The BSD community do not care what

developers do with the code, but developers should not claim it is theirs. This

might look obvious for the most of us but many companies had problems

understanding that. In the words of Michael Lucas (2013), author of Absolute

OpenBSD. “A lot of people have a very strong view points on things like

Microsoft took the BSD tcp/ip stack and put in Windows back in the Windows 95

days […] but turn this around, imagine the cost in human suffering if Microsoft

have written their own tcp/ip stack”. This quotation is a perfect example of the

advantages of Open Software even for a company like Microsoft which makes

business with private software.

We are lucky that these terms have been invented and implemented now. The

consequences of copyrights and licenses in a previous age, say the age of

Newton and Leibniz, could have been devastating for our present and future.

After all calculus could be interpreted as a piece of software in today's terms.

At the time this document was written the European Parliament had started to

take seriously the idea of financing open source tools in order to protect the

citizens instead of taking part in the Mass Surveillance game. OpenBSD is one

of the three open source operating systems proposed. The other two are Qubes

and TAILS. (Gamino et al. 2015, pp 52-53)

After this small briefing about licenses and servers lines there is no need to

explain what OpenBSD stands for.

OpenBSD is a free “unix-like” operating system like Linux, Solaris or Mac OS

among others. The BSD project is a straight descendant from the AT&T UNIX

(tm) that originally was a closed source but in the late 70's it was gradually

opened by the students of the University of California, Berkeley. Hence BSD

stands for Berkeley Software Distribution. The main BSD variants are FreeBSD,

NetBSD and OpenBSD among others. An important difference with another

operating systems is that most of BSD systems generally use monolithic

kernels so in our case OpenBSD is a complete operating system and not a

distribution as most of the Linux are.

OpenBSD has the reputation of emphasizing on correctness, meaning “do it

right or do not do it at all” and well-documented software therefore OpenBSD of

manuals are very easy to follow and understand to the point that lack of this

information is considered a bug and it has to be corrected in order to fix it.

OpenBSD delivers a system with no security holes in the default install.

Naturally, they are not responsible of all the 3rd party software that could be

installed on it later, and “only two remote holes in the default install, in a heck of

a long time!” according to their own website (OpenBSD, 2015).

As this thesis is about building a server based on OpenBSD and there is no

need to install 3rd part applications on it for the services we need we can say

that we are dealing with a very secure server by default. However, once we

start to allow services, it is important to follow a good method and understand

the configuration on which all the security and functionality of the project relies.

It has been said that OpenBSD is written by hackers for hackers but it is more

precise to say that OpenBSD is written for the people who write it, who are

basically system administrators who know what are they talking about.

OpenBSD community claims that they “eat their own dog food” and they are

very proud of running the system on their personal computers.

Another important issue is “correctness” in the OpenBSD project documentation

and accuracy gets a real dimension to the point that there is people working

and testing that all the documentation and the manual pages describe exactly

how the programs work and there is no lack of information. Therefore even a

masterpiece of code will not be approved and included in the system unless it is

well-documented. The aim is not to need external help for any installation and

the programs have to behave exactly as described in the instructions.

OpenBSD includes a manual with instructions to use all the programs and

configuration files. The way to access the manual is to open a terminal and type

“man” and the command or configuration file we want to consult.

3 HARDWARE SPECIFICATIONS

The selection of the machine is a very important link in the process of building a

server. This is a good point for a small briefing about hardware and software

and their relationship. The first one is easy to understand hardware is the

physical part of the machine. In our previous example with pencils the hardware

would be the pencil itself with its physical characteristics like length. The

software is the programs that run on the hardware and these programs are

methods of use, for example, the “recipe” for using the pencil as a hair stick.

Normally the physical tools need a set of instructions. Even in our simple

example a pencil could be shipped with a set of instructions for an optimal use.

It could be about some specific compositions of the core, maybe the proportions

of the graphite and clay so the pencil is designed for specific tasks or materials

to work on it. Some pencil vendors provide this set of information. When we talk

about computers this piece of information is called firmware. The firmware is a

set of instructions for an optimal performance of the hardware. Because the

firmware is provided by the vendors, it is their decision to provide open

firmware or not. The reasons could be to hide the wonderful features of their

hardware from the competitor companies, but it has been proved and admitted

that sometimes the hardware has other instructions besides the main

instructions, as in the case of “vulnerabilities” found in the BIOS of Lenovo

laptops (Lenovo 2015).

OpenBSD runs in a large amount of hardware but they do not accept any

firmware from the vendors that is not open. In case the companies do not

provide open firmware they will use the open version of this firmware that has

been “reverse engineered” to provide open instructions to that specific piece of

hardware.

For a better experience, it is a good idea to choose hardware with open

firmware.

In their website (OpenBSD 2015), OpenBSD list all the supported platforms. At

the moment of writing this thesis (2016) the following architectures are being

supported:

alpha, amd64, armish, hppa, i386, landisk, loongson, luna88k, macppc, octeon,

sgi, socppc, sparc, sparc64, vax and zaurus.

The aim of OpenBSD is to support more platforms in the future if the open

hardware requests are met.

In our case, we used a Lenovo ThinkPad version "7UET94WW (3.24 Intel(R)

Core(TM)2 Duo CPU P8600 @ 2.40GHz, 2394.40 MHz)", 4 Gb RAM. As a

home server, it is powerful enough. In addition, a laptop with a functional battery

could be used as a UPS (uninterruptible power supply).

A simple script checks the status of the A/C adapter state and power off the

machine when it is not connected to the power supply and the battery level is

lower than 30%.

#!/bin/sh -

if [`apm | grep “A/C adapter state” | awk -F”:” ' { print $2 }'` != “activated”] &&

[`apm | grep “Battery state” | awk -F”:” ' { print $2 }'` == “critical”]

shutdown -h now

fi

This could be running in the cron of the server every 30 minutes avoiding power

failures and the consequences of a sudden shut down.

If the power supply would be a critical point would be wise to write a script that

sends a mail to the sysadmin in case of failure with a script like this:

#!/bin/sh -

if [`apm | grep “A/C adapter state” | awk -F”:” ' { print $2 }'` != “activated”]

mail -s “server power failure” sysadmin@domain.com fi

mailto:sysadmin@domain.com

4 SERVER SETUP

It has been already mentioned that OpenBSD puts a great effort on correctness

and well-documentation, therefore, the FAQ of the project provides very

accurate information for a standard installation.

4.1 Installation

What we need for an installation from scratch is a machine; internet connection

would be desirable but not essential and the installation software. The last one

could be a CD or a USB among others.

The best way to obtain an OpenBSD release and support the project is to buy a

3 CD set. Another way is to download it via HTTP/FTP. Choosing a close mirror

like this can take a few minutes.

First we need to know the architecture of our hardware and choose an image

from the mirror. It is a good idea to take a look at the README of the target

architecture hosted in the FTP of each architecture for specific instructions.

If the plan is to install it from a CD there is two options: the file “install57.iso” or

“cd57.iso”; the first option has all the code and the second one only the

essential code for booting from the CD and fetching the source code from

internet using FTP or HTTP. The first option grants the whole operating system

for those cases when it is not possible to have the machine connected.

Lately the tendency of the hardware is to quit using the CD so it is also possible

to build a boot USB. The easiest way is to get the file “install57.fs” from the

same directory and use the utility “dd” in any Unix or Unix-like computer. This is

as simple as this line script:

dd if=”path to the install57.fs” of=”path to the usb stick”

It is very important to identify correctly the path to the USB, a confusion here

will carry catastrophic results as the permanent deletion of the main hard drive!

Once the boot CD or USB is ready, we only have to restart the machine and

change the BIOS to start from the CD drive or an external USB according to our

choice.

The OpenBSD team have developed a very easy installation that goes over all

relevant options like root password, adding users, partitioning of the hard drives

and network configuration.

The upgrade process follows the same principles.

4.2 Partitioning

Partitioning a hard drive is always a good idea in order to improve the security

and the speed of a hard drive versus a one partition installation. Luckily in this

case OpenBSD automatically creates a partition according to the size of the

machine hard drive and the RAM memory.

OpenBSD still needs a swap partition despite the fact that other Unix-like

operating systems claim that is not necessary nowadays because it is

supported to do the swapping to files.

In our case the use of a swap partition is a very interesting feature because it is

a place where the kernel can store a copy of what is in core in the event of a

system panic for later analysis. OpenBSD does this automatically if the swap

partition is at least as large as the RAM and at least the same free space in

the /var partition. OpenBSD will save a copy of the dump in /var/crash partition

to assure this feature will work. The best practice would be to create a

separated partition for /var/crash as large as the RAM.

A directory to take into special consideration is /tmp. Here is where all the

temporal files are stored. It is world-writable therefore, it has its own partition.

Depending on the use of the machine, it might need a big /tmp partition though

most of the systems would manage with a very modest amount of storage

(30M). For the sake of the life of the hard drive, it is a very good idea to mount

this partition on the RAM memory. After all, the /tmp directory is purged at least

every time the machine goes down so this place should not be used for long

term storage. In this case the size of the /tmp could be around half of the RAM

memory. This can be done by adding a line on the “/etc/fstab”, the file where the

partitions are defined after we have finished the installation:

swap /tmp tmpfs rw,nodev,nosuid,-s=1.8G 0 0

Other potential partitions to have under consideration are:

 /var/log: for the system logs

 /var/www: for the web server

In case we want a partition to keep over updates, it is a good idea to create it.

For example if we are planning to have a data base server, say postgresql, we

can create a “/var/postgresql” partition. That will make the backup tasks and the

data preservation over updates very easy.

The /home partition is the place where the potential users of the system have

their home directory with their own configuration files. This is the perfect

example of the need for a partition in order to preserve those files over new

installations. This can simply be done by ignoring this partition on the

installation and mounting it manually after that. Everything would remain the

same for the users.

OpenBSD provides an optional partition called “/altroot”. The idea is to have a

copy of the kernel and the /etc configuration files so that in case of the root (/)

partition failure, it would be possible to gain access to the system and recover it.

Obviously this partition would look nicer in a secondary hard drive. I also has to

be at least as large as the root partition. To make this backup automatic the

“/altroot” has to be created during the installation but never mounted. The

“fstab” should have a line like this:

/dev/sd0d /altroot ffs xx 0 0

Moreover, the environment variable ROOTBACKUP must be set. For example,

the following can be added to “/etc/daily.local”:

ROOTBACKUP=1

Of course, it is possible to create custom partitions for our own purposes or

interests, like one with the name of the company or for some specific software

we are planning to build or store there. Again, the advantage of this will be to

make backups easier and a better performance in general but also add specific

characteristics for that partition as making it read-only.

The characteristics of the partitions can be altered after the installation on the

“/etc/fstab” file but for this to work the partitions must exist, therefore they

should be created in advance.

4.3 Networking

The first step is to have a look at the manual for two programs:

 netstat(1): which shows the network status.

 ifconfig(8): which configures network interface parameters.

With the output of ifconfig(8), it is possible to have an idea of the network

devices:

$ ifconfig

lo0: flags=8049<UP,LOOPBACK,RUNNING,MULTICAST> mtu 33200

 priority: 0

 groups: lo

 inet6 ::1 prefixlen 128

 inet6 fe80::1%lo0 prefixlen 64 scopeid 0x3

 inet 127.0.0.1 netmask 0xff000000

fxp0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> mtu 1500

 lladdr 00:04:ac:dd:39:6a

 priority: 0

 media: Ethernet autoselect (100baseTX full-duplex)

 status: active

 inet 10.0.0.38 netmask 0xffffff00 broadcast 10.0.0.255

 inet6 fe80::204:acff:fedd:396a%fxp0 prefixlen 64 scopeid 0x1

enc0: flags=0<>

 priority: 0

 groups: enc

 status: active

pflog0: flags=141<UP,RUNNING,PROMISC> mtu 33200

 priority: 0

 groups: pflog

In the example there are four network interfaces: a loopback (lo0), a physical

ethernet card (fxp0), an encapsulating interface (enc0) and the packet filter

logging interface (pflog0) for the OpenBSD firewall.

The hostname.if(5) is the interface-specific configuration file and should be

created in /etc. We will create as many files as interfaces needed. An example

would be:

$ cat /etc/hostname.fxp0

inet 10.0.0.38 255.255.255.0 NONE

To set the default gateway, we can create a file called /etc/mygate. It will be only

one line with the gateway address.

The /etc/resolv.conf is the file to configure the DNS resolution. An example for a

this file can be found in the manual of resolv.conf(5). The typical attributes of

this file are:

 search: search list for hostname lookup.

 nameserver: IPv4 address (in dot notation) or IPv6 address (in hex-and-

colon notation) of a name server that the resolver should query.

The last step is to set the host name under /etc/myname. Here is where the

name of the machine and the domain are specified.

All these changes will be effective when rebooting the machine or running the

netstart script as root:

sh /etc/netstart

writing to routing socket: File exists

add net 127: gateway 127.0.0.1: File exists

writing to routing socket: File exists

add net 224.0.0.0: gateway 127.0.0.1: File exists

One of the common uses of OpenBSD is as a router. In this way, it is possible to

take advantage of the Packet Filter firewall. The way to enable the forwarding

gateway is to edit the file /etc/sysctl.conf by adding this line:

net.inet.ip.forwarding=1

If we choose to make a router out of our machine, it is very probable we are

also interested to use OpenBSD as a DHCP server. First we have to edit the file

/etc/rc.conf.local by adding the line dhcpd_flags="". This way we make sure the

daemon starts after every reboot. The next step is to edit the file

/etc/dhcpd.conf.

There are several examples of the configuration files under /etc/examples/,

among them /etc/dhcpd.conf. These examples are very easy to understand and

edit according to our needs.

Other important features to take into consideration at this point are:

 The possibility to create bridges in order to communicate and also filter

to interfaces of the network.

 Using OpenBSD as a boot server for machines with PXE-capable NIC. In

this way is possible to serve images of different operating systems.

 The Common Address Redundancy Protocol (CARP) to create

redundancy and have two or more computers creating a single virtual

network interface between them. This could also be a powerful load

balancing system to make the traffic safer and smother.

4.4 Management

The first steps to take after a clean installation are tuning the /etc files. It is a

good practice to backup the /etc files we want to preserve over different

updates. A powerful tool for backup is tar.

tar pcvzf /path/to/the/file.tar.gz /etc/{fstab,httpd.conf,rc.conf.local}

In the example:

 p: Preserve user and group ID as well as file mode regardless of the

current umask(2). The setuid and setgid bits are only preserved if the

user and group ID could be preserved. This is only meaningful in

conjunction with the -x flag

 c: Create new archive, or overwrite an existing archive, adding the

specified files to it.

 v: Verbose operation mode.

 z: Compress archive using gzip.

 f: Filename where the archive is stored.

The opposite action, to extract files from a tar file would be as follows:

tar Ppxvzf /path/to/the/file.tar.gz

Where:

 P: Do not strip leading slashes (‘/’) from pathnames. The default is to

strip leading slashes. This is very useful in our case when we want the

backup files to replace the original files.

 x: Extract files from archive. If any files are named on the command line,

only those files will be extracted from the archive. The file arguments

may be specified as glob patterns, in which case tar will extract all

archive members that match each pattern. If more than one copy of a file

exists in the archive, later copies will overwrite earlier copies during

extraction. The file mode and modification time are preserved if possible.

The file mode is subject to modification by the umask(2).

For the first installations OpenBSD ships a directory (/etc/examples) with

common configuration files to use as a guide when a new configuration is

needed.

Another important step to take after a new installation is to add users to the

system. The quickest and most suitable way to automatize this step useradd.

According to the manual, 'The useradd utility adds a user to the system,

creating and populating a home directory if necessary. Any skeleton files will be

provided for the new user if they exist in the skel-directory directory (see the -k

option). Default values for the base directory, the time of password expiry,

the time of account expiry, primary group, the skeleton directory, the range from

which the UID will be allocated, and default login shell can be provided in the

/etc/usermgmt.conf file, which, if running as root, is created using the built-in

defaults if it does not exist”.

A more friendly way to add a user in OpenBSD is to use the adduser script:

adduser

Use option ``-silent'' if you don't want to see all warnings and questions.

Reading /etc/shells

Check /etc/master.passwd

Check /etc/group

Ok, let's go.

Don't worry about mistakes. There will be a chance later to correct any input.

Enter username []: testuser

Enter full name []: Test FAQ User

Enter shell csh ksh nologin sh [ksh]: ksh

Uid [1002]: Enter

Login group testuser [testuser]: guest

Login group is ``guest''. Invite testuser into other groups: guest no

[no]: no

Login class authpf daemon default staff [default]: Enter

Enter password []: Type password, then Enter

Enter password again []: Type password, then Enter

Name: testuser

Password: ****

Fullname: Test FAQ User

Uid: 1002

Gid: 31 (guest)

Groups: guest

Login Class: default

HOME: /home/testuser

Shell: /bin/ksh

OK? (y/n) [y]: y

Added user ``testuser''

Copy files from /etc/skel to /home/testuser

Add another user? (y/n) [y]: n

Goodbye!

Removing users is a very simple operation with the ”userdel” command:

userdel -r testuser

Notice that the -r option will also delete the user filesystem!

Administarting a system where there are many users with different

administration tasks is a challenge and for that challenge OpenBSD introduces

the tool ”doas”. This tool allows a user to temporarily run commands as the root

user. To experienced Unix users this might sounds like ”sudo” that performs a

similar task but ”doas” have a simpler and therefore more secure code base.

The configuration file (/etc/doas.conf) also looks very simple and easy to

understand:

$ cat /etc/doas.conf

permit nopass keepenv { PATH PS1 SSH_AUTH_SOCK } :wheel

where:

 permit: The action to be taken if this rule matches.

 nopass: The user is not required to enter a password.

 keepenv: The user's environment is maintained. The defaul is to reset

the environment, except for the variables DISPLAY, HOME, LOGNAME,

MAIL, PATH, TERM, USER and USERNAME.

 wheel: This directive affect all the users on the group wheel.

Once we have the users in the system, we have to deal with the mail. In the

file /etc/mail/aliases we can redirect the mail to certain services to certain users

in charge of those tasks. We just have to uncomment the lines we want to

modify with the name of the user in charge with that service:

Well-known aliases -- these should be filled in!

root: hugo

manager: hugo

dumper: hugo

RFC 2142: NETWORK OPERATIONS MAILBOX NAMES

abuse: root

noc: root

security: root

RFC 2142: SUPPORT MAILBOX NAMES FOR SPECIFIC INTERNET

SERVICES

hostmaster: hugo

usenet: root

news: usenet

webmaster: hugo

ftp: hugo

The next step is to run the command ”newaliases” as a root to make the

changes effective.

We also want to automatize daemons to run at the start of after every reboot.

The file ”/etc/rc.conf.local” is the place where we should put the series of

variable assigments that are used to configure the system daemons:

$ cat /etc/rc.conf.local

ntpd_flags=""

httpd_flags=""

sshd_flags=NO

apmd_flags="-A"

pkg_scripts="php56_fpm"

In the example we start the daemons ntpd, HTTPD, apmd (with the option -A,

for automatic) and php. We explicitly stop the sshd daemon to avoid external

ssh connections.

4.5 LibreSSL

OpenBSD claims to focus on security and encryption. However, nothing is

100% secure and a bad practice can lead to great security holes. Especially

when we start adding services and features to our machine.

OpenBSD is shipped with the latest version of libressl, a sub project of

OpenBSD and according to their own website (OpenBSD, 2016):

“LibreSSL is a version of the TLS/crypto stack forked from OpenSSL in 2014,

with goals of modernizing the codebase, improving security, and applying best

practice development processes.

Primary development occurs inside the OpenBSD source tree with the usual

care the project is known for.

On a regular basis the code is re-packaged for portable use by other operating

systems (Linux, FreeBSD, Windows, etc).

LibreSSL is composed of four parts:

 The openssl(1) utility, which provides tools for managing keys,

certificates, etc.

 libcrypto: a library of cryptography fundamentals

 libssl: a TLS library, backwards-compatible with OpenSSL

 libtls: a new TLS library, designed to make it easier to write foolproof

applications

LibreSSL is supported financially by the OpenBSD Foundation and the

OpenBSD Project.”

After the disaster of “heartbleed” in April 2014 in the OpenSSL cryptography,

OpenBSD decided to eliminate it from the operating system due to the

difficulties on maintenance and keep the code clean. They created the LibreSSL

project. For the sake of the usability and coherence with other programs that

might want to use LibreSSL, the command keeps the name of OpenSSL.

Creating a key, for example, a HTTPD server, is very easy:

First we need to generate the private root key, for example a 2048 bit key.

There is no need to say that this key should be kept in a secure place with

restricted access. In case somebody has access to this key they could generate

certificates that a browser will accept.

openssl genrsa -out root.key 2048

It is also possible to generate a password-protected key by adding, among

others, -des3. In this way, it will ask for the password every time we need to use

it.

openssl genrsa -des3 -out rootCA.key 2048

Optionally we can also self-sign our certificate. With this we can create more

certificates for our different services and provide secure connections via https.

We only need to type the command:

openssl req -x509 -new -nodes -key root.key -days 1024 -out root.pem

After that a script will ask for some information about us:

You are about to be asked to enter information that will be incorporated

into your certificate request.

What you are about to enter is what is called a Distinguished Name or a DN.

There are quite a few fields but you can leave some blank

For some fields there will be a default value,

If you enter '.', the field will be left blank.

Country Name (2 letter code) [AU]:FI

State or Province Name (full name) [Some-State]:Varsinais-Suomi

Locality Name (eg, city):Turku

Organization Name (eg, company) [Internet Widgits Pty Ltd]:Hugos

Organizational Unit Name (eg, section):IT

Common Name (eg, YOUR name):IT Hugos

Email Address:hugo@hugos.tk

5 REMOTE ACCESS

Once we have the server running we need an address to access remotely. The

right and easiest way is to obtain a fixed ip, get a domain and point it to the

destination ip. Then, it is possible to use the DNS server provided by the

internet service provider or create a name server. Other cheaper option is to

deal with a dynamic ip. That requires somebody to change the ip the domain is

pointing every time the ip changes. There are some companies that provide this

service on the internet.

5.1 Name server and domains

In case we have total control over our address, we can set up a name server.

OpenBSD comes with “nsd” and “unbound” to solve this problem.

First, we have to edit the configuration file “/var/nsd/etc/nsd.conf” with our

configuration. In the manual there is an example that we can modify to suit our

needs:

server:

 server-count: 1 # use this number of cpu cores

 database: "" # or use "/var/nsd/db/nsd.db"

 zonelistfile: "/var/nsd/db/zone.list"

 username: _nsd

 logfile: "/var/log/nsd.log"

 pidfile: "/var/nsd/run/nsd.pid"

 xfrdfile: "/var/nsd/run/xfrd.state"

 zone:

 name: example.com

 zonefile: /var/nsd/etc/example.com.zone

 zone:

 # this server is master, 192.0.2.1 is the secondary.

 name: masterzone.com

 zonefile: /var/nsd/etc/masterzone.com.zone

 notify: 192.0.2.1 NOKEY

 provide-xfr: 192.0.2.1 NOKEY

 zone:

 # this server is secondary, 192.0.2.2 is master.

 name: secondzone.com

 zonefile: /var/nsd/etc/secondzone.com.zone

 allow-notify: 192.0.2.2 NOKEY

 request-xfr: 192.0.2.2 NOKEY

The next step is to create the zone files. Here we need to create as many zone

files as we defined on the nsd.conf file. In addition, we should place one under

master and the rest of the zones under slave directories on “/var/nsd/zones/”. A

zone file should look like this:

$ORIGIN example.com.

$TTL 86400

@ 3600 SOA a.ns.example.com.

hostmaster.example.com. (

 2014110502 ; serial

 1800 ; refresh

 7200 ; retry

 1209600 ; expire

 3600) ; negative

 NS a.ns.example.com.

 NS b.ns.example.com.

 MX 0 mail.example.com.

a.ns A 108.xx.xxx.xx

b.ns A 108.xx.xxx.xx

mail A 108.xx.xxx.xx

The next step is to modify the unbound configuration file. OpenBSD provides an

example on “/var/unbound/etc/unbound.conf”, which is very easy to implement.

At the end we have to modify the file “/etc/resolv.conf” which should look like

this:

search example.com

nameserver 127.0.0.1

nameserver (ISP dns)

lookup file bind

In order to start these daemons automatically, we need to add the following

lines to “/etc/rc.conf.local”

nsd_flags=

unbound_flags=

5.2 SSHD

According to the OpenSSH manual (OpenBSD, 2016), “ssh is a program for

logging into a remote machine and for executing commands on a remote

machine. It is intended to provide secure encrypted communications between

two untrusted hosts over an insecure network. X11 connections, arbitrary TCP

ports and UNIX-domain sockets can also be forwarded over the secure

channel”.

When running a server, we need to set up and configure the ssh daemon (sshd)

in order to control the connections to the server. The configuration file of the

sshd is “/etc/ssh/sshd_config”. OpenBSD comes with a default configuration

which is very easy to tune if we know what we are doing.

In case we have an OpenBSD box as a desktop, it would be wise to stop the

ssh daemon on the boot adding one line to the “/etc/rc.conf.local”:

sshd_flags=NO

By default OpenBSD disables access by ssh to the root account. It is important

to control who has access to the machine via ssh and make good use of doas

to control the level of privileges of the ssh users.

To avoid man-in-the-middle attacks it is important to make sure that the daemon

is only accepting protocol 2 by adding one line to “/etc/ssh/sshd_config”:

Protocol 2

It is possible and recommendable to discard the passwords and use keys

instead.

Create keys:

$ ssh-keygen

Generating public/private rsa key pair.

Enter file in which to save the key (/home/hugo/.ssh/id_rsa):

Enter passphrase (empty for no passphrase):

Enter same passphrase again:

Your identification has been saved in /home/hugo/.ssh/id_rsa.

Your public key has been saved in /home/hugo/.ssh/id_rsa.pub.

The key fingerprint is:

SHA256:ndwVfndZ2xdGsldumJTkLDv5QSRd2p1lHlK8fzMzySg

hugo@fugu.my.domain

The key's randomart image is:

+---[RSA 2048]----+

| .=OO*|

| BB@%|

| ..X=&|

| o o *.++|

| S + = + o|

| E + Oo|

| . . *|

| |

| |

+----[SHA256]-----+

Once we have the pair of keys, we can copy the public pair “id_rsa.pub” on the

server:

$ cat id_rsa.pub >>.ssh/authorized_keys

Once we have the keys on the server, we can modify the “/etc/ssh/sshd_config”:

PasswordAuthentication no

5.3 FTPD

FTP stands for file transfer protocol and an anonymous FTP is the perfect tool

for sharing software over the internet since most of the browsers support FTP

connections.

Since HTTP protocol can also be used to transfer files, several discussions

arose about the subject. Which is faster or more convenient? Or which will be

abandoned in the future?

Why do we need to choose one when it is possible to have both? The solution

is to put the anonymous FTP server home directory under the HTTP directory,

for example “/var/www/ftp/”.

To start an anonymous FTP server requires having a FTP account on the

system. Because we do not want to allow FTP users to have a shell we need to

add a fake one:

echo /usr/bin/false >> /etc/shells

Then we can create the FTP account as described in the OpenBSD site:

adduser

Use option ``-silent'' if you don't want to see all warnings and questions.

Reading /etc/shells

Check /etc/master.passwd

Check /etc/group

Enter username []: ftp

Enter full name []: anonymous ftp

Enter shell csh false ksh nologin sh [ksh]: false

Uid [1002]: Enter

Login group ftp [ftp]: Enter

Login group is ``ftp''. Invite ftp into other groups: guest no

[no]: Enter

Login class authpf daemon default staff [default]: Enter

Enter password []: Enter

Disable password logins for the user? (y/n) [n]: y

Name: ftp

Password: ****

Fullname: anonymous ftp

Uid: 1002

Gid: 1002 (ftp)

Groups: ftp

Login Class: default

HOME: /home/ftp

Shell: /usr/bin/false

OK? (y/n) [y]: Enter

Added user ``ftp''

Copy files from /etc/skel to /home/ftp

Add another user? (y/n) [y]: n

Goodbye!

Then we create the subdirectories etc and pub. They should be owned by root

and the permissions have to be set to 555.

If we want the server to start on every boot we should add the following line to

“/etc/rc.conf.local”:

ftpd_flags="-llUSA"

Where:

 ll: detailed logging to syslog.

 U: log users so who(1) and similar programs can see them.

 S - log transfers to /var/log/ftpd.

 A - permit only anonymous FTP transfers.

5.4 HTTPD

The HTTP server stands for hypertext transfer protocol. That is the foundation

of the world wide web. OpenBSD has his own server HTTPD, which is very

similar to the NGINX server. Of course, the OpenBSD team has focused this

server on security and correctness. It is chrooted, meaning it that can only deal

with files under its home directory “/var/www/”. To start the server on every boot

we need to add the following line to “/etc/rc.conf.local”:

httpd_flags=

OpenBSD has an example of the configuration file on

“/etc/examples/httpd.conf”:

$OpenBSD: httpd.conf,v 1.14 2015/02/04 08:39:35 florian Exp $

#

Macros

#

ext_addr="*"

#

Global Options

#

prefork 3

#

Servers

#

A minimal default server

server "default" {

 listen on $ext_addr port 80

}

A name-based "virtual" server on the same address

server "www.example.com" {

 listen on $ext_addr port 80

 # Logging is enabled by default, but it can be turned off per server

 #no log

 location "/pub/*" {

 directory auto index

 log style combined

 }

 location "*.php" {

 fastcgi socket "/run/php-fpm.sock"

 }

 location "/cgi-bin/*" {

 fastcgi

 # The /cgi-bin directory is outside of the document root

 root "/"

 }

 root "/htdocs/www.example.com"

}

An HTTPS server using SSL/TLS

server "secure.example.com" {

 listen on 127.0.0.1 tls port 443

 # Define server-specific log files relative to /logs

 log { access "secure-access.log", error "secure-error.log" }

 # Increase connection limits to extend the lifetime

 connection { max requests 500, timeout 3600 }

 root "/htdocs/secure.example.com"

}

Another server on a different internal IPv4 address

server "intranet.example.com" {

 listen on 10.0.0.1 port 80

 directory { auto index, index "default.htm" }

 root "/htdocs/intranet.example.com"

}

An IPv6-based server on a non-standard port

server "ipv6.example.com" {

 listen on 2001:db8::53f6:3eab port 81

 root "/htdocs/ipv6.example.com"

}

Include MIME types instead of the built-in ones

types {

 include "/usr/share/misc/mime.types"

}

As we can read it is very easy to configure and tune.

6 BACKUPS

OpenBSD comes with two powerful tools for backup: dump and restore.

Originally these tools were conceived to be used with a tape but since it is

possible to dump to a file, and most importantly, restore it from a file the sky is

the limit.

It is possible to make incremental backups in order to save time and avoid

redundancy. For example, we can start with a total backup (level 0) and then

start increasing the level every time we make a new backup so we have only

the modifications since the previous level backup:

dump -0au -f file.dump /dev/rsd0a

Where:

 0: is the level

 a: automatically determines the size (of the tape).

 u: makes an update the file /etc/dumpdates to record the backups

 f: the name of the file (or the device we use).

To restore our backup:

restore rf file.dump

This will restore all our files in the same directory we are.

7 CONCLUSION

The main goal of this thesis was to create a personal server providing services,

such as FTP, HTTP and a backup service via SSH and implement it in a secure

way with a solid cryptography.

An additional goal of the thesis was to implement the server not only with free

software but also open software, proving that it is possible to achieve

professional results with this philosophy and tools.

The server was successfully implemented as specified and the learning

experience has been very important to understand concepts that could be very

useful to apply in other environments.

The set up and the maintenance of the sever requires a knowledge very

important in the future of any junior System Administrator.

Definitely the project leaves the door open for future challenges, such a mail

server which would only be possible with a static IP and a better control of the

internet connection, a common feature in working environments.

REFERENCES

Berg, M. (2015). Mass Surveillance: Part 2 - Technology Foresight [Online].

Available at:

http://www.europarl.europa.eu/RegData/etudes/STUD/2015/527410/EPRS_ST

U(2015)527410_REV1_EN.pdf [accessed 12.11.2015]

Gamino, A. (2015). Mass Surveillance: Part 1-Risks, Opportunities and

Mitigation Strategies [Online]. Available at:

http://www.europarl.europa.eu/RegData/etudes/STUD/2015/527409/EPRS_ST

U(2015)527409_REV1_EN.pdf [accessed 12.11.2015]

Lenovo Group Ltd (2016). SMM “Incursion” Attack [Online]. Available at:

https://support.lenovo.com/fi/fi/product_security/smm_attack [accessed

20.01.2016]

LibreSSL. (2016). LibreSSL [Online]. Available at: http://www.libressl.org/

[accessed 15.10.2015]

Lucas, M. (2011). SSH Mastery. San Francisco, USA: Tilted Windmill Press.

Lucas, M. (2013). Absolute OpenBSD 2nd Ed. San Francisco, USA: No Starch

Press.

Lucas, M. (2013). DNSSEC Mastery. San Francisco, USA: Tilted Windmill

Press.

Lucas, M. (2013). An OpenBSD talk [Online]. Available at:

https://www.youtube.com/watch?v=daT78L17Di8 [accesed 12.10.2015]

OpenBSD. (2016). OpenBSD [Online]. Available at: http://www.openbsd.org/

[accessed 12.10.2015]

OpenSSH. (2016). OpenSSH [Online]. Available at: http://www.openssh.com/

[accessed 15.11.2015]

http://www.openssh.com/
http://www.openbsd.org/
https://www.youtube.com/watch?v=daT78L17Di8
http://www.libressl.org/
https://support.lenovo.com/fi/fi/product_security/smm_attack
http://www.europarl.europa.eu/RegData/etudes/STUD/2015/527409/EPRS_STU(2015)527409_REV1_EN.pdf
http://www.europarl.europa.eu/RegData/etudes/STUD/2015/527409/EPRS_STU(2015)527409_REV1_EN.pdf
http://www.europarl.europa.eu/RegData/etudes/STUD/2015/527410/EPRS_STU(2015)527410_REV1_EN.pdf
http://www.europarl.europa.eu/RegData/etudes/STUD/2015/527410/EPRS_STU(2015)527410_REV1_EN.pdf

	1 INTRODUCTION
	2 THE OPENBSD SERVER
	3 HARDWARE SPECIFICATIONS
	4 SERVER SETUP
	4.1 Installation
	4.2 Partitioning
	4.3 Networking
	4.4 Management
	4.5 LibreSSL

	5 REMOTE ACCESS
	5.1 Name server and domains
	5.2 SSHD
	5.3 FTPD
	5.4 HTTPD

	6 BACKUPS
	7 CONCLUSION
	REFERENCES

